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Who am I?

Me

Expert in Embedded System Security (Hardware Security Labs — ANSSI)

Associate Researcher in the Information Security Group at ENS

Research subjects

Embedded so�ware security against hardware and so�ware attacks

Java Card, IC (secure component, micro-controller and SoC).
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Aim of this Tutorial

This tutorial aims at introducing an overview of root of trust hardware and
so�ware security.

During this tutorial:

I will focus on security from secure element to system-on-chip

No cryptographic implementations will be mistreated during this presentation
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1. Introduction



The Root of Trust

Several features must be executed in a trust environment where is able to:

host sensitive applications:
◮ where sensitive and cryptographic data protection are ensured;

compute sensitive (as cryptographic) operations:
◮ without any leak.
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The Root of Trust (cont.)

The root of trust is a secure environment.
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The Root of Trust (cont.)

The root of trust is a secure environment.

Mainly, it’s a secure component.
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The Root of Trust (cont.)

The root of trust is a secure environment.

Mainly, it’s a secure component.

The most populate secure component is the smart card.
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The Root of Trust (cont.)

Several so�ware implementations of a secure component exist:

Hardware secure component emulation:
◮ Changing TPMs by secure enclaves, (as ARM TrustZone)
◮ this is not a secure component.

Whitebox cryptographic:
◮ It’s basically less secure.
◮ How to ensure the security level of those implementations?
◮ How and under which condition make those evaluations?

Security in modern CPU Guillaume Bouffard 21 November 2019 5 / 43



Attacks against Root of Trust

Physical attacks
◮ Side Channel attacks (timing

attacks, power analysis attack,
etc.);

◮ Fault attacks (electromagnetic
injection, laser beam injection,
etc.).

So�ware attacks
◮ Execution of malicious

instructions.

Combined attacks
◮ Mix of physical and so�ware

attacks.
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The Secure Component?

A secure component is a component with securities features:

A micro-controller with 1-core CPU and limited-resources;

Confidentiality and integrity of the flash memory data;

Random number generator;

Cryptographic accelerators;

Detect probing attacks or signal corruption;

Side channel attacks protection;

Hardened so�ware.
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The Secure Component? (cont.)

Secure component

CPU Crypto-processor Power management

Memories (with MPU) ISO 7816/SPI

Bus Interconnection

OS (~10-30kB)

JCVM

Applications
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How to ensure security level of Secure Component?

Customers specify the security requirements.

Developers implement security requirements in the product.

ITSEFs evaluate the product security level.

Certification Body certify products and checks each step of the evaluation
process.
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How to ensure security level of Secure Component?

Customers specify the security requirements.

Developers implement security requirements in the product.

ITSEFs evaluate the product security level.

Certification Body certify products and checks each step of the evaluation
process.

A scheme: the Common Criteria

Common Criteria is an international standard (ISO/IEC 15408) for certification
of secure products.

International recognition
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How to ensure security level of Secure Component?

Customers specify the security requirements.

Developers implement security requirements in the product.

ITSEFs evaluate the product security level.

Certification Body certify products and checks each step of the evaluation
process.

A scheme: the Common Criteria

Common Criteria is an international standard (ISO/IEC 15408) for certification
of secure products.

International recognition

Evaluation area:
◮ Smartcards & similar devices
◮ Hardware Devices with Security Boxes
◮ So�ware
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Common Criteria Evaluation Level

Several certification classes exist:

Level Description

EAL1 Functionally Tested

EAL2 Structurally Tested

EAL3 Methodically Tested and Checked

EAL4 Methodically Designed, Tested and Reviewed

EAL5 Semiformally Designed and Tested

EAL6 Semiformally Verified Design and Tested

EAL7 Formally Verified Design and Tested

For each class may be augmented:
◮ For instance: a smartcard can be evaluated as:

EAL4 + ALC_DVS.2 + AVA_VAN.5

Each evaluation is not time constraint.
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CC CSPN

EAL 1 to 7 Only one level

Grey/white box Black box

International certification recognition No recognition

No time constraint 25md (+10 for crypto)

Product update during the evaluation Fixed product version

Developer must provide compliant docs No specific knowledge

Very expensive (60 to 200k€) Relatively low cost (25 to 35k€)
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CC CSPN

EAL 1 to 7 Only one level

Grey/white box Black box

International certification recognition No recognition

No time constraint 25md (+10 for crypto)

Product update during the evaluation Fixed product version

Developer must provide compliant docs No specific knowledge

Very expensive (60 to 200k€) Relatively low cost (25 to 35k€)

CPSN-like scheme available in Germany (BSZ — Accelerated Security
Certification) and Spain (LINCE).
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From the Secure Component to the System of Chip

Sensitive assets are in and computed on the secure component.

Secure component are designed (and evaluated) to be tamper-resistant
against physical and so�ware attacks.

System on Chips (SoC) are everywhere:
◮ Automotive
◮ Smartphone
◮ IoT

Secure component are limited resources devices.

For sensitive operations where more resources are required, SoCs are used.
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Secure Component vs SoC

Smartcard Mobile device

Same services, different securities
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Secure Component vs SoC

Based on a secure component

Simple CPU

Designed for security

Certified

Based on a full System on Chip

Complex CPU

Designed for performance

Adding TEE1 for so�ware security

1Trusted Environment Execution
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What is a System on Chip?

System on Chip (Exynos like)

CPUs (4x Big & 4x Little Cores) GPU (8 cores) & VPU2 PMIC3

Internal ROM & RAM (with MMU) Modem Interfaces

Multi-layer AXI/AHB Bus & Cache Coherent Interconnection

Trusted Kernel

Rich OS

Standard Apps

Trusted OS

Trusted Apps

2Video Processing Unit
3Power Management Integrated Circuit
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Secure Component vs System on Chip

Secure component

CPU (1 ARMv7-M core) Crypto-processor Power management

Memories (with MPU) Interfaces

Bus Interconnection

Kernel & OS (~kB)

JCVM

Applications

System on Chip (Exynos like)

CPUs (4x Big & 4x Little Cores) GPU (8 cores) & VPU PMIC

Internal ROM & RAM (with MMU) Modem Interfaces

Multi-layer AXI/AHB Bus & Cache Coherent Interconnection

Trusted Kernel

Rich OS

Standard Apps

Trusted OS

Trusted Apps

Run at 4 to 60MHz

Not multi-threaded

Fine engraving > 40 nm

Constant Voltage & Frequency

Trusted hardware & apps only

Hardware mitigation

Run at 300MHz to 3GHz

Multi-threaded

Fine engraving < 20 nm

Dynamic Voltage & Frequency
management

Trusted Environment Execution

No hardware mitigation
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The Packaging

Smart card packagewith secure
component

SoCwith package on package

Contact Secure component Package

Card body Wirebounds

Stacked RAM

SoCBGA4

Wirebounds

mini PCB

Package

4Ball Grid Array
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2. Security of SoC



An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Project Zero attack/Drammer (2015 - 2016) [vdVFL+16]
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Project Zero NaCl/Rowhammer on TrustZone (2015) [Car17]
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

ClkScrew (2017) [TSS17]
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Meltdown attack [LSG+18]
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Spectre attack [KHF+19]
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

?

Controlling PC on ARM (2016) [TSW16]
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Attack on PS3
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Attack on Xbox 360 (2015) [Bla15]
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An overview of state-of-the-art SoC attacks

Injectionmedium Physical target So�ware target So�ware security

So�ware

Glitch voltage

Laser

EM

RAM

Clock

Register

Bus

Cache

MMU

Pipeline

Virtual to physical
translation table

Key

Instruction

Return value

Program counter

User rights

Data

Memory partitioning

Cryptography

Secure boot

Execution flow integrity

Confidentiality

Laser induced fault on smartphone (2017) [VTM+17]
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3. Fault Effect Forensic on complex CPU



Fault Effect Forensic on complex CPU

Fault on complex CPU is possible

How to analyse a fault effect?

Fault effect analysis on MPU and L1 instruction cache dysfunction

This work is a co-joint ANSSI/INRIA [TBE+19]
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Reminder onmemory hierarchy
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Targeted so�ware (single-core)

trigger_up();

//wait to compensate bench latency

wait_us(2);

for(i = 0;i<50; i++) {

for(j = 0;j<50;j++) {

cnt++;

}

}

trigger_down();
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Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04
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Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

JTAG session
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Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

JTAG session
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Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

> reg x0

x0 (/64): 0x2

JTAG session
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Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

> reg x0

x0 (/64): 0x2

> step

pc: 0x48a0c

JTAG session
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Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

> reg x0

x0 (/64): 0x2

> step

pc: 0x48a0c

> reg x0

x0 (/64): 0x2

JTAG session
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Forensic

Just a�er a fault, we set the Program Counter to the start of the loop. Then we
execute step-by-step and check the side effects.

_0x48a04: ldr w0, [x29,#20]

_0x48a08: add w0, w0, #0x1

_0x48a0c: str w0, [x29,#20]

_0x48a10: ldr w0, [x29,#24]

_0x48a14: add w0, w0, #0x1

_0x48a18: str w0, [x29,#24]

_0x48a1c: ldr w0, [x29,#24]

_0x48a20: cmp w0, #0x31

_0x48a24: b.le 48a04

pc: 0x48a04

> reg x0

x0 (/64): 0x1

> step

pc: 0x48a08

> reg x0

x0 (/64): 0x2

> step

pc: 0x48a0c

> reg x0

x0 (/64): 0x2

> mdw 0x48a08 1

0x00048a08: add w0, w0, #0x1

JTAG session
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Confirmingmicro-architectural model
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Confirmingmicro-architectural model

How to confirm?

Invalidate L1I cache by executing corresponding instruction.

> reg pc 0x6a784

pc (/64): 0x000000000006A784

> step => IC IALLU

pc: 0x6a788

> step => ISB

pc: 0x6a78c

> reg pc 0x48a08

pc (/64): 0x0000000000048A08

> reg x0

x0 (/64): 0x0000000000000002

> step

pc: 0x48a0c

> reg x0

x0 (/64): 0x0000000000000003

JTAG session
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Failure cause

Hypothesis

Fault is only on first execution,

and fault has an impact on L1I.

The fault occurs on amemory transfer when writing instructions to L1I.
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Failure cause

Hypothesis

Fault is only on first execution,

and fault has an impact on L1I.

The fault occurs on amemory transfer when writing instructions to L1I.

trigger_up();

wait_us(2);

/* + */invalidate_icache();

for(i = 0;i<50; i++) {

for(j = 0;j<50;j++) {

cnt++;

}

}

trigger_down();

Observations

Now, we can reproduce the previous
fault, if we inject during the cache
reload (lasts 2µs).
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How to improve security of Complex CPU

Several attacks were published without knowledge of the targeted element or the
fault model:

Unable to reproduce attacks.

Problem to design efficient countermeasure.

Problem to evaluate sensitive functions.
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How to improve security of Complex CPU

Several attacks were published without knowledge of the targeted element or the
fault model:

Unable to reproduce attacks.

Problem to design efficient countermeasure.

Problem to evaluate sensitive functions.

Characterisation of fault effect on complex CPU is a work in progress.

How to characterizing?

Which approach?
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4. Characterizing Fault Model on Complex CPU



State-of-the-art characterizing the fault effect

Micro-controller CPU characterisation

Balasch et al. [BGV11] (Clock)

Moro et al. [MDH+13] (EM Perturbation)

Korak et al. [KH14] (Clock & et tension)

Riviere et al. [RNR+15] (Instruction cache)

Yuce et al. [YSW18]

Complex CPU characterisation

Dumont et al. [DLM19] (low level characterisation)

Proy et al. [PHB+19] (EM perturbation to characterize their countermeasures)
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Which is themethodology to use?

So�ware aware
characterization

Hardware aware
characterization

ISA

Micro-architecture

Logic

Program

Fault

Fault characterization

Fault origin study

Fault characterization
micro-architectural level

Fault propagation study

Fault characterization
logical level

Code reviewPost attack analysis
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General Complex CPU architecture

Pipeline

Memory

Fetch Decode Execute

Memory Management Data cacheInstruction cache

Mix Cache

External memory

Registers

Data Instructions
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Characterizing the fault model from ISA to Micro-Architectural
Block (MAB)

Based on a part of Thomas Trouchkine’s thesis, published in [TBC19]

Hypotheses

Non-changing state instructions are executed

Instructions manipulate registers only

Data perturbation

rf = f(r)

Instruction perturbation

rf = if (s)

if = f(i)
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Data processing test code

Listing 1: ARM semantic nop instruction

mov r0, r0

# Several times

mov r0, r0

Listing 2: x86 semantic nop instruction

mov rax, rax

# Several times

mov rax, rax
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Memory access test code

Listing 3: ARM read/write in memory
instructions

str r0, [r1]

ldr r0, [r1]

# Several times

str r0, [r1]

ldr r0, [r1]

Listing 4: x86 read/write in memory
instructions

mov rax, [rbx]

mov [rbx], rax

# Several times

mov rax, [rbx]

mov [rbx], rax
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Corruption effects analysis

Faulted
element

Data

Fault type
Register
corrup-
tion

Memory corruption Bad fetch

Faulted
MAB

Registers Cache Data bus Cache
Memory
Manage-
ment
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Corruption effects analysis

Faulted
element

Data

Fault type
Register
corrup-
tion

Memory corruption Bad fetch

Faulted
MAB

Registers Cache Data bus Cache
Memory
Manage-
ment

Faulted
element

Instruction

Fault type Corruption Bad fetch

Faulted
MAB

Pipeline Cache Bus Cache
Memory
Manage-
ment
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Experiences

BCM2837 (ARM) Intel Core i3 (x86)
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EM sensibility of SoC of Raspberry pi 3 board (BCM2837)
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Reboot on bare metal
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Reboot on Linux
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Faults on code on bare metal
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Faults on code on Linux

Bare-metal code was developed by the INRIA-LHS [TBE+19]
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Faults/Reboots depend on EM power

Probe is placed on “fault” position
Tested on Linux
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Faults/Reboots depend on EM power (cont.)

Probe is placed on “fault” position
Tested on bare-metal
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EM sensibility of SoC of Raspberry pi 3 board (BCM2837) (cont.)

mov r0, r0 test code
r0 <= r0

Pattern of the faulted value

Other register
value
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other reg
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check on r0 to r9

the operand doesn’t change (80%)

rX <= rY
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Experiments on Raspberry Pi 3 - Results

mov r0, r0 test code
r0 <= r0

Number of faults per register
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r0 <= rX
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Destination analysis

mov r0, r0

mov r3, r3

Number of faults per register
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Operands analysis

mov rX, rX

or rX, rX

X ∈ [0, 9]

Value in the faulted register
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or rX,rX

all registers faulted with same
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rX <= r{0,1}

second operand set to 0 or 1
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Example of exploitation

Targeting cmp instruction

init: r3 <= 0xff

cmp r3, #255

bne fault

b nofault

fault: mov r9, #170

b end

nofault: mov r9, #85

end: nop
cmp bypassed r0 = 0xfffcb924 Unknown
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EM sensibility of Intel i3 CPU
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Reboot on Linux
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Fault on Linux

We obtained the same fault model as Raspberry pi 3 SoC.
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To Conclude

Secure Components have been designed to be tamper-resistant against
hardware and so�ware attacks
◮ Their security evaluation is well-know and resistant over the time.

Complex CPUs are more andmore used for security features
◮ Several attacks target modern CPU without knowledge of the fault model
◮ Works starting to characterizing fault effect on complex CPUs.

Require to designed efficient countermeasures

Recent SoCs embed secure component
◮ It is a good way to improve security of sensitive assets
◮ How to evaluate their security level?
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Questions?

Guillaume Bouffard
<guillaume.bouffard@ssi.gouv.fr>

mailto:guillaume.bouffard@ssi.gouv.fr
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