
Security in modern CPU

Guillaume Bouffard (guillaume.bouffard@ssi.gouv.fr)

Hardware Security Labs – National Cybersecurity Agency of France (ANSSI)

DIENS, ENS, CNRS, PSL University

Workshop SILM— 21 November 2019

mailto:guillaume.bouffard@ssi.gouv.fr

Who am I?

Me

Expert in Embedded System Security (Hardware Security Labs — ANSSI)

Associate Researcher in the Information Security Group at ENS

Research subjects

Embedded so�ware security against hardware and so�ware attacks

Java Card, IC (secure component, micro-controller and SoC).

Security in modern CPU Guillaume Bouffard 21 November 2019 1 / 43

Aim of this Tutorial

This tutorial aims at introducing an overview of root of trust hardware and
so�ware security.

During this tutorial:

I will focus on security from secure element to system-on-chip

No cryptographic implementations will be mistreated during this presentation

Security in modern CPU Guillaume Bouffard 21 November 2019 2 / 43

1. Introduction

The Root of Trust

Several features must be executed in a trust environment where is able to:

host sensitive applications:
◮ where sensitive and cryptographic data protection are ensured;

compute sensitive (as cryptographic) operations:
◮ without any leak.

Security in modern CPU Guillaume Bouffard 21 November 2019 3 / 43

The Root of Trust (cont.)

The root of trust is a secure environment.

Security in modern CPU Guillaume Bouffard 21 November 2019 4 / 43

The Root of Trust (cont.)

The root of trust is a secure environment.

Mainly, it’s a secure component.

Security in modern CPU Guillaume Bouffard 21 November 2019 4 / 43

The Root of Trust (cont.)

The root of trust is a secure environment.

Mainly, it’s a secure component.

The most populate secure component is the smart card.

Security in modern CPU Guillaume Bouffard 21 November 2019 4 / 43

The Root of Trust (cont.)

Several so�ware implementations of a secure component exist:

Hardware secure component emulation:
◮ Changing TPMs by secure enclaves, (as ARM TrustZone)
◮ this is not a secure component.

Whitebox cryptographic:
◮ It’s basically less secure.
◮ How to ensure the security level of those implementations?
◮ How and under which condition make those evaluations?

Security in modern CPU Guillaume Bouffard 21 November 2019 5 / 43

Attacks against Root of Trust

Physical attacks
◮ Side Channel attacks (timing

attacks, power analysis attack,
etc.);

◮ Fault attacks (electromagnetic
injection, laser beam injection,
etc.).

So�ware attacks
◮ Execution of malicious

instructions.

Combined attacks
◮ Mix of physical and so�ware

attacks.

Security in modern CPU Guillaume Bouffard 21 November 2019 6 / 43

The Secure Component?

A secure component is a component with securities features:

A micro-controller with 1-core CPU and limited-resources;

Confidentiality and integrity of the flash memory data;

Random number generator;

Cryptographic accelerators;

Detect probing attacks or signal corruption;

Side channel attacks protection;

Hardened so�ware.

Security in modern CPU Guillaume Bouffard 21 November 2019 7 / 43

The Secure Component? (cont.)

Secure component

CPU Crypto-processor Power management

Memories (with MPU) ISO 7816/SPI

Bus Interconnection

OS (~10-30kB)

JCVM

Applications

Security in modern CPU Guillaume Bouffard 21 November 2019 8 / 43

How to ensure security level of Secure Component?

Customers specify the security requirements.

Developers implement security requirements in the product.

ITSEFs evaluate the product security level.

Certification Body certify products and checks each step of the evaluation
process.

Security in modern CPU Guillaume Bouffard 21 November 2019 9 / 43

How to ensure security level of Secure Component?

Customers specify the security requirements.

Developers implement security requirements in the product.

ITSEFs evaluate the product security level.

Certification Body certify products and checks each step of the evaluation
process.

A scheme: the Common Criteria

Common Criteria is an international standard (ISO/IEC 15408) for certification
of secure products.

International recognition

Security in modern CPU Guillaume Bouffard 21 November 2019 9 / 43

How to ensure security level of Secure Component?

Customers specify the security requirements.

Developers implement security requirements in the product.

ITSEFs evaluate the product security level.

Certification Body certify products and checks each step of the evaluation
process.

A scheme: the Common Criteria

Common Criteria is an international standard (ISO/IEC 15408) for certification
of secure products.

International recognition

Evaluation area:
◮ Smartcards & similar devices
◮ Hardware Devices with Security Boxes
◮ So�ware

Security in modern CPU Guillaume Bouffard 21 November 2019 9 / 43

Common Criteria Evaluation Level

Several certification classes exist:

Level Description

EAL1 Functionally Tested

EAL2 Structurally Tested

EAL3 Methodically Tested and Checked

EAL4 Methodically Designed, Tested and Reviewed

EAL5 Semiformally Designed and Tested

EAL6 Semiformally Verified Design and Tested

EAL7 Formally Verified Design and Tested

For each class may be augmented:
◮ For instance: a smartcard can be evaluated as:

EAL4 + ALC_DVS.2 + AVA_VAN.5

Each evaluation is not time constraint.

Security in modern CPU Guillaume Bouffard 21 November 2019 10 / 43

CC CSPN

EAL 1 to 7 Only one level

Grey/white box Black box

International certification recognition No recognition

No time constraint 25md (+10 for crypto)

Product update during the evaluation Fixed product version

Developer must provide compliant docs No specific knowledge

Very expensive (60 to 200k€) Relatively low cost (25 to 35k€)

Security in modern CPU Guillaume Bouffard 21 November 2019 11 / 43

https://www.bsi.bund.de/EN/Topics/Certification/product_certification/Accelerated_Security_Certification/Accelerated-Security-Certification_node.html
https://www.bsi.bund.de/EN/Topics/Certification/product_certification/Accelerated_Security_Certification/Accelerated-Security-Certification_node.html
https://www.jtsec.es/blog-entry/18/ccn-has-published-lince-methodology-for-evaluation-of-it-products

CC CSPN

EAL 1 to 7 Only one level

Grey/white box Black box

International certification recognition No recognition

No time constraint 25md (+10 for crypto)

Product update during the evaluation Fixed product version

Developer must provide compliant docs No specific knowledge

Very expensive (60 to 200k€) Relatively low cost (25 to 35k€)

CPSN-like scheme available in Germany (BSZ — Accelerated Security
Certification) and Spain (LINCE).

Security in modern CPU Guillaume Bouffard 21 November 2019 11 / 43

https://www.bsi.bund.de/EN/Topics/Certification/product_certification/Accelerated_Security_Certification/Accelerated-Security-Certification_node.html
https://www.bsi.bund.de/EN/Topics/Certification/product_certification/Accelerated_Security_Certification/Accelerated-Security-Certification_node.html
https://www.jtsec.es/blog-entry/18/ccn-has-published-lince-methodology-for-evaluation-of-it-products

From the Secure Component to the System of Chip

Sensitive assets are in and computed on the secure component.

Secure component are designed (and evaluated) to be tamper-resistant
against physical and so�ware attacks.

System on Chips (SoC) are everywhere:
◮ Automotive
◮ Smartphone
◮ IoT

Secure component are limited resources devices.

For sensitive operations where more resources are required, SoCs are used.

Security in modern CPU Guillaume Bouffard 21 November 2019 12 / 43

Secure Component vs SoC

Smartcard Mobile device

Same services, different securities

Security in modern CPU Guillaume Bouffard 21 November 2019 13 / 43

Secure Component vs SoC

Based on a secure component

Simple CPU

Designed for security

Certified

Based on a full System on Chip

Complex CPU

Designed for performance

Adding TEE1 for so�ware security

1Trusted Environment Execution

Security in modern CPU Guillaume Bouffard 21 November 2019 14 / 43

What is a System on Chip?

System on Chip (Exynos like)

CPUs (4x Big & 4x Little Cores) GPU (8 cores) & VPU2 PMIC3

Internal ROM & RAM (with MMU) Modem Interfaces

Multi-layer AXI/AHB Bus & Cache Coherent Interconnection

Trusted Kernel

Rich OS

Standard Apps

Trusted OS

Trusted Apps

2Video Processing Unit
3Power Management Integrated Circuit

Security in modern CPU Guillaume Bouffard 21 November 2019 15 / 43

Secure Component vs System on Chip

Secure component

CPU (1 ARMv7-M core) Crypto-processor Power management

Memories (with MPU) Interfaces

Bus Interconnection

Kernel & OS (~kB)

JCVM

Applications

System on Chip (Exynos like)

CPUs (4x Big & 4x Little Cores) GPU (8 cores) & VPU PMIC

Internal ROM & RAM (with MMU) Modem Interfaces

Multi-layer AXI/AHB Bus & Cache Coherent Interconnection

Trusted Kernel

Rich OS

Standard Apps

Trusted OS

Trusted Apps

Run at 4 to 60MHz

Not multi-threaded

Fine engraving > 40 nm

Constant Voltage & Frequency

Trusted hardware & apps only

Hardware mitigation

Run at 300MHz to 3GHz

Multi-threaded

Fine engraving < 20 nm

Dynamic Voltage & Frequency
management

Trusted Environment Execution

No hardware mitigation

Security in modern CPU Guillaume Bouffard 21 November 2019 16 / 43

The Packaging

Smart card packagewith secure
component

SoCwith package on package

Contact Secure component Package

Card body Wirebounds

Stacked RAM

SoCBGA4

Wirebounds

mini PCB

Package

4Ball Grid Array

Security in modern CPU Guillaume Bouffard 21 November 2019 17 / 43

2. Security of SoC

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Project Zero attack/Drammer (2015 - 2016) [vdVFL+16]

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Project Zero NaCl/Rowhammer on TrustZone (2015) [Car17]

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

ClkScrew (2017) [TSS17]

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Meltdown attack [LSG+18]

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Spectre attack [KHF+19]

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

?

Controlling PC on ARM (2016) [TSW16]

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Attack on PS3

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Attack on Xbox 360 (2015) [Bla15]

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Laser induced fault on smartphone (2017) [VTM+17]

Security in modern CPU Guillaume Bouffard 21 November 2019 18 / 43

3. Fault Effect Forensic on complex CPU

Fault Effect Forensic on complex CPU

Fault on complex CPU is possible

How to analyse a fault effect?

Fault effect analysis on MPU and L1 instruction cache dysfunction

This work is a co-joint ANSSI/INRIA [TBE+19]

Security in modern CPU Guillaume Bouffard 21 November 2019 19 / 43

Reminder onmemory hierarchy

Security in modern CPU Guillaume Bouffard 21 November 2019 20 / 43

Targeted so�ware (single-core)

trigger_up();

//wait to compensate bench latency

wait_us(2);

for(i = 0;i<50; i++) {

for(j = 0;j<50;j++) {

cnt++;

}

}

trigger_down();

Security in modern CPU Guillaume Bouffard 21 November 2019 21 / 43

Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

Security in modern CPU Guillaume Bouffard 21 November 2019 22 / 43

Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

JTAG session

Security in modern CPU Guillaume Bouffard 21 November 2019 22 / 43

Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

JTAG session

Security in modern CPU Guillaume Bouffard 21 November 2019 22 / 43

Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

> reg x0

x0 (/64): 0x2

JTAG session

Security in modern CPU Guillaume Bouffard 21 November 2019 22 / 43

Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

> reg x0

x0 (/64): 0x2

> step

pc: 0x48a0c

JTAG session

Security in modern CPU Guillaume Bouffard 21 November 2019 22 / 43

Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

> reg x0

x0 (/64): 0x2

> step

pc: 0x48a0c

> reg x0

x0 (/64): 0x2

JTAG session

Security in modern CPU Guillaume Bouffard 21 November 2019 22 / 43

Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

> reg x0

x0 (/64): 0x2

> step

pc: 0x48a0c

> reg x0

x0 (/64): 0x2

> mdw 0x48a08 1

0x00048a08: add w0, w0, #0x1

JTAG session
Security in modern CPU Guillaume Bouffard 21 November 2019 22 / 43

Confirmingmicro-architectural model

Security in modern CPU Guillaume Bouffard 21 November 2019 23 / 43

Confirmingmicro-architectural model

How to confirm?

Invalidate L1I cache by executing corresponding instruction.

> reg pc 0x6a784

pc (/64): 0x000000000006A784

> step => IC IALLU

pc: 0x6a788

> step => ISB

pc: 0x6a78c

> reg pc 0x48a08

pc (/64): 0x0000000000048A08

> reg x0

x0 (/64): 0x0000000000000002

> step

pc: 0x48a0c

> reg x0

x0 (/64): 0x0000000000000003

JTAG session

Security in modern CPU Guillaume Bouffard 21 November 2019 23 / 43

Failure cause

Hypothesis

Fault is only on first execution,

and fault has an impact on L1I.

The fault occurs on amemory transfer when writing instructions to L1I.

Security in modern CPU Guillaume Bouffard 21 November 2019 24 / 43

Failure cause

Hypothesis

Fault is only on first execution,

and fault has an impact on L1I.

The fault occurs on amemory transfer when writing instructions to L1I.

trigger_up();

wait_us(2);

/* + */invalidate_icache();

for(i = 0;i<50; i++) {

for(j = 0;j<50;j++) {

cnt++;

}

}

trigger_down();

Observations

Now, we can reproduce the previous
fault, if we inject during the cache
reload (lasts 2µs).

Security in modern CPU Guillaume Bouffard 21 November 2019 24 / 43

How to improve security of Complex CPU

Several attacks were published without knowledge of the targeted element or the
fault model:

Unable to reproduce attacks.

Problem to design efficient countermeasure.

Problem to evaluate sensitive functions.

Security in modern CPU Guillaume Bouffard 21 November 2019 25 / 43

How to improve security of Complex CPU

Several attacks were published without knowledge of the targeted element or the
fault model:

Unable to reproduce attacks.

Problem to design efficient countermeasure.

Problem to evaluate sensitive functions.

Characterisation of fault effect on complex CPU is a work in progress.

How to characterizing?

Which approach?

Security in modern CPU Guillaume Bouffard 21 November 2019 25 / 43

4. Characterizing Fault Model on Complex CPU

State-of-the-art characterizing the fault effect

Micro-controller CPU characterisation

Balasch et al. [BGV11] (Clock)

Moro et al. [MDH+13] (EM Perturbation)

Korak et al. [KH14] (Clock & et tension)

Riviere et al. [RNR+15] (Instruction cache)

Yuce et al. [YSW18]

Complex CPU characterisation

Dumont et al. [DLM19] (low level characterisation)

Proy et al. [PHB+19] (EM perturbation to characterize their countermeasures)

Security in modern CPU Guillaume Bouffard 21 November 2019 26 / 43

Which is themethodology to use?

So�ware aware
characterization

Hardware aware
characterization

ISA

Micro-architecture

Logic

Program

Fault

Fault characterization

Fault origin study

Fault characterization
micro-architectural level

Fault propagation study

Fault characterization
logical level

Code reviewPost attack analysis

Security in modern CPU Guillaume Bouffard 21 November 2019 27 / 43

General Complex CPU architecture

Pipeline

Memory

Fetch Decode Execute

Memory Management Data cacheInstruction cache

Mix Cache

External memory

Registers

Data Instructions

Security in modern CPU Guillaume Bouffard 21 November 2019 28 / 43

Characterizing the fault model from ISA to Micro-Architectural
Block (MAB)

Based on a part of Thomas Trouchkine’s thesis, published in [TBC19]

Hypotheses

Non-changing state instructions are executed

Instructions manipulate registers only

Data perturbation

rf = f(r)

Instruction perturbation

rf = if (s)

if = f(i)

Security in modern CPU Guillaume Bouffard 21 November 2019 29 / 43

Data processing test code

Listing 1: ARM semantic nop instruction

mov r0, r0

Several times

mov r0, r0

Listing 2: x86 semantic nop instruction

mov rax, rax

Several times

mov rax, rax

Security in modern CPU Guillaume Bouffard 21 November 2019 30 / 43

Memory access test code

Listing 3: ARM read/write in memory
instructions

str r0, [r1]

ldr r0, [r1]

Several times

str r0, [r1]

ldr r0, [r1]

Listing 4: x86 read/write in memory
instructions

mov rax, [rbx]

mov [rbx], rax

Several times

mov rax, [rbx]

mov [rbx], rax

Security in modern CPU Guillaume Bouffard 21 November 2019 31 / 43

Corruption effects analysis

Faulted
element

Data

Fault type
Register
corrup-
tion

Memory corruption Bad fetch

Faulted
MAB

Registers Cache Data bus Cache
Memory
Manage-
ment

Security in modern CPU Guillaume Bouffard 21 November 2019 32 / 43

Corruption effects analysis

Faulted
element

Data

Fault type
Register
corrup-
tion

Memory corruption Bad fetch

Faulted
MAB

Registers Cache Data bus Cache
Memory
Manage-
ment

Faulted
element

Instruction

Fault type Corruption Bad fetch

Faulted
MAB

Pipeline Cache Bus Cache
Memory
Manage-
ment

Security in modern CPU Guillaume Bouffard 21 November 2019 32 / 43

Experiences

BCM2837 (ARM) Intel Core i3 (x86)

Security in modern CPU Guillaume Bouffard 21 November 2019 33 / 43

EM sensibility of SoC of Raspberry pi 3 board (BCM2837)

14131211109876543210
Position (mm)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Po
sit

io
n

(m
m

)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Nu
m

be
r o

f r
eb

oo
ts

 p
er

 p
os

iti
on

s
Reboot on bare metal

Position (mm)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Po
sit

io
n

(m
m

)

0

1

2

3

4

Nu
m

be
r o

f r
eb

oo
ts

 p
er

 p
os

iti
on

s

Reboot on Linux

14131211109876543210
Position (mm)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Po
sit

io
n

(m
m

)

0

1

2

Nu
m

be
r o

f f
au

lts
 p

er
 p

os
iti

on
s

Faults on code on bare metal

14131211109876543210
Position (mm)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Po
sit

io
n

(m
m

)

0

1

2

3

4

Nu
m

be
r o

f f
au

lts
 p

er
 p

os
iti

on
s

Faults on code on Linux

Bare-metal code was developed by the INRIA-LHS [TBE+19]
Security in modern CPU Guillaume Bouffard 21 November 2019 34 / 43

Faults/Reboots depend on EM power

Probe is placed on “fault” position
Tested on Linux

400 410 420 430 440 450 460 470 480 490 500
Power value (V)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(%
)

Fault
Reboot

Security in modern CPU Guillaume Bouffard 21 November 2019 35 / 43

Faults/Reboots depend on EM power (cont.)

Probe is placed on “fault” position
Tested on bare-metal

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400
Power value (V)

0

2

4

6

8

10

12

(%
)

Fault
Reboot

Security in modern CPU Guillaume Bouffard 21 November 2019 36 / 43

EM sensibility of SoC of Raspberry pi 3 board (BCM2837) (cont.)

mov r0, r0 test code
r0 <= r0

Pattern of the faulted value

Other register
value

All 0 Or with
other reg

Unknown
0

20

40

60

80

%
check on r0 to r9

the operand doesn’t change (80%)

rX <= rY

Security in modern CPU Guillaume Bouffard 21 November 2019 37 / 43

Experiments on Raspberry Pi 3 - Results

mov r0, r0 test code
r0 <= r0

Number of faults per register

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9
0

20

40

60

%

destination register doesn’t change
(75%)

r0 <= rX

Security in modern CPU Guillaume Bouffard 21 November 2019 38 / 43

Destination analysis

mov r0, r0

mov r3, r3

Number of faults per register

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9
0

20

40

60

80

%

mov r0,r0

mov r3,r3

destination register doesn’t change
(75%)

r0 <= rX

Security in modern CPU Guillaume Bouffard 21 November 2019 39 / 43

Operands analysis

mov rX, rX

or rX, rX

X ∈ [0, 9]

Value in the faulted register

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9
0

10

20

30

40

50

%

mov rX,rX

or rX,rX

all registers faulted with same
probability

rX <= r{0,1}

second operand set to 0 or 1

Security in modern CPU Guillaume Bouffard 21 November 2019 40 / 43

Example of exploitation

Targeting cmp instruction

init: r3 <= 0xff

cmp r3, #255

bne fault

b nofault

fault: mov r9, #170

b end

nofault: mov r9, #85

end: nop
cmp bypassed r0 = 0xfffcb924 Unknown

0

20

40

60

80

%

Security in modern CPU Guillaume Bouffard 21 November 2019 41 / 43

EM sensibility of Intel i3 CPU

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Position (mm)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Po
sit

io
n

(m
m

)

0

1

2

3

4

5

Nu
m

be
r o

f r
eb

oo
ts

 p
er

 p
os

iti
on

s

Reboot on Linux

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Position (mm)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Po
sit

io
n

(m
m

)

0

1

Nu
m

be
r o

f f
au

lts
 p

er
 p

os
iti

on
s

Fault on Linux

We obtained the same fault model as Raspberry pi 3 SoC.

Security in modern CPU Guillaume Bouffard 21 November 2019 42 / 43

To Conclude

Secure Components have been designed to be tamper-resistant against
hardware and so�ware attacks
◮ Their security evaluation is well-know and resistant over the time.

Complex CPUs are more andmore used for security features
◮ Several attacks target modern CPU without knowledge of the fault model
◮ Works starting to characterizing fault effect on complex CPUs.

Require to designed efficient countermeasures

Recent SoCs embed secure component
◮ It is a good way to improve security of sensitive assets
◮ How to evaluate their security level?

Security in modern CPU Guillaume Bouffard 21 November 2019 43 / 43

Questions?

Guillaume Bouffard
<guillaume.bouffard@ssi.gouv.fr>

mailto:guillaume.bouffard@ssi.gouv.fr

References

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede, An
in-depth and black-box characterization of the effects of clock glitches

on 8-bit mcus, 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2011, Tokyo, Japan, September 29, 2011 (Luca
Breveglieri, Sylvain Guilley, Israel Koren, David Naccache, and Junko
Takahashi, eds.), IEEE Computer Society, 2011, pp. 105–114.

[Bla15] BlackHat, Xbox 360 glitching on fault attack, November 2015.

[Car17] Pierre Carru, Attack trustzone with rowhammer, eshard, 2017.

[DLM19] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine,
Electromagnetic fault injection : How faults occur, 2019 Workshop on
Fault Diagnosis and Tolerance in Cryptography, FDTC 2019, Atlanta,
GA, USA, August 24, 2019, 2019, pp. 9–16.

References (cont.)

[KH14] Thomas Korak and Michael Hoefler, On the effects of clock and power
supply tampering on twomicrocontroller platforms, 2014 Workshop on
Fault Diagnosis and Tolerance in Cryptography, FDTC 2014, Busan,
South Korea, September 23, 2014 (Assia Tria and Dooho Choi, eds.),
IEEE Computer Society, 2014, pp. 8–17.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom, Spectre attacks:
Exploiting speculative execution, 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, 2019,
pp. 1–19.

References (cont.)

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg,Meltdown: Reading kernel
memory from user space, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, 2018,
pp. 973–990.

[MDH+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson,
and Emmanuelle Encrenaz, Electromagnetic fault injection: Towards a
fault model on a 32-bit microcontroller, 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA,
August 20, 2013 (Wieland Fischer and Jörn-Marc Schmidt, eds.), IEEE
Computer Society, 2013, pp. 77–88.

References (cont.)

[PHB+19] Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majéric,
and Albert Cohen, A first isa-level characterization of EM pulse effects
on superscalar microarchitectures: A secure so�ware perspective,
Proceedings of the 14th International Conference on Availability,
Reliability and Security, ARES 2019, Canterbury, UK, August 26-29,
2019., 2019, pp. 7:1–7:10.

[RNR+15] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien
Bringer, and Laurent Sauvage, High precision fault injections on the
instruction cache of armv7-m architectures, IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2015,
Washington, DC, USA, 5-7 May, 2015, IEEE Computer Society, 2015,
pp. 62–67.

References (cont.)

[TBC19] Thomas Trouchkine, Guillaume Bouffard, and Jessy Clediere, Fault
injection characterization onmodern cpus – from the isa to the

micro-architecture, Information Security Theory and Practice - 13th
IFIP WG 11.2 International Conference, WISTP 2019, Paris, France,
December 10-11, 2019, 2019.

[TBE+19] Thomas Trouchkine, Sebanjila Kevin Bukasa, Mathieu Escouteloup,
Ronan Lashermes, and Guillaume Bouffard, Electromagnetic fault
injection against a system-on-chip, toward newmicro-architectural

fault models, CoRR abs/1910.11566 (2019).

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo, Clkscrew:
Exposing the perils of security-oblivious energy management, Tech.
report, Columbia University, 2017.

References (cont.)

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman, Controlling PC on
ARM using fault injection, 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA,
August 16, 2016, IEEE Computer Society, 2016, pp. 25–35.

[vdVFL+16] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida, Drammer: Deterministic rowhammer
attacks onmobile platforms, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016 (Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, eds.), ACM,
2016, pp. 1675–1689.

[VTM+17] Aurélien Vasselle, Hugues Thiebeauld, Adèle Morisset, Quentin
Maouhoub, and Sebastien Ermeneux, Laser-induced fault injection on
smartphone bypassing the secure boot.

References (cont.)

[YSW18] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman, Fault attacks
on secure embedded so�ware: Threats, design, and evaluation, J.
Hardware and Systems Security 2 (2018), no. 2, 111–130.

	Introduction
	Security of SoC
	Fault Effect Forensic on complex CPU
	Characterizing Fault Model on Complex CPU

