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A B S T R A C T

Since the democratization of mobile devices, sensitive operations like
payment, identification or healthcare, usually done using security
evaluated smartcards, are handled by these devices. However, mo-
bile devices neither are designed for security nor security evaluated.
Therefore, their resistance against powerful attacks, like physical at-
tacks is questionable.

In this thesis, we aim at evaluating the security of mobile devices
against physical attacks, in particular perturbation attacks. These at-
tacks aims at modifying the execution environment of the device to in-
duce bugs during its computation. These bugs are called faults. These
faults can compromise the security of a device by allowing the crypt-
analysis of its secret or forcing an unauthorized authentication for
instance.

Mobile devices are powered by modern processors, which are the
heart of this work, and are never evaluated against fault attacks. How-
ever, our knowledge about fault attacks on smartcards is not rele-
vant as the processors powering smartcards are way less complex,
in terms of number of modules, technology node and optimization
mechanisms, than modern processors.

Regarding this situation, we aim at providing rationals on the se-
curity of modern processors against fault attacks by defining a fault
characterization method, using it on representative modern proces-
sors and analyzing classical security mechanisms against the charac-
terized faults.

We characterized three devices, namely the BCM2837, BCM2711b0

and the Intel Core i3-6100T against fault attacks using two different
injection mediums: electromagnetic perturbations and a laser. We de-
termined that these devices, despite having different architecture and
using different mediums are faulted in similar ways. Most of the time,
a perturbation on these devices modify their executed instructions.

As this is a powerful fault, we also analyzed classical security mech-
anisms embedded in such devices. We successfully realized a dif-
ferential fault analysis on the AES implementation of the OpenSSL
library, which is used in every Linux based operating system. We
also analyzed the Linux user authentication process involved in the
sudo program. This work highlights the lack of tools to efficiently ana-
lyze Linux programs, which are rather complex with dynamic linking
mechanisms, against fault attacks.
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R É S U M É

De nos jours, nos appareils mobiles sont utilisés pour réaliser des
opérations sensibles telles que du paiement, de l’identification ou la
gestion de services santé. Historiquement, ces opérations sont réal-
isées par des appareils conçus et évalués pour résister à diverses at-
taques: les éléments sécurisés. En revanche, les appareils mobiles sont
conçus pour fournir la meilleure performance possible et ne subissent
aucune évaluation de sécurité. Cet état de fait interroge sur la résis-
tance de ces appareils face aux attaques classiques contre lesquelles
se protègent les éléments sécurisés.

Parmi ces attaques, nous nous proposons, dans cette thèse, d’étudier
les attaques par perturbations. Ces attaques consistent à modifier les
conditions d’exécution du circuit ciblé afin d’induire des erreurs dans
son fonctionnement. Ces erreurs volontaires, communément appelées
fautes, permettent de créer des failles dans la cible pouvant aller
jusqu’à la cryptanalyse d’un algorithme de chiffrement ou l’authentifi-
cation d’un utilisateur non autorisé.

Bien que ces méthodes d’attaques soient connues et étudiées sur
les éléments sécurisés, les appareils modernes reposent sur des pro-
cesseurs modernes présentant des différences par rapport aux pro-
cesseur des éléments sécurisés. Cela peut être le nombre de module
qu’ils embarquent, leur finesse de gravure ou des optimisations.

L’impact de ces différences sur la sécurité des processeur n’a pas
été étudié en prenant en compte la possibilité d’induire des fautes.
C’est ce que nous réalisons dans cette thèse. Nous définissons une
méthode permettant de caractériser les effets de perturbations sur
un processeur moderne que nous appliquons sur trois processeurs
représentatifs des appareils existants: le BCM2837, le BCM2711b0 et
l’Intel Core i3-6100T. Nous avons également utilisés deux moyens
de perturbation classiques: l’injection d’onde électromagnétique et
l’utilisation d’un laser. L’étude de ces cibles, en variant les moyens
d’injections de faute, nous a permis de déterminer qu’elles réagissent
toutes de manière similaire aux différentes perturbations malgré leur
différentes architectures. L’effet le plus marquant étant la modifica-
tion des instructions exécutées.

Ce type de faute est très fort car il permet de modifier une par-
tie du programme exécuté pendant son exécution. Vérifier le pro-
gramme avant de l’exécuter ne protège en rien face à ce type de
fautes, par exemple. C’est pourquoi nous avons également étudié la
résistance des mécanismes de sécurité présents dans ces cibles face
à ce type de faute. Nous avons notamment réussi à cryptanalyser
l’implémentation de l’algorithme de chiffrement AES de la biblio-
thèque OpenSSL, très utilisé dans les systèmes utilisant Linux. Nous
avons également étudié la résistance du mécanisme d’authentification
des utilisateurs d’un système Linux en regardant le programme sudo.
Cette étude nous a, en particulier, révélé que la communauté manque

ii



d’outils efficace pour analyser ce type de programmes face aux fautes.
En effet, les programmes s’exécutent dans un environnement Linux
bénéficient de nombreux mécanismes liés au noyau Linux qui rendent
l’exécution d’un programme difficile à étudier.
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I N T R O D U C T I O N

It’s good to know where you come from...
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A B O U T C Y B E R S E C U R I T Y

Even though we should learn from those who came before us, we must also
forge our own path.

— Avatar Korra (The Legend Of Korra)

abstract

This chapter presents the impact of new digital technologies devel-
opment since the start of the 2000’s regarding security. It introduces
the need of secure and evaluated device for providing some critical
services needed in our society. This highlights the need of product
evaluation and the importance of defense agencies, in France. It also
places the work presented in this thesis regarding this security evalu-
ation problematic applied on modern devices.
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4 about cybersecurity

1.1 cybersecurity problematic

Since the democratization of the Internet and the development of
many services relying on digital devices and remote communication,
several threats against people, companies and states data have been
identified. Indeed, a lot of, and sometimes critical, services rely on the
correct behavior of digital systems. Therefore, these systems security
is important to assess.

Currently, there are two main sensitive elements to protect: the data
privacy and the service’s continuous operation. Regarding data pri-
vacy, since the development of important companies such as Google,
Amazon, Facebook, Apple and Microsoft (also known as the GAFAM),
the storing and processing of data belonging to people is a burning is-
sue. Recently, the European Union (EU) has taken an important initia-
tive with the General Data Protection Regulation (GDPR)1. The GDPR

aims at giving people more control over their personal data collected
by companies. Companies are imposed to respect and apply owner
data’s choices such as accessing them or deleting them all.

Regarding online services, as some of them provide sensitive oper-
ations, they must be secured against attacks to be sure they remain
on online. Sensitive actors are banks, the Internet providers, the trans-
port companies, the energy provider companies, the state with all its
ministries and agencies, etc. Regarding all the services they manage,
the threats are multiple. For instance, a more and more present one
is the ransomware attack. According to a recent interview of the gen-
eral director of the Agence Nationale de la Sécurité des Systèmes
d’Information (ANSSI) (National Security Agency of France) by the
French Senate2, the number of ransomware attacks has grown with
a factor between three and four in a year. To prevent ransomware,
the solution is to provide secure infrastructures to organizations. Ul-
timately, securing an infrastructure requires secure and trusted soft-
wares and devices.

To identify these products, several public and private security eval-
uation schemes have appeared. These schemes aim at evaluating the
security of products against state of the art attacks. Then, the usage
of these products ensures a security level corresponding to their eval-
uation level regarding the state of the art at the moment of their eval-
uation.

1.2 secure devices evaluation

The evaluation of secure products is an important activity for pro-
viding secure systems to companies, governments and society in gen-
eral. There exists several certification schemes: some private (EMVCo,
FIPS, ISO, GlobalPlatform, etc) and some public (Common Criteria
(CC) in Europe, Certificat de Sécurité de Premier Niveau (CSPN) in
France, Beschleunigte Sicherheitszertifizierung (BSZ) in Germany, LINCE

1 https://ec.europa.eu/justice/smedataprotect/index_en.htm

2 https://www.usine-digitale.fr/article/ransomware-covid-19-espionnage-l-\

anssi-fait-un-etat-des-lieux-de-la-cybersecurite.N1024629

https://ec.europa.eu/justice/smedataprotect/index_en.htm
https://www.usine-digitale.fr/article/ransomware-covid-19-espionnage-l-\anssi-fait-un-etat-des-lieux-de-la-cybersecurite.N1024629
https://www.usine-digitale.fr/article/ransomware-covid-19-espionnage-l-\anssi-fait-un-etat-des-lieux-de-la-cybersecurite.N1024629
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in Spain and Baseline Security Product Assessment (BSPA) in Nether-
land for instance).

An evaluation process aims at assessing the conformity of a prod-
uct regarding a security reference. This security reference is chal-
lenged via criteria and a method. All existing evaluation schemes
propose their own security reference, criteria and methods.

The evaluation of a product involves several actors presented in
figure 1.

Certification body

Sponsor ITSEF

Ask for
evaluation

Certification

Test plan/
Report/
Results

Validation

Pays

Test plan/Report/Results

Figure 1: Evaluation process actors (example with CC)

This figure shows the main actors involved in the CC evaluation
process:

• the sponsor, can be a company or an organization for instance,
wants to realize the evaluation of a product. Depending on the
evaluation level, the sponsor must provides different informa-
tion about the evaluated product such as the source code for
instance. Sometimes, the sponsor is the product developer but
it is not necessary.

• the Information Technology Security Evaluation Facility (ITSEF)
is the security laboratory in charge of the product evaluation.
Depending on the target (hardware or software) different skills
may be required. These ITSEFs are regularly challenged by the
certification body to assess they are able to provide a state of
the art aware evaluation.

• the certification body aims at assessing that the evaluator work
is relevant and matches with the evaluation methodology and
the state of the art regarding the security level asked by the
sponsor. Also, this organization delivers the certification. In France,
the certification body is the National Center for Certification
which is a part of the ANSSI.
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The evaluation of a product is a long process (from six months up
to one year) which involves the definition of a target of evaluation, a
test plan and a report which presents the test results and concludes
about the conformity of the product regarding the targeted security
reference.

The certification body ensures that the evaluators are up-to-date
with security state of the art and validating the tests and results, it is
important that it keeps a high expertise level on all the security top-
ics and remains aware of efficient methods to evaluate a product. For
these reasons, the ANSSI certification body is also assisted by seven
laboratories all dedicated to a technical field of cybersecurity: cryp-
tography, software and hardware architecture, software applications,
exploration and detection, network and protocols, wireless communi-
cations and hardware.

1.3 anssi’s role in france

The ANSSI is the cybersecurity part of the French National Security
agency, reporting directly to the prime minister of France. It aims
at improving French citizens, companies and government’s security
against cyber-attacks. To fulfill this role, it carries several missions:
educate people (professionals, military and civil) about the existing
risks, proposing good practices (both in technology usage and devel-
opment), provide a reaction in case of attacks, emulate the research
and the development of secure technologies with universities and
companies, keep a state of the art of the existing attacks and realize
product certification.

Despite these missions remain unchanged since the agency’s cre-
ation in 20093, the technologies and environment have changed a lot.
One of the last changes is the democratization of mobile devices, such
as smartphones for instance. Nowadays, a smartphone enable to run
various applications easily, however, many of these applications ma-
nipulates sensitive data.

Moreover, more and more companies are willing to evaluate such
devices. The problem is that these devices are not only dedicated to
security but also provide a lot of services contrary to security ori-
ented design devices that are usually evaluated. This design differ-
ence makes the study of multi-purposes (in other words, able to run
various and non trusted applications) devices security a complex task.
Also, due to their complexity, the state of the art about their security
is shallow and there are no identified methods to evaluate it.

1.4 this thesis

As a member of the ANSSI’s hardware security lab, my thesis work
aims at anticipating the requirement of security evaluation regarding
mobile devices by giving answers to the following questions: how to
evaluate the security of a modern system against physical attacks ?

3 https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000020828212

https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000020828212
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Currently, there is no evaluation scheme that proposes an evaluation
method for modern devices. Our aim is to use what already exists on
currently evaluated devices and determine the effort to do to evaluate
more complex devices.

Therefore, this work focuses on several questions. The first one is:
what are the impacting differences, from a security point of view,
between a modern device and a Secure Element (SE) we already eval-
uate ? This is discussed in chapter 2. From this analysis, we want to
identify what are the known threats, from a hardware point of view,
against SEs and if they are suitable for attacking a modern device.
The state-of-the-art of the existing threats is discussed in chapter 3

and more specifically perturbations in chapter 4. The assessment that
perturbations are effective against modern devices is discussed both
in chapter 4 for the already existing perturbation methods and in
chapter 6 for our own experiments.

After having assessed that perturbations are actually effective on
modern devices, we want to determine if it is possible to effectively
characterize and understand the perturbation effects on modern de-
vices at various levels and despite their complexity. To answer this
problem, we propose a characterization method we define in chap-
ter 5 and that we apply in chapter 6 on several targets.

This lead to our final question: is it possible that the characterized
faults obtained by perturbing the device are suitable to attack secu-
rity mechanisms embedded in modern devices ? This supposes the
knowledge of these mechanisms and a way to confront their normal
behavior with perturbations. All of this is discussed in chapter 7.





2
S T U D Y C O N T E X T

Sorry does not make noodles.

— M. San Ping (Kung Fu Panda)

abstract

This chapter presents secure elements and system on chip. Secure el-
ements are historically the devices used for security while system on
chip are a new kind of versatile devices performance oriented but
more and more used for sensitive applications. This chapter focuses
on the similarities and the differences between these devices to high-
light the security concerns of system on chips.
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2.1 introduction

Nowadays, sensitive applications are handled by two kind of devices.
SEs which are the historical, highly-secured and evaluated devices
and System on Chips (SoCs) which are the new generation of devices,
connected, low-energy, high-performance, versatile, etc.

The apparition of SoCs for sensitive applications raise security ques-
tions. This chapter focuses on the environmental, architectural and
structural differences between SEs and SoCs to determine where these
security concerns come from and what should be taken into account
if one wants to evaluate a SoC security as it is done with SEs.

2.2 secure elements

SEs are the historical digital devices, its design is security oriented
and it is therefore dedicated to sensitive operations [1]. It started to
be widely used once integrated in smartcards. For instance, during
payments, the smartcard is a cornerstone element which ensures se-
curity properties as shown on figure 2. These security properties are
provided by the SEs powering the smartcard and the reader.

Smartcard

ReaderUser

�
Bank

1. Authenticate

2. Authenticate

3. Sign transaction

4. Send transaction

Figure 2: Smartcard in a payment environment

In the first step of the payment process, the reader will authenticate
the smartcard by verifying its public key certificate which is signed
by its issuer, most of the time a bank.

Once the smartcard is authenticated, the card will authenticate the
user via the reader. This step is critical as it involves a secret for secur-
ing the transaction. Various methods exist for authenticating a user
and the most used is the secret Personal Identification Number (PIN)
code verification even if biometric verification is more and more used.
By authenticating itself, the user accepts the transaction proposed by
the reader.

Once both the smartcard and the user are authenticated, the reader
realizes some checks such as the maximum transaction value or bank
security rules. Then the transaction is accepted and the smartcard can
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sign it with its private key. This is also a critical step as anyone who
knows the private key can sign transactions.

Finally, once the transaction is signed, it is sent to the bank to be
effective. This step does not involve the smartcard.

Regarding this high level view, the critical elements a SE must pro-
tect are the private key used to sign the transactions and the PIN code
(or any other asset) used for authenticating the card owner. To en-
sure a secure element is effectively able to protect these assets, there
are evaluation processes which aim at verifying the security of such
devices. As completely securing a device, including doing the exhaus-
tive verification of a device security is very complex task, SEs adopt
a relatively simple architecture compared with more generic digital
devices.

2.2.1 Architecture

The architecture of a SE is designed for security. However, depending
on the use case, it might be able to execute multiple applications.
Having multiple applications running on the same device introduces
security concerns, involving in particular the sharing of the memory.
To face this problem, SEs integrate a Memory Protection Unit (MPU)
which manage the access to the memory. Also, they are powered by a
virtual machine (usually the JavaCard Virtual Machine (JCVM)) which
ensures the memory partitioning between applications. The global
architecture of a SE is presented in figure 3.

1 core mono-thread CPU Crypto-processor Power management

Memories ISO 7816/SPI

Interconnection Bus

OS (~10-30kB)

JCVM

Applications

Figure 3: Secure element architecture

It shows that a SE is powered by a very simple CPU composed of
only one core and the MPU. The core is usually based on the ARM
architecture and is presented more in depth in section 2.2.2. For cryp-
tographic operations, the CPU is helped by a crypto-processor which
implements heavily protected cryptographic algorithms and a True
Random Number Generator (TRNG). The memories are the Random
Access Memory (RAM), a Read-Only Memory (ROM) or a Flash mem-
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ory. The communication with the external world is done via a dedi-
cated and standard interface, the most common one is the ISO7816

protocol but the Serial Peripheral Interface (SPI) is sometimes used.
All these elements are connected via an interconnection bus, usually
the bus is an ARM one such as the Advanced High-performance
Bus (AHB) or Advanced eXtensible Interface (AXI) buses. Finally, all
the hardware is powered by an external source for both the supply
voltage and the clock, the reader supplies both of them.

On the software side, the SE is runs a small Operating System (OS)
on which a virtual machine is added. Several technologies exist for it
but the most used is the JCVM. The JCVM implements the Java Card
specification [2] and interfaces with the components of the SE, in par-
ticular, the crypto-processor.

2.2.2 CPU

The CPU is essential in digital devices as it executes the programs
and manipulates the data. Even if, on SEs, there is a dedicated crypto-
processor implementing cryptographic algorithms, the CPU must en-
sure the good execution of the JCVM and all applications. Therefore,
it is important to understand his designed. The architecture of a SE’s
CPU is shown in figure 4.

CPU

Core

Pipeline

Fetch Decode Execute

MPU

Bus interface

Registers

Micro-architectural blocks manipulating: Data Instructions
Communication buses:

Figure 4: Secure element CPU architecture

The CPU of a SE is very simple: it is composed of a core which
embed the pipeline that fetches and decodes instructions before exe-
cuting them. The core itself is composed of internal registers, also an
interruption handler and a debug interface are present but they are
not represented in the figure 4.

The second element of the CPU is the memory interface which is
composed of a MPU and a bus interface making the link between the
CPU and the interconnection bus.
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2.2.3 Packaging

The packaging of a SE is very depending of its usage as it defines the
form factor of the token it will power. However, most of the time, the
SE is embedded in a smartcard as shown in figure 5.

Contact SE Package

Card body Wire-bounds

Figure 5: Secure element packaging

This packaging is simple: the SE only presents the Inputs/Outputs
(IOs) corresponding to the ISO7816-3 protocol and these IOs are con-
nected to the contacts of the card via wire-bounds. The corresponding
pins are shown in figure 6.

Figure 6: ISO7816 pins

The smartcard connection is composed of eight pins. They are not
all used. The VCC pin is connected to the power supply. Indeed, smart-
card are powered via an external source of energy. The same way the
CLK pin provides the clock and the GND is the ground. The card can be
reset using the RST pin and all the wired communications go through
the I/O pin. The VPP entry is not used anymore and is also named SPU

(for Standard or Proprietary Used), however, its usage is not specified.
Smartcards rely on external sources of power and clock to operate.

This specificity can be used by an attacker to insert glitches in the
card. We will discuss this kind of attacks in chapter 4. However, to
prevent them, recent implementations integrate internal clocks and
power management integrated circuits..

2.3 systems on chip

SoCs are a recent kind of chips which aim at providing the same ser-
vices as a complete computer but integrated in a single chip. The idea
is to integrate them in mobile and constraint devices such as smart-
phones or Internet of Things (IoT) devices. The first popular device of
this kind was the iPhone which has been commercialized by Apple
in 2007.

From this moment, the importance of smartphones in our society
grew to become a part of citizens daily life. With this growth and
the development of technologies, in particular the IoT which aims
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at connecting everything and everyone, a lot of services, sometime
sensitive ones, have been added to these devices. The consequence is
that smartphones are interacting with a lot of elements as shown in
figure 7.

Smartphone

Wi-Fi
(Network/Internet)

Broadband Cellular
Network

(Phone call/Internet)

NFC
(Payment/Identification)

User
(Authentication)

Bluetooth
(IoT)

Figure 7: Smartphone environment

This figure shows all the interactions a modern smartphone can
manage. It must be able to authenticate its user, using a PIN code, a
password or even biometric identification. It can be connected with
various IoT devices. This requires a lot of security as it can be con-
nected to home systems such as smart door locks for instance. It
handles phone call and therefore must secure the communications
on the Global System for Mobile communication (GSM) network. It
can identify itself and realizes payments via its Near Field Commu-
nication (NFC) interface. And, last but not least, it is connected to the
internet and provide various applications such as banking, insurance,
taxes management, social networks, video streaming, etc.

Presenting all the possible use cases of such a device is not the aim
of this section, however, one can easily see that this kind of device
can be used for many things and sometimes, critical ones. For in-
stance, the smartphone can replace the smartcard in figure 2. It com-
municates with the reader via NFC, the reader can authenticate the
smartphone (or at least the application running on the smartphone),
then the smartphone authenticates the user as shown in figure 7 and
it can finally sign the transaction.

However, despite this use case is possible, some questions remains:

• how much the SoC powering the smartphone can be trusted to
protect the keys it stores compared to a SE? This question as-
sesses the lack of security evaluation on SoCs.
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• Therefore, does the reader authenticate the smartphone itself or
the application? This is very different from the smartcard case
where the reader authenticates the card which authenticates the
executed application. Authenticating an application running on
a not trusted platform might not give the expected level of se-
curity without further study.

• And finally, if the reader only authenticate the application, what
are the consequences in terms of security?

This is a quick analysis regarding a specific and well know use case
already managed with SEs, however one can see that such a complete
and complex device can raise many security concerns.

To answers these questions, it is important to deeply analyze how
the SoCs powering such devices are made and how much do they
differ from SEs.

2.3.1 Architecture

A SoC architecture is quite similar to SEs one on the principle but
differ on the number of integrated modules, on the complexity of
their interfaces and on the software architecture. The figure 8 shows
the general architecture of such device. This is a simplified model
but one must know that every SoC differs and can integrate several
modules in addition to those presented in this figure.

Big little multi-core CPU GPU & VPU PMIC

Internal ROM Modem Interfaces

Multi-layer AXI/AHB Bus & Cache Coherent Interconnection

Trusted Kernel

Rich OS

Standard Apps

Trusted OS

Trusted Apps

Figure 8: System on Chip architecture

In terms of hardware, these devices are always composed of a com-
plete CPU with a big little architecture. The big little architecture con-
sists in mixing the cores integrated in the CPU. For instance, in a eight
cores CPU, four of them are “little” cores which are a bit slow but
does not consume a lot of energy while the other four cores are “big”
ones which are used when the device needs an important computa-
tion power whereas they have a more important energy consumption.
This able SoCs to adapt their performances regarding their need in
computation power and to save energy.

This is why, the CPU also integrates a Power Management Inte-
grated Circuit (PMIC). This circuit is dedicated to the energy man-
agement and supply the voltage power and clock frequency to every
other modules in the SoC. It allows a real time energy management.



16 study context

For parallel computation and the video processing, the chip in-
tegrate a Graphics Processing Unit (GPU) and a Video Processing
Unit (VPU). The GPU is usually the bigger module as it can embed
eight to sixteen cores. In the same way, more and more devices are
integrating Neural Processing Units (NPUs) for neural networks com-
putation.

As shown in figure 7, SoCs have multiple interfaces. The wireless
ones, i.e. the Bluetooth, the broadband cellular network and the Wi-Fi
are managed by a modem. A chip is dedicated to NFC communication.
Also, there are many wired connections, to communicate with the
external memory, the other components on the motherboard, or for
debug purposes via the Android Debug Bridge (ADB) for instance.

In terms of memory, such device only embed a ROM, which usually
is a flash memory. Their RAM is an external memory. The reason is
that these devices usually work with 2GB to 16GB of memory. Mem-
ories with such storing capacity require a lot of space and therefore
are integrated in a dedicated chip.

For the connection of the modules, the chip integrates a multi-layer
interconnection bus. Usually an ARM AXI or AHB bus. Also, this bus
must handle the cache coherency, as almost every module (at least the
CPU and the GPU) have a cache memory. This cache memory mirrors
a subpart of the RAM in the modules, therefore, the interconnection
bus must ensure that all the data in the caches of all the modules are
updated as shown in figure 9.

Module 1 Module 2

cache
(updated)

cache
(not updated)

Interconnection bus

RAM
(not updated)

Figure 9: Cache incoherence after a module updated a data in its dedicated
cache memory

This figure shows a situation where the module 1 just updated a
data in the memory. So the data is modified in its dedicated cache,
however, this modification was not propagated to the RAM or the
other modules cache yet. In this kind of situation, the module 2 can
access the same data, however, it is not updated in its cache, creating
an incoherence. It is one of the interconnection bus roles to ensure
that the data the module 2 wants to read is correctly updated in its
cache.
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Regarding the software part, SoCs aim at providing a secure archi-
tecture based on Trusted Execution Environments (TEEs). TEE are spe-
cific OSs which are trusted and can only execute signed and trusted
applications. Along them, there is a richer OS (usually Linux, Android
or iOS) which is less trusted but can load and execute any application.
In practice, the TEE executes in a specific mode of a CPU core. In other
words, there is a core which can switch from the normal mode to the
secure mode and the trusted OS only executes on this core in secure
mode. The consequence of this architecture is that, compared with
SEs, the SoCs CPU handles all the critical operations and the execution
of the TEE, making it a critical component for SoCs security.

2.3.2 CPU

CPUs integrated in SoCs are considered as modern CPUs. They are de-
signed for to give the highest computational power while reducing
their energy consumption. In these purposes, they implement a com-
plex architecture with a lot of optimizations, such as the cache mem-
ory. This section will present their general architecture and some opti-
mization mechanisms which make them very different from SEs CPUs.

2.3.2.1 Architecture

The architecture of a modern CPU is quite similar to the SE one on the
concept but very different in the realization as presented in figure 10.

modern CPU

Cores

Pipeline

Fetch Decode Execute

MMU Data CacheInstruction Cache

Mixed Cache

Registers

Micro-architectural blocks manipulating: Data Instructions
Communication buses:

Figure 10: Modern CPU architecture

It is composed of several (between two and height) cores. The
pipeline they implement can vary from a design to another, how-
ever, the three main functions (fetch, decode and execute) are always
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present. The pipeline implementation varies more on the optimiza-
tions it integrates.

Along the pipeline, the cores have registers and an internal cache
memory (also call L1 cache). The cores are designed with an Harvard
architecture: the instructions and the data are stored in different cache
memories and are carried on different buses. The last element is the
Memory Management Unit (MMU), which provides a virtualization of
the memory in addition to the memory protection usually provided
by a MPU. This virtualization helps the kernel to optimize the usage
of the RAM. Of course, the cores also integrate an interruption handler
and a debug interface that are not represented in the figure 10.

Outside the cores, there is the second level of cache (L2 cache). This
cache stores both the instructions and the data, which corresponds to
a Von Neumann architecture. A modern CPU can therefore be consid-
ered with a mixed architecture. Also, the L2 cache is connected to the
interconnection bus for external communication.

Along all these elements, modern CPUs usually implement opti-
mization mechanisms which aim at increasing its computational power.
These optimizations are important to take into account as they can
raise security concerns [3].

2.3.2.2 Optimizations

Modern CPUs optimizations are an important feature as they improve
the device average execution time of a program by reducing mem-
ory access time, anticipating instruction execution, etc. However, they
can raise some security concerns which were highlighted with the
Spectre [4] and Meltdown [3] attacks.

cache memory. The cache memory is an optimization mecha-
nism which aims at reducing the memory access time. As mentioned
above, cache memories are integrated in the computational units and
mirror a subpart of the RAM. Therefore, when a memory access is
done and the data is in the cache, the access time is slightly reduced
compared with an access to the RAM. However, this mechanism adds
some problems like the cache coherency presented in figure 9.

out-of-order execution. The out-of-order execution was pre-
sented in 1967 [5]. This optimization mechanism aims at optimizing
the usage of Arithmetical and Logical Units (ALUs) of cores. The idea
is to fetch several instructions, separate them depending on their data
dependency, execute all of them at the same time on the different
ALUs, store the result in shadow registers and copy these shadow reg-
isters in the regular registers sequentially as shown in figure 11. Cores
with such optimization are named hyperscalar cores.

The figure 11 shows the principle of the out-of-order execution.
The instructions are fetched (1), then an organization buffer splits
them depending if there is data dependencies between them (2), creat-
ing packs of instructions. These packs are queued in the instructions
handler which distribute them in the different ALUs when they are
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Figure 11: Out-of-order execution principle

available (3). Every ALU works as a classical one except that it does
not interact with the core registers but a copy of them named shadow
registers. Finally, when the computation is over, the copy handler will
update the CPU registers with the shadow registers (4).

In practice, the ALUs used in the execute stage are different, there
are some dedicated to logical and arithmetical operations, some for
floating point arithmetic, some for memory access, etc. In the end,
the organization buffer and the instruction must also organize the
execution regarding the available ALUs. Usually, a modern core has
between three and nine concurrent ALUs.

The consequence of this optimization is that instructions are not
executed sequentially but in parallel, only their result is updated se-
quentially keeping the Instruction Set Architecture (ISA) abstraction.

branch prediction. The branch prediction aims at avoiding the
pipeline clear when it is filled with instructions that are not supposed
to be executed. This can happen when there is a conditional jump in
the program, the pipeline fetches the instructions sequentially, how-
ever, when a branch instruction is executed, the target instructions
might be not the ones directly following the branch. In this situation,
the pipeline must be emptied to avoid the execution of non desired
instructions and refilled with the correct ones.
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A solution to reduce the time loss due to the empty and refill of
the pipeline is to anticipate the instructions targeted by a branch and
to fetch them. This anticipation is named branch prediction and is
integrated in every modern core.

Combined with out-of-order execution, the branch prediction leads
to speculative execution. Speculative execution is the anticipate com-
putation of instructions. Indeed, as the out-of-order execution allows
the parallel execution of instructions, sometimes the test condition of
a branch and its possible paths are executed at the same time. In this
case, the paths are executed speculatively and only the semantically
correct one is kept after the test condition.

As mentioned with Spectre and Meltdown [3, 4] speculative exe-
cution recently arose security concerns as in critical softwares some
paths that should not be executed unless the test condition say so can
leak information via side-channels.

2.3.3 Packaging

The last difference to consider between SEs and SoCs is the packaging.
As the SoCs are usually embedded in mobile devices and are larger
than SEs, their packaging is designed to be as compact as possible.
Also, as mentioned above, they do not integrate a RAM which is ex-
ternal but must be as close as possible to the chip to reduce memory
accesses delay.

All these constraints led to a new kind of packaging presented in
figure 12: the package on package.

Stacked RAM

SoCBGA

Wirebounds

mini PCB

Package

Figure 12: Package on package

The package on package design is organized as two chips stacked
one above the other. Usually the bottom chip is composed of the SoC

and the above chip embeds the RAM. Therefore, the surface of the
whole system is minimized while the RAM remains close to the SoC.

In terms of connection, two types are used, a mini Printed Circuit
Board (PCB) or wirebounds, both route the output of the chip to a
Ball Grid Array (BGA). This BGA corresponds to the connections that
are soldered on the motherboard. The package containing the RAM is
also soldered to the SoC via a BGA connection.

Despite being very compact, BGAs present a major drawback which
is the reworking. Indeed, chips using BGAs usually output hundreds
of connections as shown in figure 13.
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Figure 13: BGA grid on a PCIe chip

The consequence is that un-soldering and re-soldering such chip is
a complicated task which requires a dedicated machine and a high
level of knowledge. Moreover, the layout is not standard and there-
fore being able to connect to or test a specific IO is very time consum-
ing with a high risk of breaking the device connections.

The last consequence of this packaging is that the SoC is completely
enclosed in a complex package, with the RAM on the top. Therefore,
accessing it is complicated and regarding security concerns, some at-
tacks require a physical access to the chip.

Considering this kind of attacks such package seems to harden
them. However, despite the chip needs a RAM to work properly, such
devices can partially run without it. The reason is that the RAM needs
to be initialized and therefore the program doing it does not work
with the RAM but with the cache memory. This program is critical as
it is involved in the secure boot (presented in the section 4.4.1.3) of
the chip and can therefore be targeted even if the RAM is removed,
freeing the access to the die.

2.4 multi-application system security

Before looking at a system security, it is important to understand on
which mechanisms the security rely, in particular considering multi-
application systems.

A system is the union of a device with a software layout (usually
an OS). A multi-application system is a system that is able to exe-
cute simultaneously multiple applications by ensuring the following
properties:

• application integrity: this property ensures the executed appli-
cations are not corrupted during their loading.

• application correct execution: this property ensures that no cor-
ruption occurs during the execution of an application.

• application data confidentiality: this property ensures that the
data belonging to an application are not manipulable (i.e. read-
able, writable nor executable) by another application executed
on the system.

These security properties ensure that every application will be exe-
cuted as expected and with a protected and dedicated memory de-
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spite they physically share one. They rely on different security mech-
anisms which are the following:

• memory partitioning: this mechanism allows the system to ded-
icate a part of the memory for every application. Applications
cannot access to a memory part which does not belong to them.

• secure boot: this mechanism allows the device to check that
every piece of software composing the system are the legitimate
ones.

• cryptography: this mechanism allows the system to ensure the
authenticity and confidentiality of data.

These mechanisms are necessary to have a trusted system. A part of
the device, named root of trust, is de facto trusted by design and will
ensure via cryptography mechanisms and the secure boot that the
OS can be trusted. Once the OS is trusted, it will setup the memory
partitioning. However, all these mechanisms must also be trusted and
therefore they rely on critical mechanisms of the device which are the
following:

• execution flow: this mechanism ensures that every steps of an
implementation are correctly executed and in the right order.

• data integrity: this mechanism ensures that there is no error in
the reading or writing of data in the device or its memory.

These mechanisms are what a device must warranty for its correct
operation despite security concerns. However, these mechanisms are
the foundations for any security features the system must provide.
The figure 14 shows the dependencies between all these features.

In a device, the base of the security is the data integrity, which is (in
this case) not a security feature but a required property for a device
to behave correctly. If the data integrity is granted, then it is possible
to have a correct execution flow because this mechanism is requires
the correctness of the instruction pointer and, in some cases, other
data.

With a device ensuring data integrity and the correct execution
flow, it is possible to implement algorithms, in particular ones ded-
icated to security. The base of the security mechanisms is the cryp-
tography. It can either be implemented in hardware or in software
and they rely on a secret key that must be securely stored, in the root
of trust. When the cryptography is implemented and we have a root
of trust, it is possible to implement a secure boot. The secure boot
will propagate the trust from the root of trust to the OS powering the
device.

On multi-application systems, the OS will configure the memory
management mechanism (MPU or MMU) of the device to ensure the
memory partitioning. These micro-architectural elements might be
faulted but, no previous published work demonstrated its feasibility.
From this step, applications can be executed by the system and all the
three security properties will be ensured.
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Figure 14: Multi-application system security dependencies

2.5 conclusion

SEs are the historical and most used devices for security applications
and sensitive operations. However, new devices are more and more
used to fill this role: the SoCs.

SoCs are very versatile, multi-applications, multi-interfaces and per-
formance oriented devices. Due to their versatility, they are used
(among other) for sensitive applications such as identification, pay-
ment, etc.

However, their youth and their complexity compared with SEs rise
questions about their security level. Indeed, their complex architec-
ture, their multiple use cases, their ability to execute un-trusted ap-
plications and their permanent connection make their security eval-
uation a complicated task. Moreover, as mentioned above, they are
designed for optimizing their computational power and energy con-
sumption not for ensuring the same security level than SEs.

Regarding these differences, and because SoCs are more and more
present in our society, this thesis focuses on evaluating the security of
such devices.
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You don’t stand a single chance to win unless you fight.

— Mikasa Ackerman (Attack On Titan)

abstract

This chapter presents a brief state of the art of physical attacks. It
mainly focus on side channel attacks and invasive techniques. Re-
garding the perturbation attacks, a they are a important part of this
thesis work, they are detailed in chapter 4.
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In cybersecurity, physical attacks are a special kind of attacks which
consists in using the physical environment of the target to either re-
trieve information or break security mechanisms. All these attacks
are tested during a secure element evaluation and they are divided in
different categories: The Side-Channel Analysis/Attacks (SCAs), pre-
sented in section 3.1, aim at retrieving information about a device
behavior or its secrets by observing physical values that may be cor-
related with this information. The perturbation attacks, presented in
chapter 4, which aim at producing non-definitive bugs in the device
to lower its security. And finally, the invasive attacks, presented in sec-
tion 3.2, are aiming at modifying a circuit to either help its analysis or
perturbation. These attacks can also be used to reverse the device lay-
out, i.e. determining the layout with all layers and connections from
the device itself.

3.1 side-channel attacks

SCAs exploit information leakage during an algorithm execution. The
leakage comes from the algorithm implementation and was usually
not considered during the algorithm design. For this reason, these
attacks are sometimes called implementation attacks. However, be-
cause these attacks are powerful and model leakages [6] have been
proposed, SCAs are more and more considered in the design phase of
algorithms, in particular for cryptographic applications.

The first public work about SCA was presented in 1996 [7] and
is about observing the execution time of cryptographic implemen-
tations to recover their manipulated secrets. Even if execution time is
an old leakage source and one of the simplest to exploit, it’s also very
hard to develop a constant time application if the device executing it
is not specifically developed for this purpose or the developers make
a mistake. This has been demonstrated with various attacks, espe-
cially recent ones targeting Trusted Platform Modules (TPMs) [8], mod-
ern processors [3, 4] or the Secure Channel Protocol (SCP)02 [9] widely
used in smartcards. Actually, implementing secure-to-timing-analysis
applications is so complicated, especially in a performance oriented
system, that a whole research field called Micro-Architectural Attacks
is dedicated to identify and protect against them on modern comput-
ers. The most famous attacks of this kind are Spectre [4] and Melt-
down [3] which were presented in 2018 and started the discovery of
several CPUs vulnerabilities [10, 11, 12].

After the first timing attack, several works were done to improve
the efficiency of SCAs. The Differential Power Analysis (DPA) was in-
troduced in 1999 [13]. This method consists in comparing the power
consumption of a device manipulating a secret with simulated traces
for different values of this secret. Finding minimal distance between
the real trace and the simulated ones allows to recover the secret.

DPAs were improved in 2002 [14] with the introduction of template
attacks. A template attack consists in profiling a fully mastered copy
of the target device to build a profile which can be used to attack the
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real target using only few traces. This method was, for instance, used
to break a 3DES smartcard implementation [15].

In 2004, the Correlation Power Analysis (CPA) was introduced [6]
with the concept of leakage model. The CPA remains one of the most
famous attacks method and was successfully used to attack various
systems like smartcards [16], smartphones [17] or IoT devices [18].
The core idea is to observe the physical leakage as a function of the
manipulated secret. The first used leakage models are the hamming
weight and the hamming distance. These models suit well the power
consumption and electromagnetic emanations because, in the CMOS

technology, the power consumption is directly linked to the logical
gates output as presented in figure 15.
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Figure 15: Current in a CMOS logical inverter gate for different inputs.

Figure 15 shows that depending on the output of a logical inverter,
there is a current which is pulled or not from vdd. This current is used
to charge a Cload capacity which models the transistors inherent ca-
pacity and commutation time. The consequence is that the power
consumption Vdd × i is directly linked to the manipulated data. The
principle is the same for electromagnetic emanations as they are pro-
portional to the derivative of the current and this remains the case for
any kind of CMOS logical gate.

Later on, several improvements to SCAs were proposed with the
Mutual Information Analysis (MIA), the Linear Regression Attack (LRA),
the modeling of physical leakage and the usage of information the-
ory [19, 20].

Finally, the last important step for SCAs was the introduction of
the usage of deep learning algorithms for improving template at-
tacks [21]. Despite these attacks are quite young, they have already
been used to successfully break Rivest, Shamir, and Adelman (RSA) [22],
AES [23] and Elliptic Curve Digital Signature Algorithm (ECDSA) [24]
implementations.
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3.1.1 Micro-Architectural Attacks

Micro-Architectural Attacks are a special kind of SCAs which focus on
finding timing leakage in modern CPU architectures. These leakages
can be useful for various things: CPU architecture reverse engineer-
ing [25], key extraction and data spying [12] or unauthorized commu-
nication (also know as covert-channels) [26].

The first works about side-channel micro-architectural attacks were
focusing on how the timing difference due to the cache memory can
leak information about executed cryptographic algorithms [27]. How-
ever, to reach higher and higher performances, manufacturers im-
plemented several optimization mechanisms which introduce timing
leakage at various level of the micro-architecture. The most famous
are the speculative execution [28], the out-of-order execution [29, 30],
the return stack buffers [31] and the instruction prefetching [32]. Even
if these attacks are architecture specific and complicated to achieve be-
cause they mostly rely on race conditions, they also present the threat
to be achievable over the network [33].

3.1.2 Side-Channel countermeasures

There are two principal ways to protect against SCAs; avoiding leak-
ages and hiding information. The best case is to completely avoid
leakages from the implementation, however, this is nearly infeasible
for power consumption and electromagnetic emanations. For timing
leakage, nowadays every cryptographic algorithm must have a con-
stant time implementation to be secure against them. This presents
drawbacks in terms of execution speed.

In the cases leakages can’t be avoid, the defense strategy consists
in hiding the relevant information. Leakage channels are naturally
noised but not enough to prevent effective correlations. Therefore, the
idea consists in adding noise by generating randomness and mask-
ing the relevant information with it. There are several masking meth-
ods but it is interesting to note that some of them are proven secure
against a reasonable level of SCAs [34].

3.2 invasive attacks

Invasive attacks are a kind of attack that aim at modifying the circuit
in a irreversible way to ease its observation or perturbation. Usually,
invasive attacks consists in opening the device to expose the die. This
reduces the noise in the leakage and the package absorption while do-
ing a perturbation or an observation. More details about this kind of
attack is given in the section about optical perturbations (section 4.2.6)
as these attacks need an unobstructed access to the die.
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3.2.1 Reverse engineering

A interesting invasive attack category consists in reverse engineering
devices. Indeed, as the devices are built with layers (an active layer
with transistors and several connection layers). Being able to have
an imaging of the different layers able to build the device schematic
from its die. This is powerful for analyzing an implementation or for
reading hard-coded values. This technique is named the de-layering.
However, its main drawback is that this technique completely destroy
the target circuit.

To protect devices against this kind of attacks, the most used solu-
tion is to obfuscate the hardware. There are several techniques which
can operate at different level of the circuit design process. First tech-
niques were working directly on the netlist [35, 36], then several tech-
niques appeared to work on the different descriptions of a circuit: at
the Register Transfert Level (RTL) [37], at the logic level [38, 39] and
directly on the layout [40]. Also, obfuscation techniques may rely on
Physically Unclonable Functions (PUFs) [41].

3.2.2 Focused Ion Beam

Focused Ion Beams (FIBs) are a tool used by circuit manufacturers to
dope, repair and debug circuits among other usages [42]. As their
name suggests it, they throw ions to a semiconductor and modify its
structure. This able to create, destroy wires in the circuit or change
the doping of a semi-conductor.

In terms of security, as this able to modify a circuit in a permanent
way, it is possible increase the leakage of certain data, modify a com-
ponent behavior (like avoiding a counter to increment) or deactivate
a countermeasure. Despite, the use of a FIB is expensive as it requires
both the equipment and a dedicated expert, being able to modify a
circuit is a strong hypothesis regarding an attacker.

To protect against these attacks, manufacturers integrate shields
and sensors in their devices. These protections aim at detecting any
intrusion or modification on the die. However, they only work when
the device is turned on, which means that while the attacker keep the
device off it can do any modification on the device. More detail about
them is given in section 4.5.5 as they are also used for protecting
against perturbations, which require the device to be turned on when
being used.
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Laziness is the mother of all bad habits.
But ultimately she is a mother and we should respect her.

— Nara Shikamaru (Naruto)

abstract

This chapter shows an overview of perturbation attacks. From their
genesis, it describe a large overview of research topics related to this
problematic: the injection mediums, the fault models, the fault analy-
sis, some famous attacks using faults and the countermeasures.
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Perturbation attacks intend to stress a target device by pushing it
beyond its nominal execution point to force unintended behavior. In
some cases, such behavior can create security breaches in the system.
Usually, knowing that a perturbation able to break a security feature
is enough for most attacks. However, having a model of the possi-
ble perturbations, understand their impact on the hardware and on
the software, etc, is important to build efficient countermeasures and
evaluate the impact of such attacks.

For these reasons, perturbation attacks became an important re-
search field in hardware security and their analysis and evaluation
on devices is a time consuming and complex process summarized in
figure 16.
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Figure 16: Perturbation attack analysis and evaluation process

This figure presents the analysis and evaluation process for a sys-
tem against Fault Attacks (FAs). The aim is to build a system com-
posed of a device and implementations resistant to FAs. To assess this
resistance several steps are needed.

The first step is the fault characterization, it consists in determining
in which ways the device is perturbed regarding different injection
mediums. These mediums are the different techniques that can be
used to induce a fault in the device and are presented in section 4.2.
The result of this characterization is the fault model which is a repre-
sentation of the fault effects on the device. There are numerous fault
models and being able to determine it may be a complex process, this
is presented in section 4.3.1.

The next step is the implementation analysis regarding the fault
model. This consists in simulating or emulating the possible fault
models determined on the device on an implementation as presented
in section 4.3.2. As many fault models can be considered and regard-
ing the complexity of the implementation, testing every fault at any
stage of the implementation is too time consuming, making this step
very tricky, in particular on complex implementations. The result is
an attack path which can be exploited for confirming its relevance.
The exploitation allows to evaluate the difficulty of doing the attack
and to measure its impact. Some of them are presented in section 4.4
with a presentation of a system security model.
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The last step is building efficient countermeasures. Regarding the
injection medium, the fault model or the implementation different
countermeasures can be adopted and integrated to the device or
the implementation. Some FA countermeasures are presented in sec-
tion 4.5. Once a countermeasure is designed and integrated in the
system, a new characterization and/or analysis can be done to evalu-
ate its efficiency. This loop can be repeated as many times as needed
to reach the desired security level.

This chapter will present an overview of the public work about
perturbation attacks. It aims at providing a clear and large overview
of the challenges the securing of systems highlight and how they are
settled by the community.

4.1 genesis

Despite bugs were known to appear in digital devices, the first public
observation of a perturbed device was due to an unintentional per-
turbation on a satellite in 1975 [43]. In this case, memory errors were
observed due to “galactic cosmic rays”.

From this observation and in order to prevent perturbations on in-
production satellites, a lot of characterization work on circuit has been
done to characterize and prevent the effects of cosmic rays in Metal
Oxide Semiconductor (MOS) memory cells [44], Very Large Scale Inte-
gration (VLSI) circuits [45] and Dynamic RAMs (DRAMs) [46].

The functional analysis of digital devices kept going by studying
the impact of different perturbations. The effects of high tempera-
ture [47], alpha-particules [48], heavy ions [49, 50] and lasers [51, 52]
were analyzed to simulate the space environment on semiconductor
devices.

In parallel of device safety, cryptographic researcher teams, aware
of the presence of faults in devices, were working on cryptanalysing
algorithms in the presence of faults. The seminal work was published
in a memo about the RSA signature generation [53].

Later on, a lot of algorithms were analyzed: the RSA and Rabin
signature [54], secret key algorithms like Data Encryption Standard
(DES) [55], public key signature algorithms (RSA, ElGamal, Schnorr
and DSA) [56] and Elliptic Curve Cryptography (ECC) [57].

At this point, around 2000’s, the perturbation of devices was done
using various mediums and cryptographic attacks based on faults
were only theoretical and these two disciplines did not already match,
at least publicly.

In the 90’s, the French security agency, the Service Central de la Sécu-
rité des Systèmes d’Information (SCSSI) and the French national telecom-
munication center, the Centre National d’Étude des Télécommunications
(CNET) were already evaluating secure devices against FAs, mostly us-
ing light and lasers.

The first public work was published in 2002 with Skorobogatov [58].
In his work, he presents the usage of a laser, usually used to simulate
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cosmic ray, to intentionally perturb a Micro-Controller Unit (MCU). In
2005, in his thesis, he introduces the semi-invasive attacks [59].

From this moment, research on FA was focused on several points:
the analysis of various injection mediums, the exploitation of faults,
the simulation of faults in circuits and programs and the building of
countermeasures.

4.2 inducing a fault : injection mediums

Perturbation attacks rely on the apparition of faults during a sys-
tem execution. During an attack, these faults are intentionally created
within the device. To behave correctly, digital devices have to fulfill
physical constraints. These constraints are directly linked to their de-
sign and, if they are respected in their nominal operation point, it is
possible to break these constraints conditions by inducing stimuli in
the device as presented in figure 17.
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Figure 17: Stimuli able to perturb a digital device

Most of these stimuli are physical like the voltage, the temperature,
the EM waves, the light, the X-rays, the clock and the body biasing.
They are used to push some components of a device at their limit of
operation, inducing faults in them.

While perturbing a device, three behaviors can create a fault, a
timing violation [60], a sampling error [61] or a transient current [62].
This section presents the design of a synchronous circuit and how
these injection mediums actually induce faults in them.

4.2.1 Design considerations

Before understanding how faults are induced into a device, it is im-
portant to understand how they are designed and how this design is
constrained.

Timing faults comes from the instability of DFFs, also known as
registers. Indeed, in synchronous circuits, registers sample the output
data of the logic synchronized with the chip frequency. But to sample
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data correctly, two constraints must be respected: the input data of
the DFF must be stable for at least tsetup seconds before the clock
rising edge and thold seconds after the clock rising edge as shown
on figure 18.
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Input stability domain

tsetup thold

Clock

t

Figure 18: Timing constraints on the input for a DFF to behave correctly

These constraints impact circuit designs as the propagation time of
the logic between registers must fit with these timings as shown on
figure 19.

Data

Clock

Combinatorial logic Output

tcp2q tcomb

Figure 19: Timing constraint in digital devices

This figure shows how digital devices are designed. The function of
the device is decomposed in small logical segments placed between
two DFFs. When a clock rising edge happens, the data in the DFFs

are output in the logic after tcp2q seconds, then hold for the rest
of the clock cycle. The signal propagates through the logic during
tcomb seconds before reaching the second DFF. Regarding this design
and the constraints on the DFFs, the clock frequency of a device must
fill the constraint presented in equation (1). It summarizes the fact

tclock > tcp2q + tcomb + tsetup (1)

Equation: Setup timing constraint on clock cycle in a digital device.

that the clock cycle tclock must be high enough so the setup timing is
respected. This is done by determining the logical path between two
DFFs with the highest propagation time tcomb. This path is named
the critical path. In practice, it is that critical path that constraints the
clock cycle tcycle and is the most sensitive to faults.

Regarding the hold timing, the constraint is that the input of the
second DFF must remain stable for at least thold seconds. Giving the
constraint presented in equation (2).
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tcp2q + tcomb > thold (2)

Equation: Hold timing constraint on clock cycle in a digital device.

This equation summarizes that the propagation in the logical can-
not be too fast otherwise the hold timing will not be respected.

The non-respect of the setup or hold constraints is a well known
source of bugs, in particular due to variations in the manufacturing
process of devices which can modify the critical path [63].

4.2.2 Clock glitches

Clock glitches are local variation of the target device clock frequency.
They aim at breaking the constraint presented in equation (1) and
therefore introduce a fault in DFFs. This behavior is presented in fig-
ure 20.

Clock
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Output
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(a) Normal behavior of a DFF

Clock

Input
V1 V2 V3 V4

Output
V1 V2 V4

Glitch

Faulted value

(b) Overclocking effect on a DFF

Figure 20: Clock glitch effect on a DFF

This figure shows how a setup timing violation can be done using
a clock glitch. Due to this glitch, the value V3 is not held long enough
to ensure that the value is correctly sampled by the DFF.

This injection medium was used to attack smartcards [64] as they
are powered by an external clock. It was also recently used in a special
kind of perturbation attack named ClkScrew [65] in which the SoC

corrupted PMIC intentionally modifies the cores frequency on the fly.

4.2.3 Voltage glitches

Voltage glitches intent to create timing errors by modifying the propa-
gation time in the circuit logic. Indeed, regarding equations (1) and (2)
increasing or reducing the logic propagation time tcomb can induce
either a setup timing violation or a hold timing violation. Overpow-



4.2 inducing a fault : injection mediums 37

ering reduces the propagation time and underpowering increases the
propagation time in standard cells [66].

This medium is used for attacking devices with external power
supply such as smartcards [67] or IoT devices [68].

4.2.4 Temperature manipulation

Overheating works in a similar way as voltage perturbation, it creates
timings errors by modifying the propagation time of the logic. How-
ever, compared with voltage glitches it presents many drawbacks.
Due to thermal inertia, realizing a “temperature glitch” is too long
compared with devices computation speed. Also, depending on the
process technology, overheating may increase or reduce the propaga-
tion time in standard cells [66].

Despite these drawbacks, heating faults were successfully used to
attack a RSA implementation on a micro-controller [69].

4.2.5 Electromagnetic perturbations

EM perturbations create sampling errors in the chip DFFs [70]. Sam-
pling errors appears when an EM perturbation modifies the behavior
of a DFF when its commuting. In other word, EM perturbations create
errors in DFF outputs on clock rising edges.

The sampling faults come from a bad sampling of the DFF input (D)
during an EM perturbation [71]. The phenomenon which leads to the
sampling fault is summarized in figure 21.

This figure presents how the signals of a DFF behave against an
EM perturbation. These signals are the supply voltage (S), the clock
(Clk), the input (D) and the output (Q). Figure 21a shows the injected
EM Pulse (EMP) (Pem) and the corresponding induced current (Iind)
which will appear in the chip. On the EMP rising edge, this current
will induce a supply voltage drop as depicted in figure 21b.
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Figure 21: How EM sampling faults occur [71]
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On the falling edge, a reverse current will appear which will restore
the supply voltage level. The important thing to note in figure 21b is
that since the supply voltage level is below Vdd/2 the chip is stalled
as all transistor are de facto blocked.

A consequence of this stalling is that all signals (D, Clk and Q)
are stuck to 0 as represented in figures 21c and 21d. Once the supply
voltage cross Vdd/2 (at tv2 s), all the signals are restoring. It is during
this restoring phase that the sampling fault can appear.

The figure 21c shows the non glitched clock Clkexp with the glitched
DFF input. The sampling error happens when the clock signal arises
before the input value D has reached Vdd/2 as in this case a logical 0
will be sampled instead of a logical 1.

The figure 21d presents a case where the clock signal restored
quickly and the rising edge happen while the input value is still be-
low Vdd/2 (at trise s). In this case, the sampled value is a logical 0 and
the output Q is therefore constrained to 0V instead of Vdd causing
the error.

This behavior shows that EM perturbations must be well synchro-
nized with the clock rising edges to produce faults. Also, this demon-
strates that EM perturbations can be used to force bits from 1 to 0

quite easily. Despite these constraints, EM perturbations is a very used
injection medium, mainly for its ease of use as most of the time no
target preparation is needed and it has a good accuracy [72]. Finally,
EM perturbation successes attacking various systems as MCU cache
memories [73] and modern processor secure boot [74] for instance.

4.2.6 Optical perturbations

Optical perturbations are used to induce currents in a chip. Indeed, as
transistors are basically a silicon crystal, they have optical properties
and are sensitive to light. This property was very useful back when
the only memories available were EPROMs. These particular memo-
ries can store data which can be erased using Ultra Violet (UV) light
(figure 22). The CMOS transistor optical properties are still used for
camera photo-diodes [75] which are basically transistors without a
gate.

Figure 22: ST Microelectronics M27C256B EPROM
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Also, as mentioned in section 4.1, Infra Red (IR) lasers are used to
simulate cosmic rays effects on CMOS transistors. Both UV [76] and
IR [77] are used in hardware security.

Optical perturbations induce currents in CMOS logical gates which
can lead to bit flips as presented on a CMOS inverter in figure 23.

Vdd out = 0 (1) gnd

in = 1

i

RT

Laser pulse

e−

i 6= 0→ Vout = RT · i

Figure 23: Laser effect on a CMOS logical inverter outputting a logical zero

This figure shows the effect of a laser pulse on CMOS logical inverter
which outputs a logical 0. Considering the gate is in its stationary
state, as the input is a logical 1, the P-doping MOS (PMOS) transistor
(on the left) is blocked and the N-doping MOS (NMOS) transistor (on
the right) is passing and equivalent to a resistor RT . In this situation,
the out signal is connected to the ground and there is no current i in
RT . A fault can be obtained by illuminating the transistor drain with
a laser pulse. The photons coming from the laser will disperse their
energy in the crystal and create electrons. Because it is their only
way, these electrons will migrate to the ground, this migration will
result in a current i through the resistance RT and therefore a voltage
Vout = RT · i between the output of the gate and the ground will
appear. If enough electrons are produced, this voltage will exceed
Vdd/2 and the gate output will therefore correspond to a logical 1

which is the wrong value.
This remains available if the gate outputs a logical 1, in this case,

the PMOS is passing and the NMOS is blocked. Therefore electrons will
migrate to the supply voltage and this will create a voltage which
oppose Vdd and forces the output to a logical 0.

As this can be applied to any CMOS gates with more or less difficul-
ties, optical fault attacks able to flip bits in devices. Attacks relying
on these faults are called optical fault masking [78] because bit flips
can be modeled using a logical mask XORed with the target value as
presented in equation (3).

ṽ = v⊕ e (3)

Equation: Fault masking attack model.
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This equation models bit flips using a logical mask e also called the
error, which is XORed to a target value v to obtain a faulted value ṽ.
The applied mask is usually bit-wide or byte-wide.

In addition to their modeling, Laser Fault Injections (LFIs) also present
the best repeatability and accuracy among fault injection mediums.
For these reasons, it is one of the most used medium, in particu-
lar in high-level certification processes. It was used to successfully
attack memories [77], cryptographic implementations [79], PUFs [80]
and smartphone secure-boot [81].However, considering modern SoCs,
the transistor technology is usually around 10nm while the size of
a laser spot is usually 1µm which means that contrary to what is
depicted on figure 23, we usually target a many transistors.

4.2.7 Body biasing

Body biasing is a technique which consists in biasing the substrate of
transistors in a circuit. This technique is usually used in low power
devices to modulate the transistor threshold [82]. The bias is usually
around a few mV .

In hardware security, Forward Body Biasing Injection (FBBI) consists
in glitching the transistor substrate with an important voltage (60V
during 8µs [83]). This glitch provokes a threshold modification in
transistors blocking them all, introducing faults in the circuit [84].

4.2.8 X-Rays

X-rays are the youngest injection medium used in hardware secu-
rity [85]. However, as mentioned in section 4.1, cosmic rays (and in
particular X-rays) are known to perturb digital devices for a long
time.

X-rays can empty the charges of floating gates of transistors and
therefore force zeros in flash memories or Electrically EPROM (EEPROM).
They also can modify the behavior of transistors, forcing NMOS as
passing and PMOS as blocked. This able circuit edition but the phe-
nomenon is reversible by heating the circuit to 150 °C during 1h. As
they can be focused to a nano-scale (and therefore target a single
transistor), X-rays are the most accurate injection medium but a syn-
chrotron is required for such accuracy [85].

4.2.9 Software induced perturbations

Recently, some software induced perturbations have been presented.
These perturbations rely either on a software overusing a component
like in the rowhammer attack (section 4.2.9.1) or on a corrupted en-
ergy manager like in the ClkScrew attack (section 4.2.9.2).
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4.2.9.1 Rowhammer attacks

Rowhammer attacks are a special kind of perturbation attacks be-
cause they are triggered via software. They rely on the rowhammer
bug to force bit-flips in the memory of a digital device [86]. The
rowhammer bug is based on a natural phenomenon, the discharg-
ing of capacitor over the time. In DRAMs, data is stored in the form of
charges in capacitor as shown in figure 24.

Capacitor storing the charge

Access transistor

Figure 24: One-bit DRAM memory cell

These capacitors naturally discharge over time and to not lose in-
formation, DRAMs have a refresh mechanism to recharge them. Usu-
ally, this refresh happens every 64ms. Rowhammer attacks consists
in accelerating the discharge of capacitors in DRAMs so they are fully
discharged when the refresh happen. As the presence of a charge can
either be considered as a logical 1 (in the case of true-cells) or as a
logical 0 (in the case of anti-cells), this mechanism can be used to flip
bits in the memory.

Accelerating the discharge of a memory cell is done by keeping
activated the memory lines around it. Indeed, DRAMs are organized
as a matrix, when a data is read, the line storing it is activated and
copied in the memory row buffer and the needed data is read from
this buffer as presented in figure 25.

Activating a line accelerate the discharging of its adjacent lines ca-
pacitors. By remaining a line activated it is therefore possible to dis-
charge the capacitors of its adjacent lines faster than the refresh pe-
riod. Usually the rowhammer attack is realized by activating the two
lines surrounding the targeted one. A line is kept activated by contin-
uously reading a data in it (500 000 accesses in less than 64ms). This
high repetition of reads at a specific line in the DRAM have given the
name rowhammer to the attack.

Rowhammer attacks were used to successfully attack various sys-
tems with different OS and architectures. The first one was presented
by the Google team Project Zero in which they achieved a privi-
lege escalation under Linux on an Intel processor [87]. Latter on,
various rowhammer attacks were published: a remote attack using
JavaScript [88], an attack on an ARM device powered by Android [89],
one using the integrated GPU of a SoC to fast access the DRAM [90]
and one using TCP/IP and the Remote DMA (RDMA) to hammer the
DRAM from the network [91].
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Figure 25: DRAM line activation and copy in the row buffer

The last attack using rowhammer is a side-channel attack. Indeed,
the more capacitors in the target line are charged, the more probable
a bit-flip will happen using rowhammer. This probability variation
leaks information about the content of the target line which is there-
fore used as a side-channel for reading a memory using rowhammer
in the RAMbleed attack [10].

4.2.9.2 ClkScrew attacks

The ClkScrew attack targets highly integrated SoCs. For optimizing
their performance on consumption ratio, these SoCs integrate a Power
Management Subsystem (PMS). This PMS supply the power voltage
and the clock to every other modules as presented in figure 26.

Cores
PMS

Other
modules

V

Clk

Drive

Figure 26: PMS supplying the power voltage and clock to cores and module
of a SoC
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The PMS is composed of a PMIC and Phase Locked Loops (PLLs)
which supply the SoC modules with power voltage and a clock and is
driven by the cores in kernel mode.

On modern devices, such as smartphones, the cores have various
work domains which correspond to different power voltage and clock
frequency pairs. The idea of the ClkScrew attack is to force a core
doing a sensitive operation in an unstable domain (voltage/frequency
couple) which will provoke timing errors and, therefore, faults.

There are two attacks using this path: the ClkScrew attack targeting
the ARM TrustZone TEE of a Nexus 6 smartphone to load non-trusted
applications in it [65] and the PluderVolt attack targeting the Intel
secure enclave (SGX) [92]. As these attacks are recent, many questions
remains about the security of integrated modules and how to isolate
them from this kind of attacks.

4.3 characterizing a fault

Being able to induce a fault in a working device is not enough to
realize an attack. As all faults are not exploitable, obtaining an ex-
ploitable fault and actually exploiting it may be a trickier business
than injecting a fault in a working device.

To simplify their exploitation, faults are characterized on the target,
this characterization is a very time consuming process as many pa-
rameters are involved (the location of the perturbation, the intensity,
the timing, etc). The characterization gives a fault model, this fault
model is the set of the possible faults associated to their probability
of occurrence [93]. The fault model is then used to analyze the tar-
get security mechanisms. In some cases, the fault can be exploited to
attack the mechanism.

4.3.1 Fault models

Determining the fault models is very important for measuring the
impact of a fault and build efficient protections against it. However,
as digital devices have a complex architecture with many abstraction
layers, the impact of a fault may be interpreted differently depending
on the considered layer as shown on the figure 27.

This figure shows how a fault can propagate through the different
abstraction layers of a device. In section 4.2, we have seen how per-
turbations can be created inside transistors and standard cells. This
correspond to the logical level. However, in some cases, it is not pos-
sible to have information about the deep behavior of the target and
therefore a more abstracted fault model is determined. Furthermore,
anticipating the fault effect at a specific layer from the underlying
layer is not straightforward due to the scaling factor between them.

For these reasons, some works have focused on determining what
faults can be achieved regarding the different abstraction layers, with
different injections medium on various targets. A summary of these
works is presented in figure 28.
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Figure 27: Fault propagation through digital devices abstraction layers with
some fault effects as examples. Inspired from [94].

This figure presents the different observed fault models in various
conditions. The logical level was discussed in section 4.2 and is there-
fore not represented. Three types of target are considered here, the
MCU CPUs, the Field Programmable Gate Arrays (FPGAs) and the mod-
ern CPUs. MCUs are the most studied as they are widely used in secure
and IoT devices, FPGAs are rarely used and focus on deep characteri-
zation. Modern CPUs are quite new and more complex, therefore they
are less studied than MCUs CPUs.

At the micro-architectural level, several components were observed
to be sensitive to faults. In [73], the authors observed that an EM

perturbation can corrupt the cache fetching to replay instructions by
skipping others. In general, memory elements are sensitive to per-
turbation, especially the flash memory which was successfully cor-
rupted using both EMPs [103, 104] and LFIs [105, 106] on various tar-
gets. These attacks were able to corrupt both executed code and data.
Another way to fault data is to target the data bus as demonstrated
in [102] using EMP. Clock and voltage glitches are mainly perturbing
the pipeline [67] as it is mostly where the critical paths are, this was
deeply studied in a LEON-3 implemented on a FPGA in [108].

Regarding the ISA level, the main targets are either the instructions
or the data [67]. Both effects can be obtained using various injection
mediums on all types of targets, including modern CPUs [101, 107].
Faults on data are quite easy to analyze as the masking fault model
presented in section 4.2.6, which consists in XORing the data with
a mask, is usually used. Regarding instructions, there are multiple
ways to analyze the fault. The masking fault model can be used by
considering the instruction as a data [104]. Sometimes, it is possible to
be more precise by considering the type of instruction. On a data pro-
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Figure 28: Fault injection characterization state of the art.

cessing instruction faults usually affect the operands [107] while on a
branch instruction, it is the address that is usually corrupted [100].

Finally, program level characterization works are usually prelimi-
nary works which are used as a proof of concept. For instance, in [68],
the authors present a voltage glitch method which consists in shaping
the voltage glitch using a genetic algorithm [109]. The work presented
in [107] is the first to focus on modern CPUs by targeting an A series
ARM core and [96] focus on software vulnerabilities in IoT devices,
such as a fault triggered backdoor for instance.

4.3.2 Fault analysis

The fault analysis is an important step as it able to identify attack
paths regarding a program and fault models, to measure the impact
of potential attacks and to build adapted countermeasures.

As they rely on fault models, fault analysis can also be separated
in categories depending on the abstraction level we are working on.
Fault analysis can be compared to a code review which integrate the
possibility to have runtime faults. There are two strategies: a static
analysis or a dynamic analysis. As faults are used to perturb a target
during its execution, most works about analyzing implementations
against faults use the dynamic approach.

As the fault models can be numerous and happen at anytime dur-
ing the target execution, the number of cases to test is absolutely gi-
gantic. To answer this issue, many works propose tools to automatize
the analysis by simulating the perturbation of implementations.
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At the logical level, PAFI [110] simulates Verilog code to analyze
the susceptibility of a design against faults. In the fault analysis lit-
erature, the micro-architectural layer is named system level. Several
technologies are used to build analysis at this level like SystemC [111]
or QEMU [112].

Several works for fault analysis at the ISA level has been done. The
main reason is that as many assembly languages exist with their own
specificities, building an efficient generic analysis tool is complicated.
Also, several methods were proposed to improve the efficiency of
the analysis. In [113], the authors focus on the JavaCard bytecode
while [114] proposes a formal verification of countermeasures using
a SMT-solver.

Finally, in order to realize more generic fault analysis, several works
have focus on doing the analysis at the program level, i.e. on the
source code [115] or the Control Flow Graph (CFG) [116, 117] of the
program.

4.4 exploiting a fault

The exploitation of faults is a complicated task. Even if the fault
model and the fault analysis helps in being confident of the suc-
cess of an exploitation, some un-modeled constraints may harden the
exploitation. This section presents the general approach of famous
attacks and proposes a classification based on the system security
model introduced in figure 14 in section 2.4.

4.4.1 Fault attacks against multi-application systems

A multi-application system can be attacked in many ways, however,
in hardware and embedded systems security, a system is considered
broken if a security property or a security mechanism presented in
figure 14 cannot be trusted.

Regarding FAs, the perturbation will affect either the data integrity
or the execution flow then propagate itself. Depending of the case, dif-
ferent security mechanisms or properties can be broken. The follow-
ing section presents the most famous attacks regarding these mecha-
nisms and properties.

4.4.1.1 Fault attacks targeting cryptography

Cryptography is historically the most attacked mechanism. Indeed,
the first security concerns were about the resilience of these algo-
rithms, therefore a lot of work has been driven to evaluate the im-
pact of fault attacks on cryptographic algorithms implemented in SEs.
This section presents some famous exploits on implemented cryptog-
raphy.

rsa-crt modulus factorization (bellcore attack)
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Data integrity Cryptography

The Bellcore attack is a fault cryptanalysis attack which aims at
factorizing the modulus N of a RSA public key [54]. This attack can
only be applied on the Chinese Reminder Theorem (CRT) implemen-
tation of RSA, however this implementation is the most common one
because of its efficiency.

The attack was introduced in [54] and successfully exploited in [118].
The attack consists in faulting the computation of intermediates val-
ues used in the CRT. As the public modulus N is the product of two
primes p and q (equation (4)), a message x can be signed using a
secret s as presented in equation (5). Factorizing N allows to recover
the secret.

The CRT gives the possibility to compute E in equation (5) by pre-
computing E1 and E2 such as in equation (6). Therefore, using a

and b with the properties depicted in equations (7) and (8), E can
be computed as the linear combination of E1 and E2 as shown in
equation (9).

N = p · q (4)

E = xs mod N (5)

E1 = xs mod p, E2 = xs mod q (6)

a = 1 mod p, a = 0 mod q (7)

b = 0 mod p, b = 1 mod q (8)

E = a · E1 + b · E2 mod N (9)

Equation: Computation of a cipher using RSA-CRT

The Bellcore attack relies on a fault that happen during the com-
putation of E1 or E2. For the sake of simplicity, we suppose that E1

is faulted. Therefore the computation of E will give a faulted value Ẽ

as presented in equation (10). Once an attacker knows E, Ẽ and N, a
factor of N can be computed as presented in equation (11)

Ẽ = a · Ẽ1 + b · E2 mod N (10)

gcd(E− Ẽ,N) = gcd(a · (E1 − Ẽ1),N) = q (11)

Equation: Factorization of RSA modulus in a faulted CRT implementation

In [54], the authors also present the Lenstra’s improvement which
requires the knowledge of the message x and the public exponent e
instead of the signature E. In these conditions, the modulus can be
factorized using the same fault on E1 as shown in equation (12).

This attack is very powerful and demonstrates how a specific im-
plementation can weaken the security of a cryptographic algorithm
against FAs.
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gcd(x− Ẽe,N) = q (12)

Equation: Factorization of RSA modulus in a faulted CRT implementation
(Lenstra’s improvement)

attacking logarithm exponentiation square and multi-
ply implementations

Execution flow Cryptography

The square and multiply algorithm is the most used algorithm for
computing the logarithm exponentiation. This algorithm iterates over
all the bits of the private exponent s = {st−1, ..., s0}, squares the inter-
nal state R and if the current bit is set to 1, it multiplies the message
as presented in algorithm 1. In the case of a signature, this allows to
compute E = xs mod N.

Algorithm 1: Left to right square and multiply algorithm for
logarithm exponentiation
Result: E = xs mod N

1 R = 1;
2 for (i == t− 1; i > 0; i−−) do

3 R← R · R mod N;
4 if si == 1 then

5 R← R ·m mod N;
6 end

7 end

Fault attacks on this algorithm rely on the corruption of the squar-
ing operation (line 3). [54] introduces an attack which is based on a
corruption of the squaring while [119] presents and successfully re-
alizes an attack based on the skipping of one squaring during the
signature. I present the attack using the skipping fault model.

Skipping the last squaring gives a faulty signature x0, this signa-
ture’s difference with the real one x depends on the value of the first
bit of the secret exponent s0 as shown in equation (13).

x =







(x0)
2 if s0 = 0

(x0)
2 ·m if s0 = 1

(13)

Equation: Relation between the faulty signature obtained by skipping the
last squaring and the correct signature in the square and multiply algorithm.

Once a bit has been recover, it is possible to recover the next bit
by comparing the faulty signature xi with xi−1. Indeed, between two
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iterations of the loop line 2, the internal state Ri has only two possible
values regarding the previous state as shown in equation (14).

Skipping the squaring in the ith loop iteration simplifies this rela-
tion as depicted in equation (15). Finally, after the whole signature
computation, the faulty signature xi obtained by skipping the ith

round squaring is directly linked to the previously observed faulty
signature (i.e., the one observed by skipping the (i− 1)th round squar-
ing) as presented in equation (16).

This attack allows to recover the complete private exponent by in-
jecting a fault for every bit to recover.

Ri =







(Ri−1)
2 if si = 0

(Ri−1)
2 ·m if si = 1

(14)

Ri =







Ri−1 if si = 0

Ri−1 ·m if si = 1
(15)

xi =







xi−1 if si = 0

xi−1 ·m
2i−1

if si = 1
(16)

Equation: Relation between the faulty signature obtained by skipping the
squaring in the ith and (i − 1)th iteration of the loop in the square and
multiply algorithm.

rsa modulus corruption

Data integrity Cryptography

In the RSA algorithm, the integrity of the modulus N is very sen-
sitive. Indeed, because the private key is based on its number of co-
prime Φ(N), any attacker able to compute this value can forge, using
the extended euclidean algorithm for instance, a legitimate private
key d corresponding to a known public key e as depicted in equa-
tion (17).

e · d = 1 mod Φ(N) (17)

Equation: Bézout’s identity

Corrupting the modulus N can simplify the computation of Φ(N).
The aim is either to force the modulus to be a prime, in this case
Φ(N) = N− 1 or to make it easily factorizable, simplifying the com-
putation of Φ(N).
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This technique was successfully used in the ClkScrew attack [65]
for loading an un-trusted application in the TEE of a smartphone.

persistent fault analysis on aes

Data integrity Cryptography

The Persistent Fault Analysis (PFA) relies on the corruption of Substitution
Boxes (SBoxes) in a persistent way. This means that the fault remains
active until the target is reset. This able to realize several operations
with the same faulted value.

This kind of fault was first used to attack the AES algorithm in [120]
and a practical attack using UV light to corrupt AES SBoxes lookup
tables was presented in [76].

Corrupting SBoxes implies that they are biased. The consequence is
that for an entry x the output is ỹ = S̃B(x) instead of y = SB(x),
moreover, as the SB is initially a bijection, no other input value can
output the y value in the faulted SBox S̃B.

Considering the last round of AES, the ith byte of the cipher Ci is
computed with the secret key K and the previous round internal state
ith byte Xi as presented in equation (18).

C̃i = S̃B(Xi)⊕Ki (18)

Equation: AES last round SubBytes and AddRoundKey operations in the pres-
ence of a corrupted SBox

Actually, because the SBox is faulted the internal state X is also a
faulted value but it doesn’t matter in the attack. The important thing
is that there is a value for C̃i which is unreachable because of the SBox

corruption. This value is the y introduced above. This unreachable
value (named forbidden value in the literature) is easily identifiable
by observing the output ciphers. We name this value C∗

i for the ith

byte of the cipher and it is directly linked to the ith byte of the key
as shown in equation (19).

C∗
i = y⊕Ki (19)

∀i,Ki = y⊕C∗
i (20)

Equation: Relation between the forbidden value and the secret key

At this point, y has only 28 possible values. By guessing the y

value it is possible to directly recover all the key bytes as shown in
equation (20). This reduces the number of possible keys to 28 val-
ues and the verification can be done by knowing a plaintext and its
corresponding cipher.
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differential fault analysis (dfa)

Data integrity Cryptography

The DFA is a cryptanalysis technique which relies on the compari-
son of the correct cipher and a faulty cipher of the same (unknown)
plaintext. In [55], the authors presents the attack for the DES algo-
rithm. [121] introduces a DFA technique usable for the AES which was
extended in [122] and [57] presents a DFA for ECC.

The DFA on AES is the most famous attack among all DFAs and was
successfully exploited in [123] and even on a DFA protected AES by
simultaneously injecting two faults in the implementation [124]. The
principle of the attack is to realize a fault on a byte of the AES state
before the last MixColumns operation, in the 9th round as presented in
figure 29.

SR MC ⊕ SB SR ⊕ c (c’)

k9 k10

fault ∆

Figure 29: DFA Principle

Once the faulty ciphertext c’ is obtained, the attacker can compute
the value ∆ such as presented in equation (21).

∆ = SB−1(SR−1(c⊕ k10))⊕ SB−1(SR−1(c ′ ⊕ k10)) (21)

Equation: Relation between the faulty ciphertext, the correct ciphertext and
the possible faulty outputs of the MixColumns operation during a DFA on
AES

Faulting one byte of the AES state before the last MixColumns im-
plies that the faulted output of the MixColumns (∆) has only 28 pos-
sible values. Regarding the equation (21), as the possible values for
∆ are known, the only unknown value is k10 and at this point ∆ has
only four bytes (among sixteen) that are not zeros. The next step con-
sists in testing all the values for these four bytes in k10 (232 values in
total) such as the corresponding ∆ is among the possible values.

Given a faulty ciphertext c ′ this computation will give a set of pos-
sible values for the k10 bytes. The correct k10 value is the one that
verify the equation (21) for every faulted ciphertexts. In [122], the au-
thors demonstrate that the probability to recover the correct key with
two faulty ciphertexts is around 98%.

Doing a fault on a byte will before the last MixColumns operation
leads to a faulty diagonal in the AES as shown in figure 30.

In this figure, the SubBytes and AddRoundKey operations are not
represented as they do not change the layout of the fault propagation.
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MixColumns ShiftRows

Faulted byte

Figure 30: Propagation of a faulted byte before the last MixColumns opera-
tion in the AES

As one can see, the output has four faulted byte in the pattern of a
diagonal. Comparing the correct cipher with the faulty one able to
observe this diagonal and recover the corresponding bytes of the key.

Therefore, doing these steps for the 4 diagonals able to recover the
16 bytes of the key with only 8 faulty ciphertexts. Actually, 2 faulty
ciphertexts can be enough because faulting a byte in the AES state
result in a faulted diagonal. Therefore, by faulting 4 bytes in the AES

state, it is possible to obtain 4 faulted diagonals with only one cipher.
However, these faults are exploitable only if the four initial faulted
bytes are on the four different columns of the AES state. Otherwise,
there is too many possible values for ∆, reducing the efficiency of the
attack.

aes last addroundkey skip

Execution flow Cryptography

The last operation of the AES algorithm is the AddRoundKey. This
operation is particularly critical. Indeed, if an attacker is able to skip it,
she will obtain a faulty ciphertext c̃. The difference between this faulty
ciphertext and the correct ciphertext is simply the XOR operation with
the secret key k as shown in equation (22).

c = c̃⊕ k (22)

Equation: Relation between the faulty ciphertext and the correct cipher text
in the case of the skipping of the last AddRoundKey operation in AES

From this point, the secret key can be trivially recovered by XORing
the faulty ciphertext with the correct one. This attack was successfully
realized using a laser injection in [79].

4.4.1.2 Fault attacks targeting memory partitioning

Memory partitioning is a basic security feature in multi-application
systems. It ensures that, despite the physical memory is shared, an ap-
plication cannot access the memory of another application as shown
in figure 31.
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Memory

Operating System
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OS 1 2 3

Figure 31: Memory partioning principle

This figure shows how the memory is managed in a multi-application
system. Each application, even the OS itself, has a dedicated subpart of
the memory. This partitioning is ensured by a dedicated component,
the MMU or the MPU, and is configured by the OS at the startup. The
OS can access all the memory as it configures this partitioning, this
implies that while executing a sensitive application, the OS must be
trusted, this trust is ensured by the secure boot. In security, escalating
privileges can be done by accessing the OS memory and modifying
its configuration.

rowhammer attacks .

Data integrity Memory partitioning

Because of the memory partitioning, creating a malicious applica-
tion that will access the OS memory and modify it is not possible.
However, using a physical perturbation can induce modifications in
this critical memory. This is a classical attack path in rowhammer
attacks [87, 89].

For the example, in Linux-based OS, the memory partitioning is
managed by a MMU, the MMU gives every application a pool of virtual
addresses they can use to realize memory accesses. When the MMU

receive a memory access, it translates the virtual address (addrvirt)
into a physical address (addrphys) using Page Table Entrys (PTEs) as
shown in equation (23).

addrphys = PTE+ addrvirt[11 : 0] (23)

Equation: Relation between the virtual address and the physical address in
Linux based OS

The PTE is stored in the OS memory. The MMU resolves the PTE’s
address using the upper bits of the virtual address and verifies that
the application realizing the memory access can access this address.
Therefore, an attacker able to corrupt the PTEs can force a memory
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access to any part of the memory in particular, the OS memory. This
was successfully done using rowhammer in [87, 88, 89] to obtained
privileged rights.

4.4.1.3 Fault attacks targeting secure boot

Data integrity Execution flow Secure boot

As mentioned above, the secure boot is a critical security feature to
ensure the trust in a OS or an application. The secure boot is the suc-
cession of verified stages, each stage is ciphered and signed. The aim
of a stage is to verify the authenticity of the next stage, to uncipher
it and to execute it . The only exception is the first stage which is de
facto trusted and executed at the startup, it is the root of trust.

Bypassing the secure boot able to load an un-trusted OS on the tar-
get, this can be critical if a sensitive application is load on such OS,
also, if the bypass happens soon enough, critical assets, as the device
master key, might still be loaded in the memory. This security was
bypassed on the XBOX360 [125] using a voltage glitch which force
the return value the signature comparison function to zero. This ex-
ploit drove the apparition of modchips for this console with financial
consequences for Microsoft.

The secure boot was also successfully bypassed on an ARM Cortex-
M3 core using a glitch voltage [101]. The idea is to load a payload and
its destination address in the device memory as shown on figure 32.

payload

address address

address address

address address

Stage memory RAM

address:

Stage memory
destination

Copy

Fault during
address load

Figure 32: Boot loader stage for bypassing secure boot using a fault at-
tack [101]

During the secure boot, this stage will be loaded in the RAM before
being verified and un-ciphered. By faulting the instruction doing the
memory load of the addresses, the authors are able to load this value
in the Program Counter (PC) instead of the RAM and therefore execute
their payload, bypassing the verification of the stage and then the
secure boot.
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4.4.1.4 Fault attacks targeting application correct execution

operand stack corruption on the javacard virtual ma-
chine .

Data integrity Execution flow Application correct execution

The JCVM is the a part of the software layout powering SEs. As
SEs provide a high level of security, many work not only focus on
the hardware layer but also on the software layer regarding physical
attacks.

The JCVM relies on a stack to manage operations such as branches,
function and method calls, memory accesses, etc. Every application
executing over a JCVM has its own stack and the JCVM ensures the
memory partitioning between them. Fault attacks on JCVM focus on
corrupting the stack and exploiting the multi-application architecture
to achieve combined attacks [126, 127, 128].

In the JavaCard literature, combined attacks refer to both software
(named logical attacks) and hardware attacks. In this research field,
the attacker is often trying to bypass security mechanisms such as
the ByteCode Verifier (BCV) or the memory partitioning via logical
attacks (i.e. software only). Combined attacks on the JCVM focus on
the loading of a malicious application that does not trigger the BCV

and which is activated via a fault corrupting the stack to either load a
malicious class leading to an instance confusion [126, 128] or taking
control of the execution flow [127].

In this case, the fault targets the device data integrity which leads
to a modification of the executed application behavior.

4.5 countermeasures

As we presented how to inject a fault, how to model its effects, how
to analyze implementations and how to exploit attack paths, the last
but not least FA topic is the building of countermeasures.

Building countermeasures is the final goal of all that was presented
before as we aim to built resistant devices. However, we will see that
there is no countermeasures that can make a device totally fault proof
and also that they all have a price, in money, space, memory or com-
putation time.

This particularity imposes to developers and costumers to wisely
adjust their products security depending on the performances they
desire and the threats they identified. Despite it is a very interesting
topic, we will not discuss about threat analysis but it is important to
keep in mind that proposing and integrating countermeasures in a
device is a long thought process.

Also, as the critical mechanisms of a device presented in figure 14

are the entry point of faults, countermeasures focus on hardening
these mechanisms to make them resistant to faults.
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4.5.1 Space redundancy

The space redundancy aims at protecting the device data integrity
by storing it twice. Therefore, by regularly checking the difference
between the two versions of the same data, the device can detect if
a fault was induced on it. This solution is very naive and costly as
it doubles the needed space for storing data. A refinement is to only
duplicate sensitive data. However, as we have seen in section 4.4.1.2
for the memory partitioning, in some cases there are a lot of data to
protect (all the PTEs in this case).

A less costly solution is to use error correcting codes. The most fa-
mous is the parity bit [129, 130]. This solution is usually used in DDR
version 4 (DDR4)-Synchronous Random Access Memorys (SRAMs) and
in the cache memories [131]. Also, to improve the security, better error
correcting codes have been presented and use to protect AES imple-
mentations such as multiple parity bits [132], non-linear codes [133]
or non-linera r-bits long codes [134].

Despite error correcting codes are an efficient countermeasure against
faults, they do not protect against multiple faults. Indeed, it is possi-
ble for an attacker to fault both the data and the parity bit or its verifi-
cation. This example shows that countermeasures against faults does
not make FA totally inefficient but harder to achieve as they increase
the number of faults needed to attack the system.

Moreover, in order to secure an implementation against all physical
attacks (side-channel and perturbations), it is important to keep in
mind that error correcting codes does not suits well with side-channel
masking countermeasures [135].

4.5.2 Operation duplication

The operation duplication is in some way similar to the space redun-
dancy but instead of duplicating a data it duplicates an operation.
This can be done in several ways as shown in figure 33.

input

F F

= ?

output error

(a) Full duplication

input

F1

F2 F2

= ?

output error

(b) Partial duplication

input

ENC

DEC

= ?

erroroutput

(c) Encryption/decryp-
tion duplication

Figure 33: Operation duplication possible implementations
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This figure presents three ways of implementing the duplication
of an operation F. Figure 33a shows the most naive way which dupli-
cates the full operation while figure 33b presents a partial duplication.
The partial duplication is less costly than the full part and is usually
used to secure a sensitive part of the algorithm. As this countermea-
sure is usually used to protect cryptographic algorithm, it is possible
that both the encryption and the decryption are implemented, there-
fore it is possible to use both to realize a verification as presented
in figure 33c. This duplication is interesting as it does not require to
really duplicate a function.

As mentioned above, this countermeasure does not make FAs com-
pletely inefficient but make harder any FA targeting the operation as
two faults are needed. Indeed, either both versions of the sensitive
operation have to be faulted or a version of the operation and the
compare operation.

4.5.3 Infection countermeasure

The infection countermeasure is a refinement of the duplication coun-
termeasure which aims at protecting against the DFA when the com-
pare operation is bypassed. The idea is to diffuse the fault effect in the
output to avoid any information leakage due to the fault invariant. In
this case, even with two faults, the DFA is not a viable attack.

In practice, the idea is to identify the fault between the outputs
out1 and out2 and to use a diffusion function D to generate a mask
from the fault which is applied to the outputs as presented in equa-
tions (24) and (25). This can also be done on intermediate states.

out ′1 = D(out1 ⊕ out2)⊕ out1 (24)

out ′2 = D(out1 ⊕ out2)⊕ out2 (25)

D(0) = 0 (26)

Equation: Infection countermeasure

With a good diffusion function D, the fault will propagate in the
output and no information will be usable by the attacker. This is
mostly used in AES. The only constraint on D is shown in equa-
tion (26). Several diffusion functions are proposed in [136, 137] and
the need of randomness in D was highlight in [138].

4.5.4 Code hardening

The code hardening is a particular kind of countermeasure which aim
at adding software countermeasures in a code to protect it against
control flow attacks. At first, these works aimed at detect and protect
against software attacks such as Return-Oriented Programming (ROP)
attacks [139] but appeared to be suitable for protecting against fault
attacks targeting the control flow.
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These countermeasures face many challenges both on their design
and on their implementation. Indeed, the program is protected by the
program and moreover, the integration of countermeasures must be
compliant with the compilation process of software which realizes
optimizations that can nullify the countermeasures efficiency.

As a consequence, the integration of such countermeasures has to
be adapted to the compilation process as shown in figure 34 with the
impact it can have on development time and optimization.

source
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compilation

binary/bytecode
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.class

link

executable
.elf

.cap

source to
source [140]

compiler
assisted [141]

binary
rewriting [142]

link
time [143]

Figure 34: Software countermeasures integration in the compilation process.

This figure shows the different steps of the compilation for .elf

(Linux executable file) and .cap (JavaCard executable file) files. This
process is simplified but it able to highlight the different steps where
a software countermeasure can be integrated into a software imple-
mentation.

Regarding the countermeasures themselves, several solutions are
proposed.

One of them is the signature of blocks [144]. This method relies
on the verification of signature at different moments of the program
execution. The blocks can have different granularity, they can be ba-
sic blocks [145] or C statements [140]. Also, the signature verification
can be implemented in different ways: it can rely on hardware mech-
anisms like the performance counter [146], it can be fully integrated
in software in the program [147, 148] or in a virtual machine as pro-
posed for the JCVM in [142, 149, 150].

Another solution aims at complementing the signature of blocks.
Indeed, the signature of blocks able to detect control flow errors from
a block to another but not inside the block. A solution to detect intra-
block control flow error is the usage of step counters [151]. The prin-
ciple of this solution is to initialize a counter N when entering a block
which is equal to the number of instructions to execute in the block.
Each time an instruction is executed, this counter is decreased by 1

and its value is check at the end of the block. At this moment, its value
must be 0 otherwise it means that an instruction has been skipped or
replayed. This countermeasure is summarized in listing 4.1.
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N = I+1;

instruction0;

N--;

instruction1;

N--;

.

.

.

instructionI;

N--;

if(N != 0)

error();

Listing 4.1: Step counter countermeasure on a block of I instructions

4.5.5 Sensors

Another way to protect a device or an implementation against FAs is
to detect that there is a fault attempt. As mentioned in introduction,
perturbation attacks rely on pushing the device out of its nominal
operation point. Therefore, a proposed solution is to integrate sensors
in the device which will detect if there is any abnormal perturbation
targeting the device.

Nowadays, there is a sensor for almost every injection mediums:
EMPs [152], supply voltage [153], temperature [154], light [155], FBBI [156]
and even a (patented) package penetration sensor [157]. However,
sensors are tough to calibrate as they aim at detecting with the best
probability a perturbation attempt while having the lowest error rate
possible. An important issue is that a perturbation might be detected
without it to be malicious. Also, the physical environment of a chip
depends of its usage and it can change during its lifetime making it
very complicated to efficiently calibrate a perturbation sensor.

Finally, as the possible reaction of device detecting a perturbation is
to destroy itself, it is possible to realize Deny Of Service (DOS) attacks.

4.6 conclusion on perturbation attacks

Perturbation attacks are an important threat for digital devices. They
can modify the behavior of a device during its execution and there-
fore, break security mechanisms or break cryptographic algorithm
security.

Despite they are an efficient way for attacking, they are not straight-
forward to understand, realize nor exploit. For this reason many
works focus on discovering way to inject faults, characterizing their
impact on the devices behavior, analyze this impact on secure imple-
mentations and either exploit them or protect against them. All these
topics are a research field on their own showing the diversity of high
level skills needed for fully understanding fault attacks.
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The consequence is that, despite their efficiency, fault attacks are
difficult to exploit and to mitigate, making the design and develop-
ment of secure devices resistant to fault attacks a highly skilled pro-
cess.
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FA U LT E F F E C T C H A R A C T E R I Z AT I O N O N S Y S T E M S
O N C H I P

When the world shoves you around, you just gotta stand up and shove back.
It’s not like somebody’s gonna save you if you start babbling excuses.

— Roronoa Zoro (One Piece)

abstract

This chapter presents my contribution regarding the fault model char-
acterization on SoCs. The introduced elements are the SoC model, the
attacker model, the device setup with the test codes and the tested tar-
gets, the perturbation benches and the analysis tools. A paper based
on this work was published in WISTP 2019 Conference [158].
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As this thesis aims at evaluating the security of SoCs against FAs, the
first step consists in characterizing how these devices are perturbed
as shown in figure 16.

However, because SoC are complex and embed many modules, my
contribution only focus on characterizing the CPU behavior against
FAs. As mentioned in section 2.3.2, the CPU is the cornerstone of the
device and therefore an interesting target.

The characterization relies on a model of this target. The model
provides information about the behavior of the device and therefore
the elements that can be perturbed. The role of the characterization,
is to determine which elements are perturbed and how.

Therefore, this chapter presents the modeling of a SoC, the attacker
model we consider (and therefore our analysis frame), the top-down
approach we use for characterizing fault effects and the target setup.

5.1 soc modeling

A modern CPU architecture is presented in figure 10 (section 2.3.2.1)
and this model is used for our characterization process. The impor-
tant things to have in mind are that:

• the CPU embeds a pipeline which fetches, decodes and executes
instructions;

• the pipeline is connected to a bank of registers storing the data
manipulated by the instructions;

• data and instructions are read from a memory subsystem com-
posed of cache memories. These cache memories can either store
data, instruction or both;

• the data and instructions addresses used by the core are virtual
and translated by the MMU during memory accesses;

• everything is connected via buses.

All these Micro-Architectural Blocks (MABs) are involved during a
program execution and can be perturbed during a FA. Our aim is to
determine which elements are perturbed regarding different injection
mediums and how.

5.2 attacker model

Regarding the CPU architecture, one cannot access and debug every
MABs. Considering modern SoCs are embedded in smartphones, a real-
istic attacker aiming at using fault for weakness its security will start
by characterizing the fault effects on a smartphone he bought itself.

In this situation, the attacker access to the device is limited to flash-
ing the OS and executing self-made programs. As this thesis is a first
step in SoC characterization, we consider an attacker which can only
execute its programs on the target to characterize the device behavior.
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As a consequence, our method match this constraints as we only
execute user level programs. In this chapter we present the method
using such programs and in the following chapters we demonstrate
that this method able to deduce information about perturbation ef-
fects and the this information is relevant for attacking security mech-
anisms.

However, to challenge the method we present, we also realized a
micro-architectural characterization using a custom OS and Join Test
Action Group (JTAG).

5.3 experimental method

As mentioned above, the experiment method for fault characteriza-
tion is based on the execution of user level programs. However, it
aims at providing a information about the ISA and the micro-architectural
behaviors of the target. To reach this objective, the method is based on
a top-down analysis we link the MABs to the program elements (the
data and the instructions) and discriminate the affected MABs using
various test program.

5.3.1 Top-down approach

During a Fault Injection (FI), one or several MABs are disturbed. As
they can all be perturbed during a fault injection, the full fault effect
characterization can be a complicated process. However, according
to the previous works on SEs, in most cases, the fault affects only a
single MAB, like the cache or the pipeline. We actually verified this as-
sumption on modern CPUs. Under this simplified paradigm, the fault
characterization problem aims at determining which MAB is faulted
and how.

To reach our objective, the proposed method consists in realizing a
fault during a test program execution and in determining the micro-
architectural fault that can explain the observed misbehavior.

Summarized in figure 35, the general idea is to apply a top-down
approach. We start by determining whether the fault affects the data
or the instructions, this corresponds to the ISA level. Once we know
which element is affected, we determine which of its MABs is faulted.
To discriminate which element is faulted, we repeatedly execute the
same instructions on a known state CPU.

ISA

Micro-Arch

Faulted program

Faulted data

Registers Memory

MMU Bus Cache

Faulted instruction

Pipeline

Decode Execute

Memory

Fetch Bus Cache MMU

Figure 35: Fault effect characterization overview
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Disturbing the program execution will give a distribution of faulted
values. The next step consists in determining whether these faulted
values come from a fault on the manipulated data or on the instruc-
tions.

Once we know if the data or the instructions are faulted, it is possi-
ble, from the fault model on these elements to determine which MABs

have been faulted. In the case of a register corruption, it is straightfor-
ward that the registers are faulted. In the case the wrong instruction is
fetched from the memory, either the cache has loaded the wrong data
or the MMU has failed the address translation. If an instruction cor-
ruption is observed, the fault affects either one of the pipeline MABs

or the cache or the instruction bus.

5.3.2 Target setup

For the fault model characterization, two important things must be
defined: the test program and the initial values of the CPU registers.
Each test program consists in the repetition of an instruction. How-
ever, as they execute on a complex system, they are wrapped in a
program as described in figure 36.

1 2 3 4 test program 5 6 7 8

Program
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Restore
context
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Figure 36: General program organization

This figure shows the program wrapping the test program. It aims
at initializing the processor state before executing the test program
and to send back the relevant data (usually the registers values) and
processing the triggers. Also, as it has to communicate with an ex-
ternal component (usually the PC managing the experiment), it must
save its execution context and restores it after the test as we do not
want this part of the program to be faulted.

5.3.2.1 Test programs

The method for determining a fault model consists in executing a
chosen program on a known state. By executing the program, the
state will change in the succession of states. Perturbing the execution
might create a fault. Then a state in the middle of the execution will
be faulted, and all the successive states will also be faulted.

To determine a fault model, the method consists in comparing the
expected final state with the faulty one. Repeating the comparison
with various initial states or programs allow to determine the fault
model.

This approach is effective but presents an issue. Once a faulty state
appears in the computation, the program continues. This induces that
the faulty final state is not a consequence of the fault, but a conse-
quence of the fault and the execution of the program on it as shown
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on Figure 37. However, in the ideal case, we want to compare the first
faulty state with its expected state without it being modified by the
execution of the program.
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Non changing state instruction
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Figure 37: Succession of states during the execution of a program containing
only non-changing state instructions

A workaround of this issue is to choose the program carefully.
From now, the only constraint on the instructions to be executed is
that they must only work on the registers. To avoid the aforemen-
tioned issue, we will choose programs executing instructions that do
not change the state. Therefore, when such a program will execute,
no change will be observed on the state. This means, if after the per-
turbation the state has changed, it’s due to the perturbation. In our
case, either the registers have been directly modified or the instruc-
tion has been. And, best of all, when a fault happened, it will not be
modified by the program as shown in Figure 37. Therefore, the faulty
final state is exactly the same as the first faulty state which is the ideal
case to determine a fault model.

The good news is that it is possible to create a lot of such programs
as it is possible to have a lot of non-changing state instructions. The
most common is the nop instruction, however, as sometimes the fault
depends from the instruction it is interesting to vary the instructions
used in the test programs. Therefore, the instructions we use are nop

equivalent instructions such as mov rX, rX, and rX, rX or or rX, rX

where rX is a register from the processor state.
Using these kind of instructions, it is possible to create a test pro-

gram such as shown in listing 5.1.
This test program, and this kind of test program in general, presents

many advantages. The first one is that it uses very generic instruc-
tions, therefore it is usable on any processor architecture. The second
one is that as we can arbitrary choose the number of time we repeat
the instruction, we can make it large enough to have a wide injec-
tion window even on the fastest targets. The third one is that as the
instructions do not change the processor state and that they are all
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or r3, r3;

/*

* Arbitrary number of repetitions

*/

or r3, r3;

Listing 5.1: Example of a test program for fault characterization

the same, it does not matter which one is perturbed, avoiding any
synchronization issue. Finally, these instructions are “data processing
instructions” which means that they do not fetch data from memory.
Regarding our method presented in figure 35, this reduce the analysis
frame as, in this case, the “memory” branch from the “faulted data”
node cannot be reached.

However, this test program also presents some drawbacks. The first
one is that, as it does not fetch data from the memory, we are not able
to determine if the fault targets this path. This test requires another
test program presented in listing 5.2.

str r2, [r4];

ldr r2, [r4];

/*

* Arbitrary number of repetitions

*/

str r2, [r4];

ldr r2, [r4];

Listing 5.2: Example of a test program for fault characterization on memory
accesses

This test program is a bit different from the previous one as it is
based on two instructions. The reason is that memory access instruc-
tion are always changing state instructions. For instance, if the value
in r2 is different from the value at the address stored in r4, a load or
a store instruction will erase this difference. The consequence is that
if we only do store instructions, a fault in the memory will be over-
written, while if we only do load instructions, a fault in the registers
will be overwritten. A solution could be to do two experiments, one
with stores and one with loads. The test program presented in list-
ing 5.2 allow us to determine if there is a fault in any case with one
experiment. This is a consequence of the fact that the repetition of the
store and the load is a non-changing state sequence of instructions.

The second drawback of the test program presented in listing 5.1 is
that it is not able to detect instructions skips or repetitions. As these
are a common fault model, it is important to take them into account.
The detection of such faults is usually done by faulting a test program
incrementing a register such as presented in listing 5.3.

This program is able to simply determine if an instruction, or sev-
eral, was skipped or repeated by checking the value of r8. However,
this test program presents some issues. The first issue is that some
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add r8, #1;

/*

* Arbitrary number of repetitions

*/

add r8, #1;

Listing 5.3: Example of a test program for instruction skip/repetition char-
acterization

instruction corruptions can be considered as a skip or repetitions, in
particular in the case the immediate value #1 is forced to #0, #ff (−1)
or any other value or if the incremented register is modified. There-
fore, this test program must be used after it has been determined that
this kind of faults does not appear. This is easily done using the test
program presented in listing 5.1.

The second issue of the program presented in listing 5.3 is that the
used instructions are no non-changing state instructions. The conse-
quence is that if a different fault than instruction skip or repetition is
achieve, it will be harder to identify it than with the first test program
presented in listing 5.1.

The third issue of the test program presented in listing 5.3 is that
the number of increments is limited by the register size to avoid over-
flows. This is more an issue on low-width processors and only impact
instruction repetitions but it is important to keep it in mind.

The final issue of the test program presented in listing 5.3 is that it
is not able to detect instruction repetition with replacement fault mod-
els. In this fault model, an instruction (or several) is repeated while
another one (usually the immediately following one) is skip instead.
Regarding the test program in listing 5.3, repeating a add r8, #1 in-
struction which replaces a add r8, #1 does not induce a fault. There-
fore, the solution is to vary the incremented registers such as pre-
sented in listing 5.4.

add r5, #1

add r6, #1;

add r7, #1;

/*

* Arbitrary number of repetitions

*/

add r5, #1;

add r6, #1;

add r7, #1;

Listing 5.4: Example of a test program for instruction repetition with re-
placement characterization

This program is able to determine if instruction where replaced
by others simply by checking the registers values. However, most of
the time, not only one instruction is replaced but several, this comes
from the fetching of a pack of instruction. Therefore, this program
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might not be able to detect large packs of instructions replaced as it
is limited by the number of available registers.

With these test programs, it is possible to determine all the known
fault model at the ISA level targeting data processing instructions
and memory accesses instructions. However, these programs does not
give information about branch instructions. The reason is that these
instructions are complicated to analyze as a fault affecting them can
lead to the execution of unknown code. However, data processing in-
structions and memory accesses instructions compose an important
part of programs, making their analysis relevant.

5.3.2.2 Target initial values

To have a simple fault characterization, the initial values must fit some
properties. They must be all different (equation (27)) and any logical
or arithmetical simple operation between them must be identifiable
(equation (28)). In other words, if we observe a faulted value v ∈

[[0, 2n − 1]] where n is the bit size we consider, we want to be able to
determine the involved initial values and the logical or arithmetical
operation without any ambiguity.

∀(i, j) ∈ [[0,k− 1]]2, i 6= j =⇒ xi 6= xj (27)

Equation: Difference between all registers initial values property

∀v ∈ [[0, 2n − 1]], ∃!(i, j,o) ∈ [[0,k− 1]]2 ×O such as o(xi, xj) = v

(28)

Equation: No arithmetical links between registers initial values property

where xi is the ith initial value, k is the number of registers and O

the set of operations we consider.
To match most of the modern CPUs the operations we consider for

our initial values are the logical OR, AND, XOR and the arithmetical ADD
and SUB. We realized the characterization on several targets and our
constraints are n = 32 or n = 64 and k = 10 or k = 16.

Create a set of initial values matching the properties presented in
equations (27) and (28) with these parameters is not complicated, ran-
domly generating the values work. However, randomly generated
values are not easy to analyze for a human, so we built the xi as
presented in equation (29).

xi = 2i + 2n − 2n/2 − 2i+n/2 (29)

Equation: Registers initial values construction
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The corresponding initial values for our registers are presented in
table 1. However, despite the fact these values fill the properties pre-
sented above and are easily identifiable for a human, their construc-
tion impose a constraint on the number of observable registers which
is k 6 n/2. In other word, the number of register we can monitor
must be lower than half of the bit size of these registers.

Register Initial values (32 bits) Initial values (64 bits)

r0 0xfffe0001 0xfffffffe00000001

r1 0xfffd0002 0xfffffffd00000002

r2 0xfffb0004 0xfffffffb00000004

r3 0xfff70008 0xfffffff700000008

r4 0xffef0010 0xffffffef00000010

r5 0xffdf0020 0xffffffdf00000020

r6 0xffbf0040 0xffffffbf00000040

r7 0xff7f0080 0xffffff7f00000080

r8 0xfeff0100 0xfffffeff00000100

r9 0xfdff0200 0xfffffdff00000200

Table 1: Target initial values for fault characterization considering ten regis-
ters

The issue with these values is that in the case of the execution of
test programs for instruction skip and repetition characterization (list-
ings 5.3 and 5.4), the registers overflow can be reached quickly. With
these programs, it can be interesting to simply initialize the registers
to 0.

5.4 determining the faulted element

To determine the faulted MAB, we rely on the available registers ob-
servation and the executed instructions knowledge. The way they are
faulted gives information about the faulted element.

Disturbing the program execution will give a distribution of faulted
values in the registers. The next step consists in determining whether
these faulted values come from a fault on the manipulated data or on
the instructions. Indeed, the execution of the nth program instruction
by the CPU can be modeled such as in equation (30):

sn+1 = insn(sn) (30)

Equation: State computation in a CPU

where sn+1 is the CPU state after the execution of the nth instruc-
tion insn. An instruction is composed of three elements: an opcode
encoding the operation to do, a reference to the destination register
and reference(s) to the operand(s). These operands can be registers
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or immediate values. Depending on the architecture, the encoding of
this information may vary but they are always present.

When there is a fault during an instruction execution, we assume
here that it either applies on the data or on the instruction. We exper-
imentally verified this assumption. Therefore, the faulted instruction
execution can be modeled such as in (31).

˜sn+1 = ˜ins(s̃n) (31)

Equation: Faulted state computation in a CPU

where x̃ denotes the faulted representation of x. From this represen-
tation, we can define the fault model fdata on the data as introduced
in (32), and the fault model fins on the instruction as presented in
(33).

s̃n = fdata(sn) (32)

Equation: Data fault model

˜ins = fins(ins) (33)

Equation: Instruction fault model

These fault models can have different descriptions to match with
the different underlying fault causes. The data fault types and their
corresponding MABs are presented in table 2.

Faulted
element

Data

Fault
type

Register
corrup-

tion
Memory corruption Bad fetch

Faulted
MAB

Registers Cache
Data
bus

Cache MMU

Table 2: Data fault models

Based on the CPU model and table 2, it is possible, from these fault
types, to determine which MABs has been faulted. In the case of a
register corruption, it is straightforward that the registers are faulted.
If there is a memory corruption, the cache storing the data or the data
bus is faulted. In the the “bad fetch” case, either the cache has loaded
the wrong data or the MMU has failed the address translation.

For the instructions, the fault types, presented in table 3, are cor-
ruption and bad fetch.
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Faulted
element

Instruction

Fault
type

Corruption Bad fetch

Faulted
MAB

Pipeline Cache Bus Cache MMU

Table 3: Instruction fault models

If an instruction corruption is observed, the fault affects either one
of the pipeline MABs, the cache or the instruction bus. In the case of a
bad fetch, either the instruction cache has loaded the wrong instruc-
tion or the address translation has failed.

Regarding the test code presented above, the data fault models
“memory corruption” and “bad fetch” cannot appear as there is no
data fetched from the memory. Therefore, we can focus on the remain-
ing fault models and this is enough for determining which element
among the registers, the pipeline or the memory has been faulted.

5.5 conclusion

This chapter presented the method and the theory about the fault
effect characterization on SoCs.

Despite several methods exists since a long time, this work is the
first synthesis on fault characterization on a digital device. Indeed,
even if it was presented in the scope of SoCs, this method perfectly
fits with the analysis of a simpler device such as a SE. The main dif-
ference will come from the model of the target, but a model of a SE is
presented in figure 4.

With this method, we were able to characterize faults at the ISA and
micro-architectural level. Therefore, the next chapter presents how we
applied this method on SoCs.
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Hard work and efforts never betray.

— Gaï Maito (Naruto)

abstract

This chapter presents our experimental setup and the characterization
results on the three chosen targets: the BCM2837, the BCM2711b0

and the Intel Core i3-6100T. The characterization aims at defining the
optimal injection parameters and the associated effects at the ISA and
micro-architectural level for each target.
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As presented in chapter 4, characterization is the former step in
evaluating and securing devices against fault attacks. As we aim at
evaluating the security of SoCs, we need to realize this characteriza-
tion. The method we use for characterizing fault effects was presented
in chapter 5. In this chapter, we present the practical application of
this method by introducing our experimental setup, the targets we
worked on and the characterization results we obtained on them.

The work presented in these chapters are part of several papers
published at WISTP 2019 [158] or submitted for publication [159, 160].

6.1 practical work setup

Before presenting our experimental results, it is important to intro-
duce the tools we used for realizing our characterizations. As fault
injections are probabilistic attacks and therefore, time consuming, the
bench aims at autonomously managing fault injection campaigns on
the Device Under Test (DUT).

6.1.1 Attack benchs

A generic attack bench is presented in figure 38.

DUT

Axes

Injector

PC

Energy
supplier

Signal
manager

position

Eperturb

drive

communicate

drive

configure

configure

voltage

signal

trigger

E Perturbation

Data link

Mechanical interaction

Analog signal

Figure 38: Generic attack bench organization and interactions

As the bench aims at perturbing the DUT, it has a central role in its
organization. The DUT executes the test code we want to fault.

The perturbation is induced by the injector, there are different in-
jectors regarding the injection medium, and, in the case of software
induced fault attack, the injector is the DUT itself. The injector can be
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configured to tweak the different injection parameters. These param-
eters vary from a medium to another. During this thesis, we focused
on EM and laser perturbations.

In some cases, axes are needed to move either the DUT or the in-
jector. This able to test different positions during EM, laser or FBBI

injections. This is specific and quite time consuming as it implies a
mechanical movement. Being able to optimize the path of the injector
over the DUT can therefore be very time saving.

An important component of the bench is the energy supplier. In-
deed, as the bench aims at being autonomous, it must manage the
case where the perturbation crashes the DUT. When the DUT is crashed,
a reboot of the system is needed and it is done by the energy supplier.

Another important component is the signal manager which deter-
mines when doing the injection and sends a trigger signal to the in-
jector. In the ideal cases, the trigger signal directly comes from the
DUT and is transmitted to the injector. However, in some complicated
cases (on a closed platform for instance), such signal is not available.
Therefore, the signal manager must analyze the DUT behavior and, via
pattern recognition for instance, generates the trigger signal for the
injector. This component is very important in current attack benchs
as its performances (speed, success rate, jitter and accuracy) able a
precise synchronization with the device. This component is where
the most added value of an attack bench comes from. In our case,
we always managed to output a trigger signal so we simply use an
oscilloscope.

The last component is the PC, it aims at managing the fault injec-
tion campaigns, configures every components, drives the necessary
elements and stores the results of the experiments. It keeps commu-
nicating with the DUT when it is possible to ensure that everything is
going as expected.

Also, most of the time, an oscilloscope is added to acquire and
observe the analog signals.

6.1.1.1 ElectroMagnetic bench

The first bench we used is the EM bench presented in figure 39.
This bench is composed with all elements introduced in figure 38.

On this figure, the DUT is an Intel Core i3. The other evaluated tar-
gets are presented in the following section. As it is an electromag-
netic bench, a probe is placed over the DUT to generate the EM waves.
This probe is home-made and is composed of a copper wired rolled
around a ferrite.

The energy supplier, which manages the reset of the DUT, is com-
posed of an Arduino board.

The signal manager is handled by an oscilloscope, which also ac-
quire the analog signals mentioned in figure 38. For the characteriza-
tion, as we master the targeted program, we configure the DUT so it
outputs a trigger signal just before starting the test program. There-
fore, we do not need any pattern recognition mechanism in our signal
manager.
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DUT
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Figure 39: ANSSI’s EM bench with Intel Core i3 DUT

The PC displays information about the running experiment. The
communication with every bench component is done via a serial com-
munication.

electromagnetic injection setup. The probe is moved over
the DUT via two-dimension axes and fed in voltage by an high voltage
(800V/16A) AvTech pulse generator used as an injector.

The signal coming out of the pulse generator was measured using
an attenuator, the results are presented in figures 40 and 41.
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Figure 40: Pulse generated by the AvTech (100V input)

This measure shows that the rising edge time of the first pulse is
around 8.5ns while the falling edging last for around 24ns. However,
this measures shows the signal when the output of the pulse gener-
ator (50Ω) is connected to an adapated attenuator and an adapted
scope as well. Therefore, when connected to a not necessary adapted
probe, the signal might be different. A way to have an idea of the
signal actually feeding the probe is to measure the probe’s reflection
coefficient using a Vector Network Analyzer (VNA) and compute its
scattering parameters (also know as S-matrix)[161]. This approach is
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Figure 41: Pulse generated by the AvTech zoomed on the first peak (200V
input)

relevant considering the probe as an isolated system, but, during fault
injections, the probe is close to the circuit and therefore it cannot be
considered isolated, we are in a near-field situation regarding elec-
tromagnetic theory. In our case, instead of considering the probe as
the system to characterize, we will consider the probe+circuit as the
system. Indeed, during fault injections this system is isolated from
external electromagnetic perturbations and we therefore can measure
its scattering parameters. These parameters represent the reflection of
the device for various input signal frequencies. Identifying frequen-
cies where the reflection is minimal means the system absorption is
maximal which means it is at this frequency that the system absorbs
the highest amount of energy. This energy can therefore either be
converted into heat via Joule’s effect or it can influence the circuit be-
havior inducing faults. Doing so, we should be able the most efficient
frequency to use for our injector to maximize our fault probability.

As mentioned, this approach focus on the probe+circuit system,
which means it must be redone for every tested target. However, this
is an on-going work and we do not have relevant results to present
yet.

6.1.1.2 Laser bench

For LFIs, our bench is composed of a focused laser bench with a 50 x

long distance lens and the wave length is around 970nm. For being
able to inject faults, the chip backside must be thinned around 150µm.
In our experiments, we used a pulse width of 20ns.

6.1.2 Evaluated devices

Now that all the equipment are set up, we must determine targets
to work on. As we want to evaluate the security of modern SoCs, we
naturally target such devices. However, as we want to realize a charac-
terization work, the targets must be open enough so we can develop
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and execute our test programs on it. Also, we want the targets to be
representative of the available SoCs on the market.

Therefore, the targets we have chosen are:

• The BCM2837 powering the Raspberry Pi 3 model B board, this
board is widely used in IoT projects and has an important com-
munity.

• The BCM2711b0 powering the Raspberry Pi 4, this board is the
latest version of the Raspberry Pi. It was chosen so we are able
to compare the results we obtain on very similar devices (the
BCM2837 and the BCM2711b0).

• The Intel Core i3-6100T powering a desktop PC, this target had
been chosen to test our characterization method on a x86 archi-
tecture. This was the first time a x86 architecture device was
characterized against fault injections.

With these three targets, we have a representative set of SoCs with
both ARM and x86 architectures. During our experiments, these de-
vices are powered by a Debian 9 OS. The influence of the OS is dis-
cussed in section 6.2.4.1.

6.1.2.1 BCM2837 (ARM)

The first target is the BCM2837 powering the Raspberry Pi 3 model B
board presented in figure 42.

BCM2837

Figure 42: Raspberry Pi 3 model B board

This board embeds of 1GB of RAM running at 900MHz, a 40-pin
header as General Purpose Inputs/Outputs (GPIOs), a 2.4GHz wire-
less connection (Wi-Fi), an ethernet port, an High-Definition Multime-
dia Interface (HDMI) port, USB 2.0 ports, an analog audio-video jack
port, a camera interface and a socket for a microSD card. Its modules
show the multi-purpose orientation of its processor, the BCM2837.

This SoC is printed with a 28nm technology, it is composed of four
cores with four threads each. The cores are ARM Cortex-A53 cores
and can run at a maximum frequency of 1.2GHz. In total, this SoC

has a cache memory of 512 kB. Its layout is in the figure 43.
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Cores

Figure 43: BCM2837 infrared backside layout image

This IR backside layout image was acquired after opening the BCM2837.
The four cores are easily identifiable and covers around 25% of the
die surface. The rest of the die corresponds to the other integrated
modules (GPU, video core, etc) and the buses.

It is interesting to notice that the die does not fill the complete chip
package as shown in figure 44.

Figure 44: Open BCM2837 with the chip in its package

This figure shows that the die is placed in the center of the chip. The
rest of the chip is constituted of wire-boudings used for connecting
the die to the BGA. This is important as, during our experiments, we
use EMPs to perturb the component over all its package.

6.1.2.2 BCM2711b0 (ARM)

The second target we worked on is the BCM2711b0 powering the
Raspberry Pi 4 board presented in figure 45.

This board is also composed of a RAM (from 1GB up to 4GB), a
40-pin GPIOs as on the Raspberry Pi 3 model B, a Bluetooth and a
Bluetooth Low Energy interface, a 2.4GHz and 5GHz Wi-Fi connec-
tions, two micro-HDMI ports, a gigabit Ethernet port and a socket for
a microSD card. This is very similar with the Raspberry Pi 3 model B
but with more up to date technologies.
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BCM2711b0

Figure 45: Raspberry Pi 4 board

The BCM2711b0 SoC, engraved in 28nm as the BCM2837, embeds
a four ARM Cortex-A72 cores with four threads each. The cores can
run at a maximum frequency of 1.5GHz. The processor integrates a
total cache memory of 1MB. Its layout is shown in figure 46.

Cores

Mixed cache

Figure 46: BCM2711b0 infrared backside layout image

This picture was acquired using infrared imaging after having re-
moved the metal protection of the chip. The four cores are easily iden-
tifiable so is the mixed cache memory. As on the BCM2837, the rest
of the die corresponds to the other integrated modules.

6.1.2.3 Intel Core i3 (x86)

The last evaluated target is the Intel Core i3-6100T introduced in fig-
ure 47.

It is printed in a 14nm technology and is composed of two cores
with four threads each. The maximum frequency of the cores is 3.2GHz.
The die also integrates a graphical processor thus the classical one
and 3MB of cache memory.
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Figure 47: Intel Core i3 SoC

As this chip is modular, it is not link to a specific board. Therefore,
for our experiments, we use a motherboard we modified to output a
trigger signal when needed.

6.1.3 Tools

For the characterization step, we need several tools: a bench manager
which drives the perturbation bench and a fault analyzer which ana-
lyze the experiments results.

6.1.3.1 Bench manager

The bench manager aims at driving every components composing the
perturbation bench and storing the results in a .csv file. It is devel-
oped in Python 3 and aims at being modular. Therefore, it is orga-
nized around a Manip class which aims at organizing the experiments
as shown in figure 48.

Manip Injector

AlimPlan

Kernel

DUT Stage

Figure 48: Bench manager software general organization

This figure shows all the modules needed by the Manip to realize
experiment campaigns.

The Alim class corresponds to the energy supplier driver. It able
to drive the energy supply of the DUT and therefore restart it when
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needed. It usually implements methods such as alim_on(), alim_-
off() and restart().

The Injector class corresponds to the injector driver. It able to con-
figure it to test different possible configurations via the set(“parameter”,
value) method.

The Stage class corresponds to the axes driver and able to position
the axes using the set([x,y,z]) method.

The DUT class is the DUT driver. It implements different methods
but the most important is the start_test() method. In some cases, it
also implements a get_temperature() method.

The Plan class is the class supplying all the test parameters to use.
It either stores or generates the injection parameters to use.

The Kernel class implements the test protocols. It implements the
general progress of the experiment by organizing when to check the
temperature of the device, when restart it, when check its behav-
ior and when realize an injection test. For instance, an experiment
progress is presented in figure 49 as an example.

restart device

check temperature

run test program
(no perturbation)

cooling device

check for fault

set injection parameters

run test program
(with perturbation)

store result

temp_ok temp_ok

fault

fault

Figure 49: Example of an experiment process

This figure shows an example of an experiment process, however,
depending on the situation it might be adapted to add more tempera-
ture check, check if the device is still up by running the test program
without perturbation after the perturbed one, etc.

All the classes presented above and their parameters are initialized
in a parameter file. Therefore, when we are doing a new experiment,
only this file has to be edited and be passed as an argument to the
bench manager process.

6.1.3.2 Fault analyzer

The fault analyzer is the software which helps in the analysis of the re-
sults we get from our experiments. It is also developed with Python3

and, there are two versions of this software, the old one is kept for
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compatibility if the analysis of old experiments is required. The gen-
eral architecture of the fault analyzer is presented in figure 50.

Analyzer

Parser

params.py

results.csv

Results

results.json

Figure 50: Fault analyzer software principle

The results.csv file is generated during an experiment which
stores every injection attempt and the corresponding result it had
on the target. The params.py file contains all the information needed
to parse the information stored in the results.csv correctly, such as
the initial values of the registers, the bit wide of the target, the names
of the fields used in the results.csv file, etc. An example of such file
is presented in listing 6.1.

params = {

"default_values": DEFAULT_VALUES,

"obs_names": ["r{}".format(i) for i in range(NB_REGISTERS)],

"to_test": [True for i in range(NB_REGISTERS)],

"reboot_name": "reboot",

"log_name": "log",

"log_separator": ";",

"log_flag_begin": "FlagBegin",

"log_flag_end": "FlagEnd",

"nb_bits": NB_BITS,

"reboot_name": "reboot",

"coordinates_name": ["x_pos", "y_pos"],

"carto_resolution": [7303, 6407],

"chip_dimension": [7, 6],

"dimension_unit": "mm"

}

Listing 6.1: Example of params.py file for the fault analyzer

This file contains the parameters for a cartography analysis done
on the BCM2711b0 and presented below.

The parsing of the results.csv file is done via the pandas1 python
library. Therefore, the second input of the Analyzer class is a dataframe

object from this library. As this library manage a large variety of files,
we can easily interface the analyzer with other types of files if needed.

The output of the Analyzer is a Results class. A Results class
contains a table of Result which is a class containing various sta-
tistical information about the experiment. There are different types

1 https://pandas.pydata.org/

https://pandas.pydata.org/
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of Result depending on the experiment specificities, the currently
implemented ones are the basic Result, the CartoResult for cartogra-
phy experiments and the AESResult for tests on AES. These classes can
be used for storing (in json), printing (via a modified version of the
prettytable2 library) and plotting (via the self-developed plotter)
the results. All the figures presenting results are realized with this
tool. The plotter library was developed during this thesis and is
available in open sources on PyPA3 and on my Github page4.

Also, as there are different type of results, the Analyzer class is
designed to be modular. It can be composed of different classes inte-
grated at the run time depending on the configuration in the params.py
file. This modularity is implemented via a decorator pattern. Cur-
rently, the available modules for the analyzer are the FaultAnalyzerBase
and the FaultAnalyzerFaultModel. They are also derivated in a F ⌋

aultAnalyzerCartoBase and FaultAnalyzerCartoFaultModel which
realize a map for every identified fault model, perturbation intensity
and delay. However, as these analyses are very time consuming and
have an important memory footprint. Therefore, they are rarely used
and we only realize simple maps.

fault models . Regarding the fault models, they are heuristically
tested among a restricted set of fault models. The construction of this
set is described in the next section. The analysis is done at the register
level, i.e. the heuristics can identify if an observed faulted value can
be obtained via the combination of registers such as the addition, the
xor and so on. This can be done without any ambiguity because the
tested default values respect the property presented in equation (28)
which ensure that any simple operation between them gives a unique
result.

The tested fault models are:

• bit reset: when the observed faulted value is all “0”

• bit set: when the observed faulted value is all “1”

• bit flip: when the observed faulted value has all its bits flipped
with the initial value

• other observed value: when the observed faulted value is the
same as one stored in another register

• other observed complementary value: when the observed faulted
value is the complementary of a value stored in another register

• and with other observed: when the observed faulted value is
the logical AND between its initial value and one stored in an-
other register

• or with other observed: when the observed faulted value is the
logical OR between its initial value and one stored in another
register

2 https://pypi.org/project/PrettyTable/

3 https://pypi.org/project/plotter/

4 https://github.com/T-TROUCHKINE/plotter

https://pypi.org/project/PrettyTable/
https://pypi.org/project/plotter/
https://github.com/T-TROUCHKINE/plotter
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• xor with other observed: when the observed faulted value is the
logical XOR between its initial value and one stored in another
register

• add with other observed: when the observed faulted value is
the logical ADD between its initial value and one stored in an-
other register

• or between two other observed: when the observed faulted
value is the logical OR between two values stored in other regis-
ters

• same as above with AND, XOR and ADD

Regarding the initial values presented in table 1, we can easily de-
termine which fault model gives an observed faulted value. Excepted
when the faulted value has all its bits to 0. Indeed, in this case, no
matter the initial values: x⊕ x = 0. Therefore, there is no way to dis-
criminate if the fault is on forcing the register to 0 or the operand
to XOR. Similarly, on some architectures (ARM at least), there exists a
MVN instructions which move the not of a register into another one. In
this case, we cannot discriminate if we observe bit flips directly from
the register or from the instruction operand forced to MVN. For these
reasons, we do not consider bit reset, bit set and bit flip fault models
as faults on instructions.

fault models heuristic construction. At first, the only
considered fault models were the bit set, the bit reset and the bit flip.
The other fault models were added while we were doing experiments.
Indeed, the analyzer is built to store the faulted values for which it
could not determine the fault model.

Therefore, after every analysis, we check this set of values, as pre-
sented in listing 6.2, to determine “by hand” new fault models to
consider.

The listing 6.2 shows the faulted values which could not be ex-
plained by one of the aforementioned fault models on an experiment
done on the BCM2837. The interest of this functionality of our ana-
lyzer is that it able to feed our fault model set as we realize experi-
ments and therefore to have an incremental approach in our charac-
terization work. In other words, our analysis is not based on a self
interpretation of the results but on identified fault models which are
reused from an experiment to another and not adapted to a specific
case. This able to have a solid base which is mandatory to compare
characterization works between them.

The addition of a new fault model is made easy and straightfor-
ward via a simple interface. All fault models are defined in the fault_-
models.py file. There are two types of fault models: the data fault
model and the instruction fault model as shown in listing 6.3.

The name attribute corresponds to the name of the fault model
while faulted_obs is the faulted observed register. In the case of an
instruction fault model, the origin of the faulted value is also added.

Adding a new fault models consists in two steps:
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bcm2837_andR8_iv4_EM_fix_20200127 results

===========================================

Fault model unknown values

+------------+

| Values |

+------------+

| 0xe49de004 |

| 0xe28dd00c |

| 0xe12fff1e |

| 0xe92d000e |

| 0xe52de004 |

| 0xe24dd008 |

| 0xe28d3010 |

| 0xe1a02003 |

| 0xe59d100c |

| 0xe58d3004 |

| 0x00200000 |

| 0x000008e0 |

| 0x00000004 |

| 0x60000010 |

| 0x00100000 |

| 0x00000880 |

+------------+

Listing 6.2: Example of values for which the fault analyzer could not deter-
mine a fault model.

1. writing the function to test if the fault model is actually explain-
ing the observed fault model

2. adding the fault model to the available fault models

The test function, presented as an example in listing 6.4, takes three
arguments: the fault, the registers default values default_values

and the bit size to consider nb_bits. The fault argument is a Fault

class which stores the faulted value and the faulted observed register
as shown in listing 6.5.

The available fault models are stored in two arrays, one for the data
fault models and the other for the instruction fault models as shown
in listing 6.6.

As mentioned, adding a fault model is very simple as it only con-
sists in implementing the test function and adding the (name, test)

information to the corresponding array. Therefore, the fault model
will be automatically tested by calling the get_fault_model(fault,

default_values, nb_bits) function which returns the matching fault
model.

interfaces . There are two interfaces for the fault analyzer, a com-
mand line interface and a graphical one. They are presented in ap-
pendix B.
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3 class FaultModel():

4 def __init__(self, name, faulted_obs):

5 self.name = name

6 self.faulted_obs = faulted_obs

7

8 class InstructionFaultModel(FaultModel):

9 def __init__(self, name, faulted_obs, origin):

10 super().__init__(name, faulted_obs)

11 self.origin = origin

12

13 class DataFaultModel(FaultModel):

14 def __init__(self, name, faulted_obs):

15 super().__init__(name, faulted_obs)

Listing 6.3: Types of fault models as defined in fault_models.py

17 def is_other_obs_fault_model(fault, default_values, nb_bits):

18 for i, dv in enumerate(default_values):

19 if (i != fault.faulted_obs) and (dv == fault.faulted_value):

20 return i

Listing 6.4: Or with other observed fault model test function as imple-
mented in fault_models.py

6.2 bcm2837 characterization

The BCM2837 powering the Raspberry Pi 3 model B board is the
first SoC we characterize. Also, as it is the first, its characterization is
deeper and more detailed than other targets as they were more study
to confirm our hypothesis from this characterization and challenge
our method.

The characterization process is organized as follow: first we de-
termine the best injection parameters to observe faults, on the EM

bench, the only parameters we can tweak are the voltage power feed-
ing the probe, the X position and the Y position over the chip. The
second step consists in realizing a campaign with fixed parameters
and determine the ISA fault model using the fault analyzer. The last
step aims at determining the micro-architectural elements that might
be faulted regarding the ISA fault model. On the BCM2837, this was
deeply studied and challenged with an analysis on a baremetal setup
and the use of JTAG. This micro-architectural analysis is the topic of a
paper currently submitted at JCEN2020 [159].

During a fault injection, we consider three cases:

• no fault is observed, in this case the tested program runs as if
nothing happened

• a fault is observed, in this case the tested program runs nor-
mally but a value of an observed register has been modified
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1 class Fault():

2 def __init__(self, faulted_obs, faulted_value):

3 self.faulted_obs = faulted_obs

4 self.faulted_value = faulted_value

Listing 6.5: Fault class as implemented in fault.py

92 instr_fault_models = [

93 {

94 "name": "Other observed value",

95 "test": is_other_obs_fault_model

96 },

97 {

98 "name": "Other observed complementary value",

99 "test": is_other_obs_comp_fault_model

100 },

Listing 6.6: Two first instruction fault models as implemented in fault_-

models.py

• the device needs a reboot, in this case the fault effect drove
the device in a state where we cannot recover any information
about the registers and we need to restart it

On the BCM2837, we used two test codes based on the repetition of
orr r5,r5 and and r8,r8 instructions as introduced in section 5.3.2.1.

6.2.1 Hot-spots maps

As mentioned above, our first aim is to determine the optimal injec-
tion parameters. To do so we realize two experiments. The first one
aims at determining the (X, Y) position of the probe where effects
and faults are obtained. The second one aims at determining the best
voltage input for obtaining faults.

6.2.1.1 Spatial location

The hot spots maps are presented in figure 51. For this experiment,
the chip was divided in a 40× 40 grid and every position was tested
30 times leading to 48000 injections in total. The X-axis and Y-axis
represent the position of the probe over the chip in mm.

The figure 51a displays the positions where reboots were obtained.
Two areas are highlight, one on the top right and one on the left. As
mentioned above, the die does not fill the whole package therefore
we can see that the effects are not obtained when the probe is over
the die but over the wire bounding. Also, the area on the left seems
to be very sensitive with almost 50% of reboots.

The figure 51b shows the probe positions where a fault is obtained.
They do not perfectly overlay with the positions where reboots where
obtained as they are more concentrated in the bottom right of the
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(a) BCM2837 hot spots leading to re-
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Figure 51: Hot spots of the BCM2837 regarding EM perturbation

chip. However, faults seems less probable to obtain as the maximum
of faults we could observe for a position is 4 (13%). However, this
probabilities are not relevant with only 30 test per positions, but the
difference with reboots remains interesting.

Regarding these maps, we decide to fix the probe position to X =

11mm and Y = 5mm for the other experiments.

6.2.1.2 Input voltage

The other injection parameter we want to tweak is the voltage pulse
amplitude feeding the probe. For the determination of this value we
tested the voltage amplitude between 400V and 600V with a step of
10V and we realized 1000 for each value leading to 21000 tests. Realiz-
ing injections below 400V does not provoke any effect and injections
above 600V leads to an very high number of reboots, which does not
interest us.

This campaign was realized on both experiments (orr r5,r5 and
and r8,r8). The results are presented in figure 52.
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Figure 52: Input voltage amplitude effect on BCM2837 during EM perturba-
tion
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These results does not highlight a particular behavior of the chip
regarding the voltage amplitude. Also, the fault probability seems to
be different regarding the tested program, which is counter intuitive.
However, we did not make further researches to understand this phe-
nomena and decided to keep sweeping the input voltage from 400V

to 600V .

6.2.2 Analyzer results

After having determined the injections parameters, we realize a cam-
paign with the aforementioned parameters. Once the experiments are
done, the fault analyzer presented in section 6.1.3.2 gives some statis-
tical information we can use to determine the fault model.

6.2.2.1 Fault probability

One observation from these experiments is that the fault is dependent
of the executed instructions. The experiments with a orr are faulted
with a probability around 3% while the experiments with a and are
faulted with a probability around 1%. As mentioned above, this be-
havior was not more deeply studied.

6.2.2.2 Faulted values distribution

An interesting information to have is the distribution of the faulted
values we observed. Indeed, this helps to determine if the fault has a
tendency to be random or deterministic. The results for both experi-
ments are presented in figures 53 and 54.
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Figure 53: and r8,r8 faulted values distribution on BCM2837 using EM per-
turbation

These results show that the fault effects are relatively deterministic.
Indeed in both experiments, there are values that are outstandingly
recurrent, i.e. they are observed with a probability above 35%.
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Figure 54: orr r5,r5 faulted values distribution on BCM2837 using EM per-
turbation

These results give us the information that, despite being probabilis-
tic, the fault effect is quite repeatable and therefore we aim at under-
standing what is its effect, or at least the most probable effect. Also,
the origin of these faulted values will be discussed below while de-
termining the fault model.

6.2.2.3 Targeted register

Another interesting information is the probability for a register to be
faulted. The results are presented in figure 55.
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Figure 55: Probability of observed registers to be faulted for both experi-
ments on BCM2837 using EM perturbation

It shows that, in the experiments with the orr r5,r5 instruction,
the r5 is faulted in around 87.5% of the cases. In the case of the
and r8,r8 instruction, the r8 register is faulted in around 65.5% of
the cases. This suggests that the most faulted register is directly linked
with the executed instruction and that the fault effect is highly repeat-
able.
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Moreover, in any experiment, the r0 register is always significantly
faulted with a probability varying between 10% and 25% of the cases.

Other registers might be faulted but with a probability always
lower than 2%.

6.2.2.4 Fault model

The fault analyzer presented above able to heuristically determine
how the observed faulted values are obtained. As explained, it aims
as determining simple relations between the faulted values and the
initial values of the registers. The figure 56 introduces the results of
such analysis on the experiments made on the BCM2837.
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Figure 56: Probability of observing the different fault models for both exper-
iments on BCM2837 using EM perturbation

As the analysis is heuristically done, there are some cases in which
the fault analyzer could not determine a fault model. In this case the
fault can be considered completely random. However in other cases,
a simple relation between the values could be determine. It is inter-
esting to note that regarding the experiments, the most probable fault
model is either “And with other obs” (in the and r8,r8 experiment)
or “Or with other obs” (in the orr r5,r5 experiment). This suggests
that the fault model is directly linked to the executed instruction.

Based on these results, and regarding the method presented in sec-
tion 5.3.1 with the figure 35, we want to determine if the fault targets
the data (i.e. the registers) or the instructions. Actually, the fault tar-
gets both, but with different probabilities, our aim is to determinate
how these effects behave.

6.2.2.5 Bit reset fault model

One observed fault model is a complete reset of the faulted register.
This happen only during the and r8,r8 experiment with a relatively
low (3.27%) probability. As mentioned above, it can be the register
forced to 0 or a XOR between a register and itself. However, due to its
low probability, we do not focus more on this fault model.
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6.2.2.6 Instruction loading and shift

In some cases, the faulted value is computed from the executed in-
struction such as in equation (34).

vf = (i rotl 8)∧ 0xfff (34)

with vf is the faulted value, i the executed instruction, and rotl the
bit rotation to the left operation. This fault is observed with various
instructions.

This fault model is complicated. As it fetches an instruction into a
register, we can suppose that there is a load from the memory with
the PC as base address register such as ldr r0, PC. This way, the
value targeted by the address stored in the PC register will be loaded
in r0. However, the left shift mechanism is difficult to explain. There
exists a rolling mechanism on the operand in the ARM instruction
set, for instance ldr r0, [lsl PC, #8], but it does not fully explain
our observations. This fault model appears between 20% and 35%
of the cases for each experiment. This is a high probability regard-
ing other fault models probability, however, as it is complicated, it is
complicated to exploit it.

6.2.2.7 Instruction corruption

The other observed fault model is an instruction corruption.
Based on the figure 56, the most important fault model for the

orr r5,r5 instruction is the “Or with other obs”. Regarding the exe-
cuted instruction, this fault model corresponds to modify the operands
or the destination of the instruction. With this fault model, the faulted
register is r5 in 100% of the cases, meaning that the destination of the
instruction is not modified. Therefore, the fault modifies an operand
used by the instruction. To determine which effect the fault has on
the instruction, we simply determine the instruction that explain our
observations. The result is given in table 4.

Faulted instruction Occurrence (%)

orr r5,r1 92.54%

orr r5,r0 6.14%

orr r5,r7 1.32%

Table 4: orr r5,r5 corruptions regarding the “Or with other obs” fault
model

This table shows that the fault has a high probability to force an
operand to r1. In some cases, the operand is forced to r0 or r7.

Regarding the and r8,r8 instruction experiment, the same kind of
corruption is observed, it corresponds to the “And with other obs”
fault model. Moreover, in this case there is only one corruption which
happen in 100% of the cases and the corresponding faulted instruc-
tion is and r8,r0. In this case, the operand is forced to r0 instead
of r1 but the behavior remains the same. However, the reason why
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we observe r0 or r1 is not identified, we suppose it comes from the
initial register involved in the instruction but we did not confirm this
hypothesis. We can say that the fault force the operand to low ham-
ming weight values, which match the force to zero behavior of the EM

injection medium.
While looking at the orr r5,r5 instruction experiment we also ob-

serve the “Or with two other obs” fault model. It is similar to the
previous one but, in this case, the two operands are modified. The
results corresponding to these corruption are presented in table 5.

Faulted instruction Occurrence (%)

orr r5,r4,r1 51.86%

orr r5,r0,r1 48.14%

Table 5: orr r5,r5 corruptions regarding the “Or with two other obs” fault
model

This table shows that one of the operand is always forced to r1

while the destination remains unchanged and the other operand is
either r4 or r0.

The last behavior we observed correspond to the “Other obs value”
in this fault model the operands are modified but also the operation
code. In this case, it corresponds to a mov operation. Considering this
operation, two information are important, the origin of the value and
its destination. In the orr r5,r5 experiment, the results are presented
in table 6.

Faulted instruction Occurrence (%)

mov r5, r0 46.48%

mov r5, r4 30.99%

mov r5, r1 21.12%

mov r0, r5 1.41%

Table 6: orr r5,r5 corruptions regarding the “Other obs value” fault model

These results show that the registers r0, r1 and r4 already involved
in the other fault models remains the ones the fault forces to use and
they all are low hamming weight registers. However, the r1 register
is not the more probable in this case. We did not find any explanation
for the higher presence of r0 in this case.

Regarding the and r8,r8 experiment, the results are presented in
table 7.

Faulted instruction Occurrence (%)

mov r8, r0 72.73%

mov r0, r8 18.18%

mov r4, r0 9.09%

Table 7: and r8,r8 corruptions regarding the “Other obs value” fault model
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These results show some similarities with the previous ones. The
fault force the registers to low hamming weight ones (r0 and r4).

Regarding these experiments, we can conclude that our fault most
of the time corrupts the operands of the executed instruction and
force them to low hamming weight values. However, sometimes it in-
fers a register corruption or a modification of the instruction opcode.
This correspond to the ISA fault model however, as mentioned above,
we are interested in the micro-architectural fault model to determine
if these behaviors come from some SoC specificities and to be able to
build efficient countermeasures against them.

6.2.2.8 Number of faulted instructions.

When working with modern CPUs with high frequencies (> 1GHz),
one important fault parameter is the spreading. We determined the
fault affects instructions but we cannot determine how many instruc-
tions are actually faulted.

Regarding the BCM2837 CPU frequency (1.2GHz) and the injector
first peak duration (3.25× 10−9 s), we can suppose that a fault per-
turbs around 4 (1.2 × 109 · 3.25 × 10−9 = 3.9) instructions. To con-
firm this hypothesis we decided to fault a test program composed
of the repetition of the mov rX,rX with X ∈ [[0, 9]]. We observed that
in 84.34% of the cases, the fault corrupts the instruction, the faulted
instruction becoming mov rX,rY with (X, Y) ∈ [[0, 9]]2.

Faulting such program gave us the information that, on average,
the fault affects 1.45 instructions. As this result is different from the
expected one, it can be explained by the fact that the CPU does not
run at maximum speed all the time.

Regarding this result, we can focus our analysis on the corruption
of one or two instructions.

6.2.2.9 Correspondence between the fault model and the instruction encod-
ing

Before doing the micro-architectural analysis, it is interesting to con-
front the instruction corruption we observe regarding how instruc-
tions are encoded. The figure 57 presents the encoding of the data
processing instructions in the ARM architecture.

012345678910111213141516171819202122232425262728293031

If immediate value bit (25) is set to 0

Second operandFirst
operand

Destination
register

OpCode

012345678910111213141516171819202122232425262728293031

If immediate value bit (25) is set to 1

First
operand

Destination
register

OpCode Immediate value

Figure 57: Data processing instruction encoding on ARM
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This figure shows on which bits the information composing a data
processing instruction (operands, opcode, destination) are encoded.
As we know the initial instruction we execute, we are able to deter-
mine which bits are faulted by our perturbation.

As we observe a fault on the operands or the opcode, we know that
our fault is equivalent to modify the bits 0 to 3 (second operand), the
bits 16 to 19 (first operand) or the bits 21 to 24 (opcode).

As we mentioned above, the fault seems to set bits to 0 as we ob-
serve low hamming weight faulted values. The only counter-example
is when we observed a corruption of the second operand from r5

(0b0101) to r7 (0b0111). Also, we observed a corruption of the op-
code, and by checking the binary values of the original and the faults
opcodes presented in table 8, we concluded that they are not forced
to low hamming weight values.

Original opcode Faulted opcode

orr (0b1100) mov (0b1101)

and (0b0000) mov (0b1101)

Table 8: Binary values of the observed opcodes.

This table shows that the faulted opcode always have a higher ham-
ming weight than the original instruction. This observation lead to
two conclusions. The first one is that the opcode and the operands
are not faulted in the same way, this explain the probability differ-
ence between faulting an opcode and faulting an operand. The other
one is that considering the way instructions are encoded to determine
the fault model is not relevant because the fault does not affect their
encoding but another micro-architectural mechanism of the core.

This second conclusion seems to be the most relevant for us, es-
pecially due to the fact we observed similar faults on another archi-
tecture (x86 presented in section 6.4) because a different architecture
means a different instruction encoding.

6.2.3 Micro-architectural analysis using a test program

Now that we have determined the ISA fault model, we want to de-
termine which micro-architectural blocks are faulted and can explain
our observations. To do so, we realize two experiments based on test
programs specifically adapted to our previous observations.

6.2.3.1 Fault during instruction fetch determination

We saw that the fault usually perturbs the instruction second operand.
However, regarding the instruction encoding presented in figure 57,
the second operand can either be a register or an immediate value. As
we want to determine which part of the micro-architecture is faulted
we want to test our injection setup on program working with immedi-
ate value rather than registers. Indeed, if the fault is the same in both
cases, it means that it targets a part of the core which does not distin-
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guish registers from immediate value, in other words, every blocks
before the decoding stage of the pipeline. If the fault is only observe
on the registers, it means that it targets a block which specifically
works differently regarding if we use registers or immediate values.
The only block doing so is the execute stage of the pipeline.

The main issue is that our test codes are not suitable for testing the
manipulation of immediate values as they would overwrite a fault.
Therefore, we had to realize a different kind of test program pre-
sented in listing 6.7.

cmp r3, #255

bne fault

b nofault

fault: mov r9, #170

b end

nofault: mov r9, #85

end: nop

Listing 6.7: BCM2837 immediate value test program

This program realizes a comparison between the register r3 and
the value 0xff. If they are equal, the processor will pass the bne in-
struction and then branch to the nofault tag. Then the register r9

is loaded with the value 0x55 and the program terminate. If r3 and
0xff are not equal, then the program will branch to the fault tag. r9
will be loaded with 0xaa, and then the processor will branch to the
end tag and terminates.

The attack aims to fault the cmp r3, #255 instruction. As r3 is ini-
tialized with the value 0xff, the first scenario must happen. How-
ever, according to our fault model, we should modify the second
operand (which is an immediate value in this case) and force it to
0. Therefore, the processor will follow the second scenario. If it hap-
pens, we achieved to modify the control flow of the program with our
ElectroMagnetic Fault Injection (EMFI) and actually faulted an imme-
diate value. The observation of r9 gives us this information.

table 9 gives the results for this experiment. This table shows that
in more than 90% of the cases we effectively fault the immediate
value. This experiment confirms that the fault model we determined
is portable on other instructions, in particular, instruction using im-
mediate values.

Fault Fault (r9 = 0xaa) r9 = 0xfffcb924 Unknown

Appearance rate 94% 4% 2%

Table 9: Fault distribution on cmp test code

It is interesting to note that the probability of modifying the con-
trol flow is very high. Greater than 90%. This high probability can be
explained with the fact that many faults on the cmp r3, #255 instruc-
tion can lead to the second scenario, such as first operand corruption
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or opcode corruption. However, regarding our previous experiment,
we are confident the consequence of corrupting the second operand.

Therefore, this observation on corrupting an immediate value gives
some information on the effect of the fault in the pipeline. Indeed,
pipelines are built on three main functions: the fetch which reads the
instruction and compute the PC, the decode which decodes the instruc-
tion and set the flags in the pipeline and the execute which executes
the decoded instruction and stores the result.

From these functions, only execute behaves differently if the second
operand is an immediate value or a register. Regarding the electronic
way, the multiplexer of the second operand in the ALU select either
the immediate value or a register.

MUX1

immediate value bit
(instruction bit 25)

ALU

opcode
(instruction bits 21 to 24)

MUX2

Registers

....

first operand (instruction bits 16 to 19)

....

immediate value second operand (instruction bits 0 to 7)
ope2

ope1

register second operand (instruction bits 0 to 3)

....

destination
(instruction bits

12 to 15)

Figure 58: Pipeline execute stage architecture with ARM instruction (fig-
ure 57) corresponding bits

Figure 58 shows the big map of the pipeline execute stage architec-
ture. Multiplexers are used to feed the ALU with the operands. The
flags and value used are the same as the one exposed in Figure 57

and come from the decode stage. The multiplexer MUX1 is driven by
the immediate value bit.

Regarding our fault model, second operand corruption either it is
a register or an immediate value, and based on the figure 58, we can
see that it matches with corrupting the MUX2 selector signal (modify-
ing the register second operand) or corrupting the MUX1 down input
(modifying the used immediate value). In both cases, this matches
with corrupting the lower bits of the instructions. Therefore, we can
conclude that these bits are corrupted before they are decoded and
used in the execute stage. This means that the fault occurs before the
instruction reaches the decode stage, in other words, the fault happen
during the instruction fetch and might target any micro-architectural
block from the external memory to the fetch stage, including the
caches.
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6.2.3.2 Fault in instruction path determination

In this section, we aim at identifying which MAB is faulted and how.
Regarding the previous experiments, we suppose that the fault affect
the memory subsystem. Regarding the figure 35 in section 5.3.1, this
means that the micro-architectural blocks targeted by the fault can
be the fetch stage, the buses, the (L1i or L2 as we fault instructions)
caches and the MMU.

To determine which one is faulted, we decide to realize a mem-
ory access experiment with the code presented in listing 6.8. Actually,
this experiment is not suitable for determining information about the
mixed cache memory as repeating memory accesses at the same ad-
dress will make the cache copy this address and the memory access
will only reach the L1 data cache memory. However, as it gives in-
teresting information about the fault model, we keep presenting the
results.

str r8, [r9] // Several

ldr r8, [r9] // times

Listing 6.8: BCM2837 memory test code

To do so, we initialize a page of memory (4 kB), then we set the
observed registers values to addresses in this page and fault the test
program.

This code realizes memory loads and stores at/from the address
stored in r9 to/from the register r8. As the memory page is initialized
with known values, the expected value in r8 are known. Also, the ISA

fault model is known, therefore we can’t identify and anticipate faults
that correspond to this model and focus on faults corrupting the data
coming from the memory.

By faulting this program we observed a fault probability of 3.36%,
which is coherent with our previous observations.

An unanticipated fault is that with a probability around 25%, the
faulted value is the ldr r8, [r9] instruction encoded value. In this
case, the faulted instruction is ldr r8, [PC] which corresponds to set
the operand to 0xff. This is the highest hamming weight the operand
can have which does not correspond with our previous observations.

For the other faults (74.4% exactly), the observed faulted value
is always bad + 50 where bad is the page memory base address.
This is the value stored in r2. In this case, the faulted instruction is
mov r8, r2. This is consistent with the previously determined fault
model. Moreover, the fault does not only modify the second operand
but also the opcode, forcing the instruction into a data processing
instruction instead of memory loading instruction. As we already
tested data processing instructions, we did not see this fault effect.
This shows the importance of testing different types of instructions
for determining the complete fault effect.

During this experiment, we did not observe faults on the fetched
data. Therefore, we conclude that the fault targets the dedicated to the
instruction part of the memory subsystems. This corresponds to the
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L1 instruction cache, its connected buses, the MMU and the fetch MAB.
However, using only test programs, we cannot more deeply deter-
mine which MAB is faulted. Therefore, we decide to use a baremetal
setup with a JTAG to realize deeper characterization as introduced
in [159].

6.2.4 Micro-architectural analysis on a baremetal setup with JTAG

This section focus on determining the fault model at the micro-architectural
level on the BCM2837 using a baremetal setup (i.e. no OS) and a JTAG

connection. This method was only be done on the BCM2837 because
it is very time consuming. Indeed, unlike the method presented in
section 5.3, this method consists in faulting a program, wait for a
fault, stall the program when a fault appear and manually debug the
micro-architectural elements such as the cache memory or the MMU.
This debug step is time consuming, requires an expert each time and
therefore cannot be repeated an important amount of time to confront
the observation with a statistical analysis.

However, this characterization gives information about what can
happen while faulting the BCM2837 and we can suppose that the
fault we observe are the more likely to happen. Moreover, this charac-
terization work was done within a collaboration with the LHS (Labo-
ratoire de Haute Sécurité) of the INRIA of Rennes. This team devel-
oped the baremetal setup and realized the characterized experiments,
however, their injection setup is not the same as ours but, as we fo-
cus on characterizing the faults and not how to achieve them, we
decided to abstract this difference during the analysis. The reason is
that, during this collaboration, we focused on comparing the fault
model observed on the Linux and the baremetal setups.

6.2.4.1 Baremetal and Linux setup behavior differences against EM fault
injection

This characterization did not highlight a different behavior between
the baremetal and the Linux setup regarding the fault models. With-
out realizing a deep characterization like above, we simply present
the observed fault model while faulting a test program repeating the
orr r3,r3 instruction in figure 59.

This result shows that the most observed fault model is the “Or
with other obs” with a probability of 86.46%. This perfectly match
our observations on the Linux setup and we therefore can conclude
that the Linux OS has no impact on the observed fault model.

6.2.4.2 Target setup for micro-architectural characterization

As we aim at characterizing the fault effect at the micro-architectural
level, the test program presented in section 5.3.2.1 cannot help us.
Therefore, we decide to fault a more complete program presented in
listing 6.9.
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Figure 59: Probability of observing the different fault models for orr r3,r3

experiment on BCM2837 with a baremetal setup using EM pertur-
bation

trigger_up();

//wait to compensate bench latency

wait_us(1);

invalidate_icache();

for(int i = 0; i<50; i++) {

for(int j = 0; j<50; j++) {

cnt++;

}

}

trigger_down();

Listing 6.9: BCM2837 baremetal test program

This test program is composed of two intricate loops. As we aim at
verifying that we fault the instruction cache, it is invalidated before
starting the loops, therefore, it is possible to precisely target the mo-
ment the instructions are fetched from the memory and loaded in the
instruction cache.

Actually, by faulting at different moments of the program execu-
tion we are able to fault different micro-architectural elements: the L1

instruction cache, the MMU and the L2 mixed cache.

6.2.4.3 Fault on the instruction cache

A fault occurs when the cnt variable value at the end of the program
is not equalled to 2500. Since a fault is detected, we use the JTAG to
re-execute our loop for, in the listing 6.9, by directly setting the PC

value at the start of the loops. Executing instruction by instruction,
we monitor the expected side effects. This execution is done without
fault injection. Each instructions was well-executed except for the add

instruction at address 0x48a08 on listing 6.10.
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...

0x48a04: 0xb94017a0 ldr x0, [x29,#20]

0x48a08: 0x11000400 add x0, x0, #0x1

0x48a0c: 0xb90017a0 str x0, [x29,#20]

0x48a10: 0xb9401ba0 ldr x0, [x29,#24]

0x48a14: 0x11000400 add x0, x0, #0x1

0x48a18: 0xb9001ba0 str x0, [x29,#24]

0x48a1c: 0xb9401ba0 ldr x0, [x29,#24]

0x48a20: 0x7100c41f cmp x0, #0x31

0x48a24: 0x54ffff0d b.le 48a04 <loop+0x48>

...

Listing 6.10: BCM2837 assembly code of the loop test program

By monitoring the x0 register before and after the cnt increment-
ing instruction, we observe that the value is kept unchanged: the in-
crement is not executed. Since the fault is still present after the EM
injection, we can conclude that a wrong instruction value is stored in
the L1 instruction cache. We confirm this fault model by invalidating
the instruction cache using the ic iallu instruction. By re-executing
our application, the fault has disappeared.

We can infer that the injected fault has affected a part of the in-
struction cache. However, it is impossible to access (read) the new
incremented value. Since the fault happens during the cache filling,
we can suppose that the memory transfer had been altered. More-
over, the ISA fault model determined above can explain the absence
of increment in the case the instruction add x0, x0, #1 is forced to
add x0, x0, #0.

This confirms that the instruction cache can be faulted in a way that
matches the fault model we determined above.

6.2.4.4 Fault on the MMU

During the experiments on the baremetal setup, we observed that
the MMU can be faulted. As presented in section 4.4.1.2 the MMU rely
on PTEs to operate. These PTEs are stored in a Translation Lookaside
Buffer (TLB) which is basically a cache for PTEs. In our baremetal setup,
the PTEs are configured to realize an identity mapping, i.e. the virtual
address used by the CPU is the same as the physical address used by
the RAM.

To reconstruct the memory mapping, we use a pair of instructions
computing the physical address (and the corresponding metadata)
for a given virtual one and a script has been designed to extract the
memory mapping.

With this method, we compare the memory mappings with (list-
ing 6.12) and without (listing 6.11) a fault.

Three different effects can be observed depending on the page:

1. Pages are correct with an identity mapping up to 0x70000. Re-
markably these are all the pages used to map our application
in memory. Therefore, a hypothesis is that the corresponding
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VA -> PA

0x0 -> 0x0 0x80000 -> 0x80000

0x10000 -> 0x10000 0x90000 -> 0x90000

0x20000 -> 0x20000 0xa0000 -> 0xa0000

0x30000 -> 0x30000 0xb0000 -> 0xb0000

0x40000 -> 0x40000 0xc0000 -> 0xc0000

0x50000 -> 0x50000 0xd0000 -> 0xd0000

0x60000 -> 0x60000 0xe0000 -> 0xe0000

0x70000 -> 0x70000 0xf0000 -> 0xf0000

Listing 6.11: BCM2837 with baremetal setup with correct identity memory
mapping

VA -> PA

0x0 -> 0x0 0x80000 -> 0x0

0x10000 -> 0x10000 0x90000 -> 0x0

0x20000 -> 0x20000 0xa0000 -> 0x0

0x30000 -> 0x30000 0xb0000 -> 0x0

0x40000 -> 0x40000 0xc0000 -> 0x80000

0x50000 -> 0x50000 0xd0000 -> 0x90000

0x60000 -> 0x60000 0xe0000 -> 0xa0000

0x70000 -> 0x70000 0xf0000 -> 0xb0000

Listing 6.12: BCM2837 with baremetal setup with faulted memory mapping

translations are present in caches and are not impacted by the
fault.

2. Pages are incorrectly mapped to 0x0. A read at 0x80000 reads,
with success, physical memory at 0x0.

3. Pages are shifted. A read at 0xc0000 gives the physical memory
value at 0x80000.

If we invalidate the TLB after a fault, nothing changes: the mapping
stills modified. We conclude that the fault does not affect the cache
mechanism of address translation (at least what can be invalidated by
software) but directly the MMU configuration.

This fault model is very powerful as it able to break the memory
partitioning. However, we did not observed it at the ISA level as its
impact at this layer corresponds to fetch the wrong instruction or the
wrong data. Considering that we do not initialize the RAM to known
value, the fault is likely to fetch a random data, this can explain why
the analyzer could not determine a fault model for all faults.

6.2.5 Conclusion on the BCM2837 characterization

In this section we realized the characterization of faults on the BCM2837

CPU. We determined that the fault mainly modify the instruction
operands by targeting the memory cache. We also determine that the
MMU and the mixed cache can be affected.

The memory is known to be faulted on SE but these results able us
to conclude that the large integration of cache memory make modern
CPUs sensitive to faults. The next experiments will able to confirm this
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observation on a more up-to-date device using a laser and even on
another architecture using EM perturbation.

However, because it is time consuming, no micro-architectural de-
bugging has been done on the following targets. We only focus on
comparing the results at the ISA level and considering that if the ISA

observations are the same, therefore, the micro-architectural behavior
is the same.

6.3 bcm2711b0 characterization

The BCM2711b0 was characterized while perturbed using a laser. The
analysis process is the same as the one presented in above with the
BCM2837. As we could only access a laser bench during a restricted
duration, we only tested the program based on the orr r5,r5 instruc-
tions. However, this timing constraints helped to confirm the rele-
vance of having a well defined method we could use to analyze and
characterize our device.

6.3.1 Hot-spots maps

As mentioned above, our laser injection setup has its parameters fixed.
Therefore, the only injection parameter we have to drive is the posi-
tion of the laser spot over the chip. However, as the laser spot is
around 1µm and that the chip surface is around 42mm2, this step is
very time consuming. Therefore, to reduce this step, we only focused
on the cores. The results are presented in figure 60.

0 1 2 3 4 5 6 7
X position (mm)

0

1

2

3

4

5

6

Y
p
os
it
io
n
(m

m
)

0

1

N
u
m
b
er

of
fa
u
lt
s
p
er

p
os
it
io
n

Figure 60: BCM2711b0 hot spots leading to faults using laser perturbation

It is important to note that the dot size on the figure does not match
the laser spot size. Also, as these experiments were done with our
bench manager, we do not have results about the reboots of the target.

The figure 60 shows that the cores are sensitive to laser fault injec-
tion and, in particular, the cache memory. This is a first interesting
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information as we determined on the BCM2837 CPU that the cache
is faulted. However, as we did not have much time to realize the
experiments, we decided to analyze the results of the cartography
experiment, this might be imprecise as we do not target a specific
location where we observed an interesting behavior but it will gives
information about the general behavior of the device against laser
fault injection.

6.3.2 Analyzer results

The analyzer gives a statistical analysis of the faulted device. How-
ever, as we do not fault the same position, the probabilities must be
carefully considered as if the spot was fixed at a specific location, the
probabilities might be different. In particular, the fault probability is
not relevant as we test different positions for the laser spot.

Despite these issues, we propose to realize the same analysis as
done on the BCM2837, abstracting the fact that the experiment was
actually a cartography.

6.3.2.1 Faulted values distribution

As mentioned above, looking at the faulted values distribution helps
us to determine if the fault effect is consistent or very variable. The
results for the BCM2711b0 are presented in figure 54.
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Figure 61: orr r5,r5 faulted values distribution on BCM2711b0 using laser
perturbation

These results shows that, despite we are doing a cartography, some
values are very likely (between 10% to 40%) to appear. This suggests
that the device is perturbed in a consistent way.

6.3.2.2 Targeted register

As with the BCM2837, another interesting information is the distribu-
tion of the faulted register. This result for the BCM2711b0 is given in
figure 62.
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Figure 62: Probability of observed registers to be faulted for orr r5,r5 ex-
periment on BCM2711b0 using laser perturbation

This result shows that the r5 register is faulted in more than 65%
of the cases. This actually match our observation while perturbing
the BCM2837 using EM perturbations. This strongly suggests that
the faulted register is linked with the executed instruction, which
is orr r5,r5 in this case. Moreover, we can suppose that the reason
we have the same observation on both targets is the same, i.e. that the
fault model on both targets is the same.

This hypothesis is very interesting as, if it is actually the case,
this means the fault model is independent from the used injection
medium.

6.3.2.3 Fault model

The fault model distribution observed on the BCM2711b0 is presented
in figure 63.
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Figure 63: Probability of observing the different fault models for orr r5,r5

experiment on BCM2711b0 using laser perturbation
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A major issue one can easily identify is that the analyzer could
not determine the fault model in around 50% of the observed fault.
This is quite important compared with the other experiments. How-
ever, some of them have important probability of appearance and in
particular the “Or with other obs” fault model. Also, one must keep
in mind that the experiment is actually a cartography and that com-
plex behavior might come from the fact that we are testing various
positions.

It is interesting to note the presence of the “Or with other obs” fault
model as it correspond to the fault model observed on the BCM2837

executing the orr r5,r5 instruction presented in figure 56 in sec-
tion 6.4.2.4. This suggests that, on some positions, the BCM2837 and
the BCM2711b0 are perturbed in similar way independently of the
used injection medium.

Actually, some fault models are in common for both target, the only
new ones are the “Bit set” which force all bits of the register to 1 and
the “Xor with other observed”.

6.3.2.4 Maps per fault model

An interesting information is to analyze the probe location regarding
the fault model. Considering the observed fault models, the corre-
sponding maps are presented in figures 64 and 65.

These figures show where the laser spot was located when we ob-
served the different fault models. An interesting observation is that
some fault models are specific to a determined location such as the
“Bit set”, “Bit reset” and “Xor with other obs” fault models. For the
other fault models, despite they are located at several positions, they
do not really overlap. This suggests that the fault models are due to
the targeted element of the die. Moreover, knowing that they are in-
dependent makes our analysis relevant despite we do not analyze fix
the laser spot at a specific location.

6.3.2.5 Register corruption

The fault model distribution suggest that some register corruption
happened. A register bit reset and a register bit set. Despite they ap-
pear with a very low probability (less than 0.5%) they are present.
It could be interesting to fix the laser spot to the position they were
observe to determine if it is consistent.

6.3.2.6 Instruction corruption

Regarding instruction corruption, the analysis gives interesting infor-
mation. Indeed, the three remaining fault models “Or with other obs”,
“Other obs value” and “Xor with other obs” correspond to instruction
corruption. Moreover, they match the instruction fault model we al-
ready observed on the BCM2837 in section 6.2.2.7.

It is interesting to determine in which way the instruction is cor-
rupted and if it matches with our observations on the BCM2837.
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(a) Unknown fault model
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(b) “Or with other obs”
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(c) “Other obs value”
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(d) “Xor with other obs”
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(e) “Bit reset”
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(f) “Bit set”

Figure 64: BCM2711b0 hot spots leading to the different observed fault mod-
els

Regarding the “Or with other obs” fault model the only observed
instruction was orr r5,r1. This corresponds perfectly with our ob-
servation on the BCM2837 on which this instruction was observed in
92.54% of this fault model.

Considering the “Other observed value”, the faulted instructions
are presented in table 10.

This table shows that when the instruction is forced to a mov the
source register is always r8, this is similar to some observations made
on the BCM2837. However, regarding the destination register, the
most probable is r9 while the others are similar to previous obser-
vations on the BCM2837. Again, as this experiment is a cartography,
some results may be influenced by the laser position but we observe
some similarities between the BCM2837 and the BCM2711b0 behav-
iors under perturbations.
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Figure 65: BCM2711b0 hot spots leading to the different observed fault mod-
els (alternative version)

Faulted instruction Occurrence (%)

mov r9, r8 41.67%

mov r4, r8 39.58%

mov r1, r8 16.67%

mov r0, r8 2.08%

Table 10: orr r5,r5 corruptions regarding the “Other obs value” fault
model on the BCM2711b0 perturbed with a laser

Finally, for the “Xor with other obs” fault model, the only observed
instruction is xor r8,r0. This is totally specific to the BCM2711b0

experiments.

6.3.3 Conclusion on the BCM2711b0 characterization

This section presented the characterization work we have done on
the BCM2711b0. Due to time constraints a full characterization with
fixed parameters could not be done. However, the analysis of the
cartography experiments gives interesting information, in particular
when compared with the results observed on the BCM2837.

The fault stability is comparable on both targets, and this is actu-
ally very true as we do not work with fixed parameters. Among the
observed faults, some are very similar between the BCM2837 and the
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BCM2711b0, and in particular the instruction corruption which cor-
rupt the instruction operand in the same way on both targets.

As we cannot really conclude that the fault behave in the exact
same way on both targets, this similarity strongly suggests that the
fault model is not really depending of the fault injection medium but
the targeted micro-architectural element. Indeed, despite we do not
realize a micro-architectural characterization on the BCM2711b0, the
laser precision able us to confirm that most of the faults we observed
are obtain while targeting the cache memory. This cache memory is
the element we identified as the perturbed one on the BCM2837.

Therefore, we conclude that the fault model we observe comes from
the cache misbehavior on both targets and that these cache react in
the same way to EM and laser perturbations.

6.4 intel core i3 characterization

The Intel Core i3-6100T is the last target we characterize and we used
EM perturbation against it. This target appeared to be harder to fault
than the previous target. This difference was not investigated and
might be due to the manufacturing technology or the architecture of
the device.

For this target the two tested programs were based on the repeti-
tion of the mov rbx,rbx and orr rbx,rbx instructions. To be compli-
ant with the Intel nomenclature, the register are named after the x86

specification. However, it does not change anything about the charac-
terization method.

6.4.1 Hot-spots maps

As with the previous target, the first characterization step consists in
determining the injection parameter we want to use. This step was
very time consuming on the Intel Core i3 because it is harder to fault
than the other targets.

6.4.1.1 Spatial location

The first parameter we worked on is the spatial position of the probe
over the target. As the Intel Core i3 is covered with a metal package,
we had to remove it to use EM perturbations. Doing so, we directly
access the die of the chip. This die is visible on figure 66 and was
divided in a 20× 40 grid, each position was tested 30 times leading
to 24000 operations.

As mentioned, faulting the Intel Core i3 is harder than the previ-
ous target, the consequence is that the fault map is not relevant to
determine any interesting positions. However, by using an important
input power, we were able to observe areas leading to reboots. This
result is presented in figure 66.

This figure shows four sensitive areas for the Intel Core i3. Despite
we do not know the layout of the die, we know that this target em-
beds two cores. These areas might therefore match these cores, the
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Figure 66: Intel Core i3 hot spots leading to reboots using EM perturbation

symmetrical organization of the area suggests it is the case but this
hypothesis needs confirmation.

To obtain faults, we decided to place the probe at the position X =
9mm and Y = 13mm and to test various input voltage.

6.4.1.2 Input voltage

The input voltage was tested by sweeping it between 650V to 750V

with a step of 10V . The results are presented in figure 67.
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Figure 67: Input voltage amplitude effect on Intel Core i3 during EM pertur-
bation

This figure shows that the number of reboots seems to grow lin-
early with the input voltage. Regarding the fault probability, the high-
est probability are observed around 710V and decrease rapidly with
lower and higher values.

This highlight that the Intel Core i3 is harder to fault in comparison
with the BCM2837 on which we observed faults with a input voltage
of 300V (even if we actually characterized it with an input voltage
around 500V). As mentioned, no investigation for determining this
sensibility difference was done.
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6.4.2 Analyzer results

As on the previous target, we used the analyzer to determine how the
Intel Core i3 behave against EM perturbations.

6.4.2.1 Fault probability

The fault probability on the Intel Core i3 was observed to be between
0.31% and 0.39% which is up to ten times lower that the fault proba-
bility on the BCM2837.

Also, this explained why we could not observe faults during the
spatial cartography as we did only 30 tests per position while there
is a fault every 250 attempts on average.

6.4.2.2 Faulted values distribution

Regarding the faulted values distribution, the results for both experi-
ments are presented in figures 68 and 69.

0x00000000b7047907

0x0000000000000001

0x00000000b72476b9

0x00007faa06394970

0x00007fada730d970

0x0000000000000002

0x0000000000000003

0x0000000000000000

0x00000000f7a629be
0

5

10

15

20

25

Faulted values

O
cc

u
rr

en
ce

(%
)

Figure 68: mov rbx,rbx faulted value distribution on Intel Core i3 using EM

perturbation
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Figure 69: orr rbx,rbx faulted value distribution on Intel Core i3 using EM

perturbation

These results show that the number of observed faulted value is
really lower than the number we observed on the previous targets.
This shows that, despite being hard to fault, the faults observed on
the Intel Core i3 are consistent. This suggests that the fault does not
have a random effect on the device.

6.4.2.3 Targeted register

Regarding the targeted register, faulted one is always the one manip-
ulated by the instruction, i.e. rbx. As we only execute instructions
involving this register, this strongly suggests that we are in a similar
situation than we were on the previous targets.

6.4.2.4 Fault model

For the fault model analysis, the analyzer was not able to determine
the fault model for between 35% to 45% of the cases. This is quite
similar to our observations on the BCM2837. The fault model distri-
bution is shown in figure 70.

Despite the unknown fault model, the only present fault models
are the “Bit reset”, the “Other obs value” and the “Or with other
obs”. The “after execution” mention comes from the fact that the fault
models are computed on the values after the faulty execution of the
test program. Indeed, the observed faulted value could be computed
using these fault models on the observed faulted values instead of
the initial values.

This suggests that the faults first corrupts some registers then cor-
rupts the executed instruction.

However, without this particularity, the observed fault models seem
to match with the observation we made on the previous targets. In-
deed, the “Or with other obs” fault model only appear during the
orr rbx,rbx experiment and the “Other obs value” is very present in
the mov rbx,rbx.
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Figure 70: Probability of observing the different fault models for both exper-
iments on Intel Core i3 using EM perturbation

6.4.2.5 Register corruption

As mentioned above, the observed fault always involve a register cor-
ruption, however, most of them could not be identified and are con-
sidered random.

But some “Bit reset” have been observed. This was already ob-
served on the BCM2837 and as said before, it matches the EM per-
turbation medium behavior.

6.4.2.6 Instruction corruption

The “Other obs value” fault model is observed on both experiment.
As one is based on a orr instruction, it seems that, at least in this
case, the fault corrupts the instruction opcode. The corresponding
faulted instructions are mov rbx,rdi (50%) and mov rbx,r11 (50%).
This shows that the operand is also faulted as on the previous targets.

Considering the mov rbx,rbx experiment, the “Other obs value”
fault model is explained with the corruption of the register source or
destination in the instruction. The observed faulted instructions are
presented in table 11.

Faulted instruction Occurrence (%)

mov rbx, rdi 46.15%

mov rbx, rax 38.46%

mov rbx, rcx 15.38%

Table 11: mov rbx,rbx corruptions regarding the “Other obs value” fault
model

This table shows that the destination register is never faulted but
the source register is. This corresponds to the instruction operand and
perfectly matches our observations on the BCM2837. As this target
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and the Intel Core i3 are very different: different architecture, differ-
ent instruction encoding, different process technology and different
cache management, this similarity is very interesting. Despite these
differences, as the fault are similar we can conclude that the causes
are the also similar.

The last fault model we observed is the “Or with other obs” fault
model and only appear during the orr rbx,rbx experiment. This
is again similar to our observations on the BCM2837 and suggests
an operand corruption. The corrupted observed instruction are pre-
sented in table 12.

Faulted instruction Occurrence (%)

orr rbx, rax 77.78%

orr rbx, rcx 22.22%

Table 12: orr rbx,rbx corruptions regarding the “Other with other obs”
fault model

This table shows that the observed fault model actually comes from
a corruption of the operand such as on the BCM2837. This strongly
suggests that the fault is independent from the instruction encoding
and effectively targets a mechanism manipulating the operands. How-
ever, we identified the cache to be the target micro-architectural, this
suggest that we also perturb it on the Intel Core i3 as we observe the
same behavior.

6.4.3 Conclusion on the Intel Core i3-6100T

This section presents the characterization work we have done on the
Intel Core i3-6100T target using our method. This target appeared to
be hard to fault than the BCM2837 and the BCM2711b0 as we needed
a stronger EM perturbation to observe faults.

However, contrary to the previous targets, we observe less different
faults, in other words, the number of observed faulted value is around
ten on the Intel target while it is more around twenty-five on the BCM
targets. However, we did not look into determining the root cause of
this difference.

A more interesting observation is that the fault model on the Intel
target is often a second operand corruption, just as on the BCM tar-
gets. This suggest that these targets, while being different, are faulted
in a similar way.

Therefore, we can suppose that the Intel target and the BCMs share
a mechanism which is faulted in the same way on all targets. While
it is harder to fault it on the Intel target.

6.5 characterization conclusion

This chapter presented the characterization experiments realized dur-
ing this thesis. The characterized target are chosen to be represen-
tative of common SoCs one can find in modern digital devices. The
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chosen target are the BCM2837 powering the Raspberry Pi 3 model
B, the BCM2711b0 powering the Raspberry Pi 4 and the Intel Core
i3-6100T powering a PC.

These targets represent the two most widespread architectures in
SoCs: ARM (BCM2837 and BCM2711b0) and x86 (Intel Core i3-6100T).
They were tested against EM perturbation (BCM2837 and Intel Core
i3-6100T) and laser perturbation (BCM2711b0).

Despite several constraints, the three targets were characterized at
the ISA level. The conclusions are that faults on all the targets are able
to modify the operands used by the executed instructions. Also, the
CPU registers were proven to be corruptible. An in-depth characteriza-
tion at the micro-architectural level able to identify that the memory
cache is faulted.

Moreover, the targets show a similar faulted behavior despite be-
ing manufactured in different technologies, implementing different
architecture and being faulted using different injection medium. This
observation leads us to the conclusion that the fault model on these
targets does not depend of these elements but a mechanism they have
in common. Even if we know that we fault the cache, we could not
precisely identified the involved mechanism.

Having a common to all SoCs mechanism which behaves in the
same way to different perturbation make these targets quite weak.
Indeed, if the faults are repeatable from a SoC to another with a cor-
rect probability, any attack realized on a program on a SoC might be
applicable to any other SoC using this program.

This observation make the mitigation of such faults a important
step. However, in this thesis, to assess the relevance of our character-
ization, we did not focus on the design of a countermeasure but on
the exploitability of the characterized faults regarding classical secu-
rity softwares embed in SoCs.
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Life happens wherever you are, whether you make it or not.

— Uncle Iroh (Avatar: The Last Airbender)

abstract

This chapter presents our work to evaluate Linux programs against
the faults we characterized in the previous section. We present a DFA

on the OpenSSL implementation of AES, a PFA on our baremetal AES

using persistent faults in the cache. We also realize an analysis of
the sudo program which involves a user authentication mechanism.
This analysis highlight the complexity of such programs and the need
of an analysis and fault simulation software we also introduce. The
works presented in this chapter were submitted in the JCEN jour-
nal [159] and in the CHES conference [162].
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In this chapter, we aim at evaluating the security of classical Linux
programs regarding our fault model. The evaluation of such pro-
grams is very different from the ones executing on smartcards. In-
deed, as they execute on a modern CPU, their execution is not sequen-
tial but parallel due to the presence of optimizations as mentioned
in section 2.3.2.2. This make the synchronization of the perturbation
with a particular moment of the program execution trickier.

Moreover, Linux programs rely on mechanisms coming from the
Linux kernel like the shared libraries. These libraries are either in-
cluded in the executable (static linking), loaded at the program startup
(dynamic linking) or loaded during the program execution (module
loading). Therefore, as a Linux program is composed of an executable
and several libraries it relies on, its attack surface is important but
it is also more complex to analyze it. In particular, due to a lot of
runtime mechanisms, a static analysis of such program may be super-
ficial compared with what actually happen at runtime, in particular
considering faults. Actually, the execution of such programs involve
the execution of the Linux kernel dynamic linker as presented in fig-
ure 71.

Dynamic
linker

Dynamic
linker

Shell command

Executable and dynamic
dependencies loading

and mapping

Program execution

Modules and dynamic
dependencies loading

and mapping

End of execution

dlopen()

Figure 71: Linux dynamic linker interventions during program execution

This figure shows that, on Linux systems, the execution of a pro-
gram depending on dynamic libraries involves the execution of a ker-
nel piece of code named the dynamic linker which aims at loading
and mapping the needed libraries for the program to execute. Also,
a program can call the dynamic linker to load a shared object for
executing it at runtime using the dlopen() function. Therefore, only
analyzing the binary of a program is not enough to asses its security
but also some kernel mechanisms must be checked. In particular the
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dynamic linker as the loading of the wrong library may cause security
issues.

Because the security of such programs against fault attacks is a
novel topic, there are no fault security analysis method, no fault anal-
ysis tools and only few works that target such systems.

Therefore, this chapter presents the first steps of such security eval-
uation. For the synchronization part, we present two works targeting
AES. On the hand, a work using a DFA in section 7.1 which forces us
to successfully target the ninth round. On the other hand, another
work using a PFA and a persistent fault in the CPU cache to help us
understand the fault effects on our baremetal AES implementation in
section 7.2. Moreover, in section 7.3, we aim at faulting a complete
Linux program, namely the sudo program. Then this chapter is con-
cluded by a description of the tools developed from these works and
aiming at helping us in the analysis of complex Linux programs in
section 7.4.

7.1 dfa on the openssl aes implementation

OpenSSL1 is an open source general-purpose cryptography library. It
is used in various programs needing cryptographic mechanisms such
as web navigator, mail boxes, video-conferences, user authentication,
etc.

The AES algorithm [163] is a symmetric algorithm based on ten
rounds executing the SubBytes, ShiftRows, MixColumns and AddRoundKey

operations. It is one of the most used symmetric algorithm and it is
involved in a lot of applications like securing internet connections, en-
crypt disks, etc. Therefore, it is a very interesting target to consider. In
this section, we focus on attacking the OpenSSL AES implementation
using fault attacks. The target is the BCM2837 powered by a Linux
OS.

For the setup, the program is organized as presented in figure 36

in section 5.3.2 with the test program being the AES_encrypt() func-
tion from the OpenSSL library. Regarding this setup, our test pro-
gram can be considered as a Linux program with dependencies of
the libssl.so and libcrypto.so libraries which are loaded at the
startup by the linker. However, there is no shared library loaded at
runtime. Therefore, perturbing the program during its execution will
not affect the dynamic linker.

7.1.1 Source code location

The OpenSSL source code is available on the OpenSSL website2. As
we focus on the AES, we study the AES_encrypt() function which is
available in the crypto/aes/aes_core.c file. Architecture specific im-
plementations are available, for instance, on the Raspberry Pi 3 the ex-
ecuted function is the _armv4_AES_encrypt() function available in the

1 https://www.openssl.org/

2 https://www.openssl.org/source/gitrepo.html

https://www.openssl.org/source/gitrepo.html
https://www.openssl.org/
https://www.openssl.org/source/gitrepo.html
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crypto/aes/asm/aes-armv4.pl file. However, our analysis on assem-
bly code will not come from this file but directly from the disassembly
of the program. The reason is that the ARMv4 specific implementa-
tion is embedded in a Perl script which realizes some optimizations.
Therefore, disassembling the binary gives the closest-to-reality assem-
bly code.

7.1.2 Static analysis

Before evaluating the AES implementation, we realize a static analysis
of the source code and binary to determine whether the determined
fault model reveals exploitable vulnerabilities.

7.1.2.1 AES round optimization

The AES_encrypt() function is optimized to have the lowest execution
time. This optimization is obtained by using pre-computed tables for
every SubBytes and MixColumns operations. The listing 7.1 presents a
part of these tables.

1 static const u32 Te0[256] = {

2 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,

3 0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,

4 0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,

5 0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,

Listing 7.1: OpenSSL AES pre-computed tables (partial)

The Te0 table corresponds to the operation presented in equation (35)
with S the SubBytes operation.

Te0[x] = S(x) · [2, 1, 1, 3] (35)

Equation: Pre-computation of the Te tables in the OpenSSL AES

This operation realizes the computation of the first column of the
next AES state. Corresponding tables Te1, Te2, Te3 are also pre-computed
for the others columns. In the end, the outputs of these tables a recom-
bined to obtain the current round AES state. The listing 7.2 presents
how the states are recombined.

The recombination of the states consists in XORing the output of the
tables between them and with the current round key rk. The table
access is done by switching and masking the current state (s0, s1, s2,
s3). The full computation consists in a loop repeating these operations
alternating between the tX and the sX states as input/output of the
tables.
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1 t0=Te0[(s0>>24)] ^ Te1[(s1>>16)&0xff] ^

Te2[(s2>>8)&0xff] ^ Te3[s3&0xff] ^ rk[4];→֒

2 t1=Te0[(s1>>24)] ^ Te1[(s2>>16)&0xff] ^

Te2[(s3>>8)&0xff] ^ Te3[s0&0xff] ^ rk[5];→֒

3 t2=Te0[(s2>>24)] ^ Te1[(s3>>16)&0xff] ^

Te2[(s0>>8)&0xff] ^ Te3[s1&0xff] ^ rk[6];→֒

4 t3=Te0[(s3>>24)] ^ Te1[(s0>>16)&0xff] ^

Te2[(s1>>8)&0xff] ^ Te3[s2&0xff] ^ rk[7];→֒

Listing 7.2: OpenSSL AES round computation (C)

7.1.2.2 OpenSSL AES vulnerability analysis.

Regarding the source code of an AES round presented in listing 7.2,
we can see that the involved operations are: the logical right shift, the
logical AND, the logical XOR and a memory access to the tables. As a
consequence, the assembly code for a round will only use ldr, and,
eor and lsr instructions. This is confirmed by the disassembled code
of the AES_encrypt() function available in appendix E.

These instructions are very similar to the instructions we used in
section 5.3.2.1 for characterizing the fault model on our targets. There-
fore, we know that we have a high probability to modify the second
operand of these instructions.

Also, for the DFA (presented in section 4.4.1.1), we want to fault only
one byte in the AES state before the last MixColumns. As many instruc-
tions manipulate 32 bits wide register, faulting the second operand
will mainly fault 4 bytes. If the 4 bytes are in different columns, the
obtained cipher is still usable for a DFA and even leak information
on 4 bytes of the key. However, as we presented earlier, the opera-
tions are done column by column and therefore, faulting a register
will mainly modify the entire column making the faulted cipher not
exploitable. This eliminate any fault on the ldr, eor and lsr instruc-
tions.

However, there are the and instructions that remain and they are
used to apply a byte wide mask on the register. Faulting the second
operand of these instructions (i.e. the used mask) will results in ap-
plying a byte wide fault on the result. This corresponds to the fault
we want to obtain for the DFA.

According to the AES_encrypt() assembly code available in ap-
pendix E the and instructions represent 23% of the instructions com-
posing an AES round. As presented in section 6.2.2.1, we have 1%
fault probability on and instructions. Therefore, in first approxima-
tion (by considering all instructions have the same execution time),
we can suppose that the probability to obtain a usable cipher for a
DFA is around 0.23% per injection. In other words, around 400 fault
injections are needed before having a usable cipher. As 8 ciphers are
needed for a complete DFA, we can suppose that around 3200 injec-
tions are needed for obtaining all the ciphers needed for the DFA.
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In practice, the instructions does not have the same execution time,
in particular the memory access instructions (ldr) are, in general,
slower than the data processing instructions (and, eor and lsr). How-
ever, estimating the execution time is a tricky job as, due to CPU opti-
mizations [164, 165] (cache, fill buffers, etc), this time is quite variable.
However, these optimizations aim at making a memory access as fast
as a data processing instruction, making our hypothesis relevant.

7.1.3 Fault attack on the OpenSSL AES

Based on the analysis, we know that our fault model is relevant for
attack the OpenSSL AES implementation in 3200 injections. The next
step naturally consists in testing if we actually can realize this ex-
ploitation on an implementation running on the BCM2837.

7.1.3.1 Synchronization

As explained in section 2.3, SoCs are multi-core and multi-threaded
systems with various optimizations. This architecture brings a non
sequential execution of instructions composing a program. Therefore,
synchronizing a fault injection with a particular moment of the pro-
gram execution (in our case: before the last MixColumns operation) is
a tricky business.

As we do not have information nor a method to synchronize our
perturbation with the program, we decided to sweep over the AES

execution and analyze the fault probability and the number of faults
diagonals regarding the delay between the start of the AES compu-
tation and the moment we perturb it. These results are presented in
figures 72 and 73.
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Figure 72: Impact of the delay on the probability while faulting an OpenSSL
AES encryption using EM perturbation on BCM2837.

The figure 72 shows that the fault probability has a tendency to
decrease while we increase the delay before doing the perturbation.
However, we did not make a further researches to determine the ori-
gins of this phenomena.
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Figure 73: Impact of the delay on the number of faulted diagonals while
faulting an OpenSSL AES encryption using EM perturbation on
BCM2837.

The figure 73 presents the number of faulted ciphers with a specific
number of faulted diagonals regarding the delay before the perturba-
tion. 0 diagonals faulted means that the cipher is faulted but not with
a diagonal pattern.

These results shows us that the number of ciphers with less than 4

faulted diagonals faulted is quite constant and therefore independent
of the injection timing. However, the number of ciphers with 4 faulted
diagonals decreases when the delay before the perturbation increase.
This is understandable because, in the AES, any fault that appears on
at least a byte is diffused on the whole cipher after the execution of
a MixColumns, ShiftRows and an other MixColumns sequence. In other
word, any fault before the before-last MixColumns (the one during the
8th round) leads to a fully faulted cipher, i.e. the four diagonals are
faulted, but this kind of cipher is not suitable for a DFA.

When the perturbation occurs after the before-last MixColumns, the
diffusion of the fault is limited to the diagonals containing the initial
faulted bytes. Supposing that faulting four bytes with each byte on
different diagonal is less probable than faulting a single byte. The
number of cipher with four faulted diagonals should drop when
the perturbation occurs after this MixColumns. This seems to happen
around 400ns of delay. Also, we could expect that, after this delay,
the number of ciphers with less than 4 faulted diagonals will increase,
but we do not observe such phenomena.

As mentioned above, the number of ciphers with less than 4 faulted
diagonals remains almost constant independently of the delay. This
observation is complicated to explain as before the before-last MixColumns,
we should observe only fully faulted ciphers and after this MixColumns,
a more regular distribution should be observed. But it is not the case.
Regarding the figure 72, our observation seems to correlate with the
fault probability, i.e. after 400ns of delay the probability to obtain
ciphers with 4 faulted diagonals decrease while the probability to
obtain ciphers with less than 4 faulted diagonals remains constant.
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This correlation is unnatural as there is no reason which might
explain that the probability of having 4 faulted diagonals decrease
while the probability of having less than 4 faulted diagonals remains
constant, and must be studied carefully. Our opinion is that several
phenomena occur. The first one is that, because we passed the before-
last MixColumns, the distribution of the number of faulted diagonals
is quite balanced (when the delay is greater than 400ns). The sec-
ond one is that, for an unknown reason, passing this delay the fault
probability decrease.

Despite we think this is the best explanation of these observations,
we do not know why the fault probability would decreased after this
delay and we cannot explain why we observe ciphers we less than 4

faulted diagonals before this delay. This result is an example of the
complexity induced by the CPU architecture regarding synchroniza-
tion and our lack of knowledge about how programs are executed
within these CPUs.

However, we were able to obtain ciphers with only one faulted
diagonal making the DFA possible. Therefore, we focused on using
these faulted ciphers to realize our DFA.

7.1.3.2 Exploitability

The faults campaign consisted of 3000 injections (up to 3200 are re-
quired for a complete DFA regarding our analysis) and around an
hour is needed to achieve them with our setup. Among these injec-
tions, we obtained 466 faults (15.54%). By all of these faults, only 16

have a single faulted diagonal (4.348%) and considering these faulted
ciphers; only 8 correspond to a one-byte fault before the MixColumns

operation. Also, faults appear with the same probability on every di-
agonal.

In the end, the probability of obtaining a suitable faulted cipher for
the DFA is 0.34% which corresponds to 1 cipher every 294 injections
which is a bit better than the rate we extrapolated from the analysis
above (0.23%). This difference might be due to the hypothesis we
made that any fault on instructions other than and instruction will not
give any interesting faulted cipher. Indeed, it is possible by faulting a
4 bytes register that the fault affects only one byte.

Considering an injection needs 2 seconds, we obtain a usable cipher
every 10 minutes. As 8 ciphers are needed for the complete DFA and
because every diagonal has the same probability to be faulted, 3 hours
of injection are enough to obtain the needed ciphers.

7.1.4 DFA software

To do the DFA, we developed a C program which aims at realizing
it. As the DFA able to retrieve the key bytes diagonal per diagonal,
our program works only on a diagonal. Therefore, its inputs are the
faulted ciphers and the diagonal index to work on.

After our experiments, we sort the suitable ciphers and stored them
in different files named ciphers_diagX.txt where X is the diagonal
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index. Our DFA program then reads the ciphers contained in the file
and use them to realize the DFA as explained on figure 29 in sec-
tion 4.4.1.1.

The possible ∆ values are pre-computed using a Python script and
stored in a header file. Then the program computes the ∆ value for
every possible key diagonal (232 values) for every faulted ciphers
stored in the input file. The loop doing this is presented in listing 7.3.

137 for(uint64_t value = 0; value < MAX_VAL_32BITS; value++){

/* Key bytes */→֒

138 /* Computing the reversed good cipher */

139 int_to_bytes((uint32_t)value, k_diag, AES_DIAG_SIZE);

140 xor_array(c_diag, k_diag, c_xor, AES_DIAG_SIZE);

141 inv_s_box_array(c_xor, c_sub, AES_DIAG_SIZE);

142

143 k_is_good_candidate = 1; /* Check if we have a good

candidate */→֒

144 for(i=0; i<nb_faulted_ciphers; i++){ /* Test over all

faulted ciphers */→֒

145 f_str = faulted_ciphers[i];

146 hex_str_to_bytes(f_str, f_bytes, AES_NB_BYTES);

147 extract_diag(f_bytes, f_diag, diag, AES_DIAG_SIZE);

148 /* Computing the reversed faulty cipher */

149 xor_array(f_diag, k_diag, f_xor, AES_DIAG_SIZE);

150 inv_s_box_array(f_xor, f_sub, AES_DIAG_SIZE);

151 /* Computing the delta */

152 xor_array(c_sub, f_sub, delta, AES_DIAG_SIZE);

153 /* Check if delta is in possible values */

154 delta_val = (uint32_t)bytes_to_int(delta,

AES_DIAG_SIZE);→֒

155 k_is_good_candidate = k_is_good_candidate &

156 is_in_array(mix_col_diff_list,

157 delta_val,

158 NB_MIX_COL_VALUES);

159 }

160

161 if(k_is_good_candidate){ /* Print the key diagonal */

162 printf("\rKey diagonal %d = 0x%08x\n", diag,

(uint32_t)value);→֒

163 }

164

165 printf("\r0x%08x", (uint32_t)value); /* Print the last

tested key */→֒

166 fflush(stdout);

167 }

Listing 7.3: DFA program main loop

This listing shows the loop iterating over the possible key values (line
137) and then computing the correct cipher last round reverse: the
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left term of equation (21) in section 4.4.1.1 (lines 139 to 141). The
second part consists in computing the right term of equation (21) for
every faulted ciphers (line 144 to 150) and then compute the delta
value (line 152). Then we check if the key candidate is a good one by
checking if the delta value is among the possible output values of a
faulted MixColumns (line 155).
As one can note, despite we work on 32 bits, we have to convert our
variables into byte arrays. The reason is the SubBytes operation which
involves SBoxes. Despite manipulating byte arrays is slower than ma-
nipulating 32 bits data, the storing of the SBoxes requires 256B (28 B)
of memory when working with bytes and 16GB (4× 232 B) of mem-
ory when working with 32 bits data. We therefore decided to work
with bytes array to lower the memory footprint of our program.
However, we developed a Python script which generates the 32 bits

SBoxes but we did not tested it. As a consequence we do not know
how much faster a fully 32 bits program would be. Also, regarding
listing 7.3, the program is not optimized in memory as we use every
buffer only once while we could reuse them between two operations.
This choice was made to keep a good clarity in the source code.

7.1.4.1 Usage and results

The usage of the program is straightforward, the program will look
for the ciphers_diagX.txt files and computing the correct diagonal
using the passed argument such as in listing 7.4.

> ./aes_dfa 0

> Key diagonal 0 = 0x132ba717

Listing 7.4: Example usage and result of the DFA program on the first diago-
nal

Currently the correct cipher is hard coded in the program and is pre-
sented in listing 7.5.

112 char* c_str = "69c4e0d86a7b0430d8cdb78070b4c55a";

Listing 7.5: AES correct key as implemented in the DFA program

However, this is a bad coding habit and a program enhancement will
be to pass this key as a parameter. The results presented in listing 7.4
were obtained using the faulted ciphers introduced in listing 7.6.

9fc4e0d86a7b04aed8cda980708dc55a

11c4e0d86a7b0446d8cd60807094c55a

Listing 7.6: Faulted ciphers used in our DFA (ciphers_diag0.txt)

7.1.4.2 Performance

From 2 faulted ciphertexts with the same faulted diagonal, our pro-
gram is able to recover the 4 corresponding bytes of the key in an
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hour on average. The computer used for this computation is powered
by an Intel(R) Core(TM) i7-8550U CPU clocked at, at least, 1.80GHz

with 16GB of memory.
As our implementation works per diagonals, it is possible to run four
instances of the program and therefore realize the cryptanalysis on
the four diagonals in parallel. However, this require four times more
memory at the moment, indeed the pre-computed SBoxes are not
shared between these instances making the usage of byte arrays even
more relevant. But, sharing the SBoxes using multiple threads will
divide the memory footprint by 4, making it a great improvement to
do.
Finally, once we obtained the faulted ciphers, only 1 hour is needed
to recover the key. Adding the time needed to obtained these faulted
ciphers, the complete cryptanalysis can be achieved in less than 4

hours.
This timing considers that the hot spots determination and the fault
characterization are already done. These steps require at least a week
of work but the results are reusable on every target powered by the
characterized device. Also, the algorithm consider that every pro-
vided faulted cipher is relevant for realizing the DFA, which is, in
practice, not the case.

7.1.4.3 Detecting the relevance of faulted ciphers

To do a DFA, we use ciphers with one diagonal faulted. However,
this diagonal must be faulted with a specific pattern, i.e. the fault
must comes from a one byte faulted before the MixColumns operation.
However, it happens that we observe a cipher with a diagonal faulted
while it does not comes from a fault on a byte before the MixColumns.
In can be only the four bytes faulted independently for instance. In
such case, the cipher is not exploitable for a DFA.
In our case, as we fully master the implementation, we could verify
if a faulted cipher match a fault on a byte before the MixColumns.
However, this verification needs the knowledge of the key, which is
irrelevant in a practical attack but relevant in the case we just want to
assert our faults are suitable for a DFA.
Therefore, to adapt our DFA program to avoid this verification is to im-
plement an enumeration protocol which tests several faulted ciphers
pairs. Indeed, when we realize the DFA, the correct key is recovered
in 98% of the cases with two ciphers. Therefore, when a key does not
match with two given ciphers, there is two cases: either it is not the
correct key or the used faulted cipher does not match a fault on a
byte before the MixColumns and more ciphers must be tested.
In practice, the ratio of the number of suitable for DFA faulted ciphers
against the number of ciphers with only one diagonal faulted can
only be determined with the knowledge of the key or by successfully
realize the attack. In our experiment, we determine that 50% of the
ciphers with one faulted diagonal are suitable for a DFA.
Therefore, the last improvement we can do for our DFA software is
the implementation of a smart way to test the different ciphers with-
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out knowing if they are actually suitable for a DFA. Of course, this
will make the algorithm slower depending on our capacity to have
suitable faulted ciphers.

7.1.5 Conclusion on the OpenSSL AES DFA

In this section, we successfully attack the OpenSSL AES running on a
BCM2837 using a DFA. We saw, via a static analysis, that the OpenSSL
implementation of the AES is sensitive to faults regarding our fault
model. We computed a success rate from this analysis.
By faulting the AES, we observed a greater success rate than the one
we initially computed (ignoring instruction execution time variability
and CPU optimizations). We also observe interesting behavior regard-
ing our moment of injection. Indeed, the fault probability and the
number of ciphers with four faulted diagonals have a tendency to de-
crease while we increase the delay between the start of the AES and
the perturbation. We did not make further research to explain this
phenomena but it shows that the CPU complexity can lead to interest-
ing observation regarding synchronization.
Despite these undetermined behaviors, we were able to obtain suit-
able faults for realizing the DFA with a self-programmed software in
around an hour.

7.2 baremetal aes pfa [159]

The work presented in this section aims at assessing that the persis-
tent faults in the data cache observed in section 6.2.4.3 are suitable for
an exploitation. The reason is that these faults are particularly power-
ful regarding our target as they do not need to be synchronized with
the program execution but only have to exist. However, due to time
constraints we did not realized this experiment on a Linux system.
Therefore, in this section, we realize a PFA (introduced in sec-
tion 4.4.1.1) on an AES we implemented on our baremetal setup on
the BCM2837.
Our AES implementation is a naive one without countermeasures.
The SBoxes are implemented with a lookup table. Before the actual
encryption, we pre-warm the cipher. In other words, to limit timing
leakages due to caches, we invalidate the instruction and data caches,
then we perform a dummy AES encryption to fill the caches with data
and instructions of interest. This is the step where we inject the fault.
In a second step, we encrypt 10 000 random plaintexts, without any
new fault injection, and try to deduce the key from the observed
faulty ciphers.

7.2.1 PFA Result

To detect the forbidden values, we simply count the number of oc-
currences for all bytes values in the ciphertext, for the first byte, then
the second byte, etc. On figure 74, one can observe that 2 values are
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forbidden. Therefore, in our case, two bytes have been faulted in the
SBox lookup table.
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Figure 74: Distribution of the first byte for 10 000 faulted ciphers on our
baremetal AES on the BCM2837.

Therefore, the analysis presented in section 4.4.1.1 must be adapted
to the two faults case. For each byte index from 0 to 15, we get the
two forbidden values. They are shown in Table 13.

Index 0 1 2 3 4 5 6 7

Forbidden 23 21 2d 4f 7f 08 7a 27

values 8f 8d 81 e3 d3 a4 d6 8b

Index 8 9 10 11 12 13 14 15

Forbidden 6f 37 3b 17 7d 1b 00 59

values c3 9b 97 bb d1 b7 ac f5

Table 13: Forbidden values for every byte of the observed ciphers.

Since we have 2 forbidden values y1 and y2 per byte, we have 224

key hypotheses. First, we have 28 guesses for y1 (or y2 as they can
swap but only one is needed) then, among the two forbidden values
for each byte, we must find the one giving the key regarding our y1

(216 possible choices). The possible key bytes for a correctly guessed
forbidden value y1 = 0x30 are displayed in table 14. In other words,
table 14 is table 13 XORed with y1. Finding the key then consists in
choosing the correct value (shown in red on table 14) out of the two,
for each byte index.
The correct key is 13 11 1d 7f e3 94 4a 17 f3 07 a7 8b 4d 2b 30

c5. In total, we have 224 key hypotheses, with a pair of plaintext and
corresponding ciphertext to validate the correct key, recovering the
AES key can be done on a desktop computer in a few minutes. It
takes 145 s on an Intel Xeon E5-1620 v3 CPU to find y1 = 0x30, so it
would take by extrapolation 757 s, or less than fifteen minutes, to test
all keys.
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Index 0 1 2 3 4 5 6 7

Forbidden 13 11 1d 7f 4f 38 4a 17

values bf bd b1 d3 e3 94 e6 bb

Index 8 9 10 11 12 13 14 15

Forbidden 5f 07 0b 27 4d 2b 30 69

values f3 ab a7 8b e1 87 9c c5

Table 14: Possible key bytes for the correct guess y1 = 0x30 with the correct
key in red.

7.2.2 Conclusion on the PFA on our baremetal AES

In this section, we presented a PFA we realized on a self-developed
AES on our BCM2837 baremetal setup. The fault is coming from a
corruption of the data cache and is persistent. In other words, the
fault remains in place while the cache is not invalidated.
This fault able us to obtain 10 000 ciphers from different plaintexts
and identify forbidden values for each of their bytes. However, during
our experiments we observed two forbidden values per byte which
means that we faulted two SBoxes stored in the cache. This shows
that the EM injection medium have an important spreading.
But, by adapting the PFA presented in section 4.4.1.1, we were able to
reduce the number of possible keys from 2128 to 224.

7.3 sudo authentication

In this section, we aim at evaluating the feasibility of faulting a com-
plex Linux program, i.e. a program that both load shared libraries
at startup and during its runtime. Also, we want to target a security
oriented program.
Therefore, we decided to work on the sudo-based authentication pro-
cess of a Linux system. This is an interesting target because the Linux
kernel allows several users on the same device. Usually, for every
days tasks, the usual user has a limited access to the system, this en-
sure that he cannot mess up the system configuration while working
or access another user protected files. Also, many other users can be
configured for different purpose, a famous one is the www-data user
which is allowed to execute HTTP requests, i.e. requests coming from
unknown person via internet.
The critical operations, like updates or security configuration for in-
stance, must be done by an unrestricted user, usually known as root.
A restricted user can be allowed to obtain the root privileges for a
moment to realize some critical operations if it belongs to the correct
group: sudoers or wheel for instance. Some Linux binaries allow to
change the current user like su or sudo, but they require an authenti-
cation.
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7.3.1 Attack model

The program we decide to target is sudo. This program allows a user
to fake another user identity if he is allowed to. Most of the time,
it is used for granting root privileges for a specific operation. Users
allowed to have the root privileges are called sudoers.
Regarding this program, there are three attack models.

1. The attacker has access to a sudoer user session but does not
know its password. This situation can be achieved by being able
to execute arbitrary code via a user application. In this case,
the attacker can execute code as the compromised user but the
Linux segregation mechanism prevents him to access the other
users domain.

2. The attacker has the credentials of a user on the system which
is not a sudoer. In this case, the user is not allowed to fake the
root identity and the attacker is therefore limited to the com-
promised user domain. This is the typical situation on shared
devices.

3. The attacker has access to a user session without knowing its
credentials and which is not a sudoer.

In this work, we focus on the first case which corresponds to force
the authentication of the compromised user asked by the sudo binary
without knowing the user’s password.

7.3.2 sudo analysis

Contrary to what we have done with the OpenSSL AES in section 7.1,
we do not develop a test program for the sudo program. We focus
on the binary available in the Debian distribution. This is challenging
because, to evaluate such program, we need to fully understand its
architecture and to identify its interesting pieces of code, both in the
binary and in the code source. Regarding our work, an interesting
piece of code is a part of the code that might lead to an unwanted
authentication if it is perturbed.
As a first step, we want to analyze the functions that are involved in
the authentication process, in other words, the function that actually
realize the password verification and all the calling functions that, at
a moment, manage the information (an integer in the sudo) that the
authentication succeed or failed.
Then our first goal is identify these functions in the source code and
identify in which binary their assembly code is stored for execution.
To do so, there are two strategies:

1. the static top down approach, we find the main function of the
program in the source code and get down through the different
calls until we find the function that generates the information
that the authentication succeed or not. This might seems to be a
good approach, but as presented in figure 71, on Linux systems,
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a program can load a shared library at runtime and call a func-
tion from it. This actually happen early in the main of the sudo

program. Therefore, from this point, the best we can do is bet-
ting on the loaded shared library and the called function which
require an important knowledge about the evaluated program.

2. The other approach is a bottom up analysis at runtime. This
analysis consists in using a debugger on the target program.
The idea is to identify a function that we now (for sure) is called
in the process and put a break point on it. Once this function is
executed we identify which function called it and we repeat this
until we reach the main function. This approach is very effective
as it able to identify all the called functions, it also able to iden-
tify the shared libraries that are involved. This is very important
because the knowledge of which libraries a program relies on
is not necessary a common knowledge. The only drawback is
that we must know a function that is called during the process
we want to analyze. Also, this function must be the lowest pos-
sible in the function calls so we do not miss any of them. If it
happens that our starting function still calls other ones, we can
try to identify them using the source code, and hoping there are
not runtime resolution anymore.

Regarding these strategies, the one we have chosen is the second. The
reason is that we think that analyzing the execution of a program at
runtime is more relevant and less time consuming than analyzing its
source code. For instance, the only sudo source code is composed of
2492 files (find ./ -type f | wc -l) worth 73MB of code (du -sh

./) and the sudo program relies on many other libraries.

7.3.2.1 Runtime analysis

To realize the runtime analysis, we placed ourselves on a fully mas-
tered setup (i.e. with root privileges) and we used the gdb program.
As mentioned above, the analysis consists in putting a break point on
a function we know for sure is called during our process. Considering
the sudo program, we know that it will compare two hashes (one ob-
tained from the user typed password and one from the /etc/shadow

file). Therefore, we are confident that the strcmp function will be
called and is the lowest function in the call tree. So, we start the sudo

program in a terminal using the sudo ls command for instance. Then,
start gdb and attack the sudo process to it using gdb -pid $(pidof

sudo). Then we put a break point on strcmp using the b strcmp com-
mand and let the sudo program run using the cont command. After
having typed a password as sudo ask, our debugger must reach the
break point.
At this moment, the process is stopped at the start of the strcmp func-
tion and all the already called functions can be shown using the where

command. However, it turns out that the strcmp function is called
many times in the sudo program (for checking that the user asking for
root privileges is actually in the sudoers group for instance). There-
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fore, we must determine if we are in the correct call of the strcmp

function, i.e. the one that actually compare the hashes. To do so, we
display the arguments given to the function. According to the Intel
calling convention, during a function call, the first two arguments are
stored in rdi and rsi (r0 and r1 for ARM). The content of these regis-
ter can be displayed using the x/1s $REGISTER_NAME command (x/1s
$rdi and x/1s $rsi in our case).
If the inputs looks like we are comparing hashes, it means we have
reached our point of interest. In the case we did not, we can let the
program executes and reach the next strcmp call using the cont com-
mand.
As strcmp is called many times, it is interesting to automatize these
steps using the commands command as shown in listing 7.7.

1 # On first terminal

2 $ sudo ls

3

4 # On second terminal

5 # As root

6 $ gdb --pid $(pidof sudo)

7 # Break if the first character in rdi is '$'

8 (gdb) b strcmp if *(char*)$rdi == 0x24

9 (gdb) commands

10 > x/1s $rdi

11 > x/1s $rsi

12 > where

13 > cont

14 > end

15 (gdb) cont

Listing 7.7: Commands to identify the strcmp calls of the sudo program us-
ing gdb.

Using these commands, many results will show up but one of them
will appear to compare hashes as presented in listing 7.8. Also, as we
know that we want to compare hashes and we know that they start
with the $ character, we can customize the break point to break only
if the first character of the rdi register starts with $ such as down in
listing 7.7 on line 8.
This result shows that we are calling the __strcmp_avx2() function
from the libc.so (line 1). It also shows the two passed arguments on
the lines 2 and 3 which are hashes with a common prefix. The next
lines (4 to 17) show the functions that actually are on the function call
stack, in other words, all the functions called from the main program.
We can note that we are in an easy case because we are able to effec-
tively identify the correct strcmp function. But it might happen that
a process creates a new one (using fork() or clone()) which is used
for doing the comparison for instance. In this case, we could not find
the correct strcmp call because the child process would have a new
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1 Breakpoint 1, 0x00007f7630680f60 in __strcmp_avx2 () from

/usr/lib/libc.so.6→֒

2 0x55cbf54a8b00: "$6$UxZjWMS1PnDbraCq$O74AxFWWRjkEZnSqO9jobFgl9yn ⌋

O8cxq8/S5f1tu7ZEPxmXoPOq/ZFtgoKzD3LbAl/fXdZvZ.oCYbFea5cgvo1"→֒

3 0x55cbf547db40: "$6$UxZjWMS1PnDbraCq$nwD.rOgcz/bgOtx6dpUABwRkCgZ ⌋

Srlj0O9RhmodmC.bmS.n5TxdXG803C95HnHAs9hM4yJ2Li80pMnDUPJ1b60"→֒

4 #0 0x00007f7630680f60 in __strcmp_avx2 () from /usr/lib/libc.so.6

5 #1 0x00007f763074a60a in ?? () from /usr/lib/security/pam_unix.so

6 #2 0x00007f7630749d9f in ?? () from /usr/lib/security/pam_unix.so

7 #3 0x00007f7630747b46 in pam_sm_authenticate () from

/usr/lib/security/pam_unix.so→֒

8 #4 0x00007f7630038882 in ?? () from /usr/lib/libpam.so.0

9 #5 0x00007f7630038181 in pam_authenticate () from /usr/lib/libpam.so.0

10 #6 0x00007f7630052a12 in ?? () from /usr/lib/sudo/sudoers.so

11 #7 0x00007f7630051b45 in ?? () from /usr/lib/sudo/sudoers.so

12 #8 0x00007f7630053d44 in ?? () from /usr/lib/sudo/sudoers.so

13 #9 0x00007f7630070f2e in ?? () from /usr/lib/sudo/sudoers.so

14 #10 0x00007f7630068e0e in ?? () from /usr/lib/sudo/sudoers.so

15 #11 0x000055cbf4a9f520 in ?? ()

16 #12 0x00007f763054b152 in __libc_start_main () from /usr/lib/libc.so.6

17 #13 0x000055cbf4aa178e in ?? ()

Listing 7.8: gdb output of a strcmp call comparing two hashes.

PID. PID which we used to attach the process to gdb using the gdb

--pid $(pidof sudo) command.
Using this result, we are able to identify that there are thirteen
functions that manipulate the information about the authentication
and even the shared libraries they are in (libc.so, pam_unix.so,
libpam.so and sudoers.so). However, we do not have the name of
every function (some are displayed with ??). The reason is that the
shared libraries only store the function name of the functions that are
supposed to be exported and used by other programs. This name
is useful for the dynamic linker to resolve the function calls. The
other functions are private to the shared library and therefore are
statically linked in the library itself. Therefore, not storing their name
save some memory space.
To identify these functions, there are two strategies:

1. the static analysis on the source code. By knowing some func-
tions involved in the call tree, we can try to determine in the
source code which functions are calling them and so on. Re-
garding the result in listing 7.8, this may easily work for the
pam_sm_authenticate() but hardly with the strcmp one as it is
called a lot.

2. The other solution is to redo the runtime analysis after having
replaced the used shared libraries by the same but with debug
symbols. These debug symbols will be identified by gdb and
therefore displayed. However, this require to recompile these
libraries.

The solution we have chosen is the runtime analysis with the debug
symbols. The reason is that we think it is more relevant to analyze
the process at runtime.
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7.3.2.2 Recompile Debian package from source

As mentioned, we aim to recompile the packages used in the sudo

authentication with debug symbols. The Debian distribution allows
to do it easily with various tools. The files we want to analyze are the
pam_unix.so, the libpam.so, the sudoers.so and the sudo executable.
To recompile a package, we must start by identify it using the dpkg

-search command. For instance to determine the package contain-
ing the sudoers.so file we use dpkg -search sudoers.so. To have
all the interesting shared object recompile with debug symbols we
must recompile the following packages (on a Debian 10.1.0 distri-
bution): sudo, libpam0g:amd64 and libpam-modules:amd64. Some of
them have the mention amd64 which is an indication of the supported
architecture and might change depending on the target we are recom-
piling on.
Once we have identified the packages to recompile, we must in-
stall the dependencies needed for the package using the apt-get

build-dep command. For instance, for the sudo package we do
apt-get build-dep sudo.
Then we can download and compile the package using the
following command: DEB_BUILD_OPTIONS="sotrip noopt" fakeroot

apt-get -b source sudo (for the sudo package).
Once we have compiled all our packages, we can install them using
the dpkg -i command such as dpkg -i sudo_1.8.27-1+deb10u2_-

amd64.deb for the sudo package.
Finally, we can do the manipulation presented in listing 7.7 and we
obtain a result similar to what is presented in listing 7.9.

1 Breakpoint 1, __strcmp_avx2 () at ../sysdeps/x86_64/multiarch/strcmp-avx2.S:92

2 92 ../sysdeps/x86_64/multiarch/strcmp-avx2.S: No such file or directory.

3 0x5637b173b050: "$6$hH.15uU5laaxuXHY$wtSOcCKWmY1JmyY2CWlVs/8ixyON36ZxQV2RpMJkITzqkIM18lyXNMICoYNIVDe⌋
UVXqH0Fs390nl6Lw8m5ArZ0"→֒

4 0x5637b173a200: "$6$hH.15uU5laaxuXHY$4b7acwY3u21L9Wd8TxQeCIkpmasNufgDzIrScjXreP8oFQA4c.0nZmcYJB2zf5p⌋
6rDvPdBC0Fo6JWvquBKaVc."→֒

5 #0 __strcmp_avx2 () at ../sysdeps/x86_64/multiarch/strcmp-avx2.S:92

6 #1 0x00007fb956a006a0 in verify_pwd_hash (p=0x0, hash=0x5637b173a200 "$6$hH.15uU5laaxuXHY$4b7acwY3u21L9Wd8⌋
TxQeCIkpmasNufgDzIrScjXreP8oFQA4c.0nZmcYJB2zf5p6rDvPdBC0Fo6JWvquBKaVc.", nullok=0x0) at passverify.c:124→֒

7 #2 0x00007fb956a00050 in _unix_verify_password (pamh=0x5637b173fd30, name=0x5637b173fed0 "toto",

p=0x5637b173aad0 "", ctrl=0x40800400) at support.c:792→֒
8 #3 0x00007fb9569fc6fb in pam_sm_authenticate (pamh=0x5637b173fd30, flags=0x8000, argc=0x1,

argv=0x5637b1734620) at pam_unix_auth.c:177→֒
9 #4 0x00007fb956a1c024 in _pam_dispatch_aux (pamh=0x5637b173fd30, flags=0x8000, h=0x5637b173c980,

resumed=PAM_FALSE, use_cached_chain=0x0) at pam_dispatch.c:110→֒
10 #5 0x00007fb956a1c62c in _pam_dispatch (pamh=0x5637b173fd30, flags=0x8000, choice=0x1) at pam_dispatch.c:411

11 #6 0x00007fb956a1b68b in pam_authenticate (pamh=0x5637b173fd30, flags=0x8000) at pam_auth.c:34

12 #7 0x00007fb956a351f9 in sudo_pam_verify (pw=0x5637b1731318, prompt=0x5637b1740f10 "[sudo] password for

toto: ", auth=0x7fb956a94220 <auth_switch>, callback=0x7fff76368d50) at

../../../plugins/sudoers/auth/pam.c:187

→֒
→֒

13 #8 0x00007fb956a3477e in verify_user (pw=0x5637b1731318, prompt=0x5637b1740f10 "[sudo] password for toto:

", validated=0x2, callback=0x7fff76368d50) at ../../../plugins/sudoers/auth/sudo_auth.c:328→֒
14 #9 0x00007fb956a36a76 in check_user_interactive (validated=0x2, mode=0x1, auth_pw=0x5637b1731318) at

../../../plugins/sudoers/check.c:153→֒
15 #10 0x00007fb956a36d01 in check_user (validated=0x2, mode=0x1) at ../../../plugins/sudoers/check.c:223

16 #11 0x00007fb956a5356c in sudoers_policy_main (argc=0x1, argv=0x7fff76369230, pwflag=0x0, env_add=0x0,

verbose=0x0, closure=0x7fff76368ef0) at ../../../plugins/sudoers/sudoers.c:388→֒
17 #12 0x00007fb956a4e516 in sudoers_policy_check (argc=0x1, argv=0x7fff76369230, env_add=0x0,

command_infop=0x7fff76368fd8, argv_out=0x7fff76368fe0, user_env_out=0x7fff76368fe8) at

../../../plugins/sudoers/policy.c:866

→֒
→֒

18 #13 0x00005637b0270d5d in policy_check (plugin=0x5637b0285580 <policy_plugin>, argc=0x1,

argv=0x7fff76369230, env_add=0x0, command_info=0x7fff76368fd8, argv_out=0x7fff76368fe0,

user_env_out=0x7fff76368fe8) at ../../src/sudo.c:1162

→֒
→֒

19 #14 0x00005637b026c753 in main (argc=0x2, argv=0x7fff76369228, envp=0x7fff76369240) at ../../src/sudo.c:250

Listing 7.9: gdb output of a strcmp call comparing two hashes with libraries
compiled with debug symbols. A bigger representation is avail-
able in appendix C.



140 fault model exploitability

This results gives more information than the one presented in list-
ing 7.8. First we can identify all the functions involved in the man-
agement of the information used to confirm that the authentication
succeed or not. More, we also have the source files containing these
functions.
At this point, we have the information about every used shared li-
braries and all the involved functions. But, we do not know if these
libraries are loaded at the startup of the program or during the run-
time.

7.3.2.3 Determining the load time of the shared libraries

Determining the libraries that are loaded at the startup of a program
is easily done using the ldd command. Therefore, if a library does not
appear in the listed ones, we can conclude it is loaded at runtime.
As the ldd command takes a file as an input, we must use the real
paths of the libraries. On Debian 10, they are at the locations pre-
sented in table 15.

File Path

sudo /bin/sudo

sudoers.so /usr/lib/sudo/sudoers.so

libpam.so /lib/x86_64-linux-gnu/libpam.so

Table 15: Library paths

Using the ldd command we could determine that the sudoers.so

is loaded at runtime but depends on libpam.so (which is therefore
loaded at the same time) and that libpam.so loads during its execu-
tion the pam_unix.so library.

7.3.2.4 sudo architecture regarding user authentication

After all the work presented above, we were able to obtain a clear
view of the sudo architecture which is summarized in figure 75.
This figure shows that the sudoers.so library is loaded at runtime,
however it is loaded very early in the program execution as it contains
the plugin used for the authentication. sudoers.so depends on the
libpam.so and load it at its startup. One may note that “at startup” is
a confusing term here as it is not load at the startup of the program
(sudo) but at the startup of the sudoers.so plugin. The important
thing to keep in mind is that sudoers.so and libpam.so are loaded at
the same time. Finally, during its execution, libpam.so load the pam_-

unix.so library which calls the famous strcmp function comparing
the password hashes via the verify_pwd_hash function.
With this overview, we now know which functions of the code we
must analyze against our characterized fault model and where to
find both their binary and source code.
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Figure 75: sudo calling architecture and dependencies regarding the user au-
thentication process.

7.3.3 Code analysis

Regarding the figure 75, we know some functions that it is interesting
to fault. Therefore, the next step consists in analyzing them both at
source code and binary to highlight attack paths regarding our fault
model.
The listing 7.10 shows the part of the main function of the sudo binary
which calls the policy_check function and check the returned value.

259 ok = policy_check(&policy_plugin, nargc, nargv,

env_add,→֒

260 &command_info, &argv_out,

&user_env_out);→֒

261 sudo_debug_printf(SUDO_DEBUG_INFO, "policy plugin

returns %d", ok);→֒

262 if (ok != 1) {

263 if (ok == -2)

264 usage(1);

265 exit(EXIT_FAILURE); /* plugin printed error message

*/→֒

266 }

Listing 7.10: sudo binary policy return value checking in main function from
sudo.c

We can see that this piece of code is really simple, the returned value
must be equal to 1 to successfully authenticate, otherwise the pro-
gram terminates with an error. At this point we can identify several
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attack paths, forcing the return value to 1 before the critical if or
avoiding the execution of the exit function.
Regarding our fault model, forcing the returned value to 1 seems to
be unlikely to happen. Avoiding the execution of the exit function
might be possible as we can modify the second operand of a compar-
ison instruction. However, its feasibility cannot be determined until
we check the binary code.
Actually, this example is quite easy and straightforward, however,
among the functions presented in figure 75, some are very complex
with hundreds of lines of C code, and thousands of binary. Therefore,
doing the analysis by hand is really time consuming and it can be
inaccurate.
The solve this analysis problem, we decided to develop an analyzer
and simulator software suitable for analyzing Linux programs. In
other word, this software aims at automatizing the steps done in sec-
tion 7.3.2, identify attacks paths regarding a given fault model and
simulating actual attacks to determine their relevance. This software
is presented in section 7.4.
At this moment, the analysis software is still under development and,
because of its youth, it does not already fulfill all of its goals. There-
fore, we do not have relevant results to present using it already.
In parallel of the analyzer and simulator development, we attempt to
actually force an authentication on the sudo of some of our targets.

7.3.4 Program setup

As mentioned in section 7.3.1 we placed ourselves in the scenario
where the attacker is able to execute code as a legitimate user but
without knowing its credentials. We imagined a possible scenario
where an attacker is able to execute its own user code and try to
force a privilege escalation using a fault attack.
Therefore, our program setup is built to run without privilege access.
The tricky part is to be able to synchronize the injection with the
actual execution of the functions presented in figure 75.
To achieve the triggering, we decided to use the multi-processing ar-
chitecture of a Linux system. Two process are created by the user: the
first one will handle the communication with the attack bench and
send it a signal when the authentication process is supposed to hap-
pen. The second process is driven by the first one, i.e. the standard
input stdin of the second process is connected to a pipe shared with
the first process so it can write in (for sending the password) while
the standard output stdout of the second process is connected to the
standard output of the first process which is read by the bench during
the experiment. With this setup, the bench will have the information
if the authentication succeed or failed.
Once everything is set up, the first process start the execution of the
sudo program using the execlp command.
The figure 76 introduces the execution flow of our program.



7.3 sudo authentication 143

Bench Send signal Wait trigger Perturb Wait response

Process 1 Wait signal
Send (dummy)

password
Wait response Send response

Process 2 sudo ‘command’
Wait

password
Verify

password
Send

responseE

Figure 76: Target program execution flow

This figure presents the general architecture of our setup. The
communication between the first process and the bench is done
via a trigger signal. On our target, we are able to write on
the IOs from the user land, using the /dev/gpiomem file on
ARM targets and using a network LED accessible using the
/sys/class/leds/b43-phy0::radio/brightness file on Intel targets.
As mentioned, the first process communicates with the second one
after creating it using the fork function and redirect its standard in-
puts and outputs using the pipe and dup2 functions as presented in
listing 7.11.

303 if(pipe(pc_fd) < 0)

304 return EXIT_FAILURE;

/* Some code... */

311 pid = fork();

/* Some code... */

315 /* Child process */

316 else if(pid == 0){

317 close(cp_fd[0]); /* Close the read end of the child to

parent pipe */→֒

318 dup2(cp_fd[1], STDOUT_FILENO); /* Redirect STDOUT to the

write end of the child to parent pipe */→֒

319 close(pc_fd[1]); /* Close the write end of the parent to

child pipe */→֒

320 dup2(pc_fd[0], STDIN_FILENO); /* Redirect STDIN to the

read end of the parent to child pipe */→֒

321 execlp("sudo", "sudo", "-S", "whoami", NULL);

322 }

Listing 7.11: C code for the child process in the sudo evaluation setup.

This code shows the connecting process of the standard input and
output of the child to pipes. Also, one can see that the sudo program
will execute the whoami command. This command returns the user
name which is root in the case we have the root privileges (UID ==

0). However, any command can be used instead to realize a complete
privilege escalation.
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Once the second process is set up, the first one can control it by writ-
ing into the pipe connected to the standard input and reading from
the one connected to the standard output as shown in listing 7.12.

325 close(cp_fd[1]); /* Close the write end of the child to

parent pipe */→֒

326 close(pc_fd[0]); /* Close the read end of the parent to

child pipe */→֒

/* Some code... */

356 write(pc_fd[1], "pwd\n", 4);

/* Some code... */

370 read(cp_fd[0], buf, BUFSIZE);

Listing 7.12: Part of the C code for the parent process communicating with
the child process.

With this setup, we fully automatize a user land application to control
a process executing sudo while communicating to the attack bench
using IOs.
However, we need to evaluate how relevant this setup is before trying
to do any attack using it.

7.3.5 Side channel analysis

To test our setup, we decided to do a side channel analysis. The goal
is to determine if the trigger signal we are outputting to the bench is
relevant regarding the authentication process.
As presented in figure 76, the trigger is raised up right after the pass-
word is sent. According to the gdb trace presented in listing 7.9 the
prompt message is display in the verify_user and sudo_pam_verify

functions. This means that the trigger rise up after them.
We can conclude that, at most, the functions from libpam.so are ex-
ecuted, then the dynamic linker load pam_unix.so and then its func-
tions are executed before backing up the information about the suc-
cess of the failure of the authentication and executing the command
or not.
The figure 77 presents the EM activity of the CPU during both a failed
and a succeed authentication.
These traces were acquired on the BCM2711b0 (Raspberry Pi 4) target.
The acquisition of these traces require to success the authentication,
so we realized them on a mastered target. Therefore, an accessible de-
vice is needed for this characterization. The blue signal corresponds
to the EM activity and the orange signal corresponds to the trigger
signal received by the bench.
To obtained these traces, we placed the side channel probe at the
position X = 6.5mm and Y = 5.9mm regarding the BCM2711b0 layout
available in figure 60.
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Figure 77: EM activity of the CPU during a user authentication on
BCM2711b0

Regarding the traces on figure 77, we can identify two activity areas.
One constant in time and one time variable depending on the success
or the failure of the authentication. At this point we can suppose
that the first activity area corresponds to the load of the pam_unix.so

library in the memory while the second area matches with the hash
comparison.
To confirm this hypothesis, we can check the compared hashes. In-
deed, as shown in listing 7.9, the two hashes have a common pre-
fix $6$hH.15uU5laaxuXHY$ which is added to the real password hash
by the Linux kernel before the comparison. As this prefix is always
the same, the strcmp never fail while comparing the first part of the
hashes. Also, this prefix is 20B long while the compared hash (prefix
included) are 106B long. Therefore, comparing two different hashes
must be five times faster than comparing the same hashes, if the first
character after the prefix is different as it is the case in listing 7.9.
Regarding the figure 77, we can see that in the case of a failed au-
thentication, the second activity area lasts for around 400ms (from
4500ms to 4900ms). While, in the case of a succeed authentication,
the second activity area lasts for around 2200ms (from 4500ms to
7700ms). As the ratio of the execution time of these areas (400/2200 =

0.182) is close to the ratio of identity between the hashes (20/106 =

0.189), we can consider that they are correlated and that we actually
observe the hash comparison. However, we cannot confirm more this
hypothesis as it would require us to be able to forge a hash which par-
tially match the real one. But as the hash algorithm is SHA512 (iden-
tified by the $6$ identifier in the common prefix) obtaining hashes
which partially collide require to brute force them. This is too much
time consuming to actually doing it, for instance, we need to generate
25610 = 280 passwords to have a collision with 10 common bytes.

7.3.6 Exploitation

Regarding our side channel analysis, we are confident that our setup
able us to observe a relevant trigger regarding the sudo authentication
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and in particular the hash comparison. However, we are limited to a
sub-part of the whole process execution because the trigger is raised
up just after the password is sent.
Another strategy would have been to rise the trigger just before start-
ing the sudo program. However, this would lead to a long execution
window making it hard to attack.
This is why we decided to stick with the first solution, as we can
observe the program behavior with a reasonable time window, we
decided to attack the authentication with a perturbation (laser on
BCM2711b0 and EM on Intel Core i3). As we did not already fully
analyzed the program, we sweep over the time window and observe
the consequences.
However, this method did not give us interesting results already. This
might comes from the fact that, despite we have the smallest time win-
dow possible, it remains large regarding the CPU frequency. Therefore,
to have a not to long experiment we had to use a large step for the
sweep and we therefore must have missed the interesting areas to
fault.
This large time window shows how important it is to analyze such
program. The goal is to reduce the interesting time window to accel-
erate the sweeping process.

7.3.6.1 Enhancing existing attack

Another interesting way to evaluate a system is to enhance proofs of
concept attacks to turn them into real attack.
In [166], the authors successfully force two different hashes to be con-
sidered as the same by the strcmp function used in the verify_pwd_-

hash function of the pam_unix.so file. Contrary to us, they target the
su program, which is close to the sudo program as it able to change
the user identity (and therefore its privilege level).
However, to achieve this attack, the authors modified the libpam li-
brary by adding a trigger in the libpam_misc module. As this addi-
tion requires to have the root privilege, this attack is not a privilege
escalation but a proof of concept of the weakness of the strcmp func-
tion against the instruction skip fault model. The attack consists in
exiting the comparing loop of the strcmp function by skipping a cbz

instruction (Compare and Branch on Zero in ARM).
Regarding this work and, using our attack setup and analysis, we
should be able to realize a real privilege escalation as we are able to
identify the strcmp function execution, with root privileges, using a
user land trigger and side channels. However, we did not identified
the same fault model as theirs (instruction skip) and their target is
not clearly identified.
Another enhancement would be to identify the strcmp function exe-
cution with a pattern recognition method. Doing so, the attack would
be portable on any target leaking the library loading and strcmp exe-
cution.
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7.3.7 Conclusion on the forced authentication

In this section, we presented our work aiming at evaluating the user
authentication process of the sudo program. This program is an in-
teresting example of a complete Linux program, it works with Linux
credentials management and it involves shared libraries and the dy-
namic linker in several ways.
The variety of mechanisms involved in the execution of a Linux pro-
gram and the important size of both the source code and the binary
code of the target program make an exhaustive analysis really time
consuming. Therefore, we focused on determining the interesting
parts of our program such as the pieces of code manipulating the
information storing if the authentication succeed or failed.
We have done this analysis by recompiling the target program with
debug symbols and using the gdb tool. This way, we were able to
identify the architecture of the sudo program regarding the user au-
thentication. However, for a more precise analysis of the involved
functions, and due to the important size of both the code and the
binary, we need a more automatized tool.
In parallel of the code analysis, we realized a software setup which
able to attack the sudo program from the user land and we analyzed
it using side channels. This analysis gives us the information that we
are able to have a trigger around the dynamic linker execution and
the hash comparison. However, we were not able to achieve an attack
forcing the authentication due to our lack of precision regarding the
important time window the program executes in. This highlights the
need of a tool that helps us to determine the interesting pieces of code
to fault and to time our perturbation with them.
However, a recent work [166], successfully forced an authentication
on a modified libpam with an instruction skip fault model on the
strcmp function. As our setup does not need any root privilege and
that we are able to identify the strcmp execution via side channels, if
we are able to realize instruction skips, we might be able to realize a
real privilege escalation.
Despite this would lead to a successful attack, it is only one identified
attack path and there is a lot of work remaining to actually assess the
security of such program.

7.4 analysis tools

As we have seen in the above section, analyzing a Linux program is a
complex task due to its size and some kernel mechanisms involved in
the execution. Also, due to their large execution time, blindly sweep
over the execution time to find an interesting moment to attack is a
very time consuming step. Therefore, being able to simulate an attack
regarding a fault model on a whole program will save a lot of time in
the evaluation of such programs.
For these reasons, we decided to develop an analysis and fault sim-
ulation tool which is adapted for Linux programs. This tool aims at
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automatizing the steps we have done in the sudo program analysis
(section 7.3). As we have done it with gdb one can think than we can
re-use it and scripts it to realize both the analysis and simulation part.
The main issue in using gdb is that it is architecture dependent and if,
for instance, we want to analyze an ARM compiled program we have
to work on an ARM system or use an emulation solution. Therefore,
we decided to base our tool on a architecture independent debugging
solution: angr3.
Using this solution, we want to realize at least the same operation we
have done with gdb in section 7.3 but also set up a simulation envi-
ronment suitable and actually simulate fault in during the program
execution. The global architecture of our wanted solution is presented
in figure 78.
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Figure 78: Analyzer and simulator software architecture.

This figure presents the global architecture of the analysis and simu-
lation software we aim to have. It is composed of two main parts: the
function analyzer and the fault simulator. Both take as the main in-
puts the binary file, the shared libraries and the functions to analyze
of simulate.

7.4.1 The function analyzer

The function analyzer aims at determining the architecture of the tar-
get program such as we have done with sudo in section 7.3. It will
also help in getting the information needed to setup the simulation
environment. To do so it is composed of three main functions.
The first one is a function call analyzer which aims at determining all
the calls that are done during the program execution. This helps to
determine the involved functions and shared libraries. At the very be-
ginning this block is only aware that there is a main function and build
the call tree from this point. Then we might be able to add the shared

3 https://angr.io/

https://angr.io/
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libraries and functions we want to analyze and so on. However, it is
important to keep in mind that for the analysis to be done efficiently
the shared libraries have to be compiled with debug symbols. Other-
wise the calls cannot be resolved. Regarding the simulation part, it
helps to determine the calls we want to hook during the simulation,
this aims at reducing the actual simulated code and focus only on the
interesting part. Indeed, some functions such as error printing are
not needed to be correctly simulated and it is therefore interesting to
hook them to fasten the simulation.
The second function is a function printer. It aims at providing a syn-
thesized but complete overview of a given function. This helps at
understanding the architecture of a function and therefore determine
the interesting instructions to fault. This able us to avoid to test a
fault on all instructions of the program but only focus on interesting
ones. However, in the case of very large functions (like the sudoers_-

policy_main in sudoers.so), this tool is not efficient enough to pro-
vide a view which is actually exploitable for determining interesting
instructions to fault by a human. Therefore, automatizing this step
would give a huge added value to our software and is an interesting
topic to work on. This function summary also helps at identifying a
start address for the simulation. Indeed, simulating the whole pro-
gram is useless if we aim at targeting a precise piece of code and
would be really time consuming. Therefore, identifying the address
where to start the simulation is important. Doing so also imply the ne-
cessity of given an initial state for the simulation environment as the
simulation will not start from the main function. The printing func-
tion can display the disassembly in a shell as in figure 79 with arrows
for the branch instructions and by coloring the basic blocs, in Tikz as
in appendix D with also arrows for the branch instructions and basic
blocs in actual blocs and in HTML4 with basic blocs in actual blocs
and clickable links for branches with a highlight of the targeted basic
bloc.
The third function aims at determining all the memory accesses done
during the program execution. This is useful to initialize the relevant
parts of the simulation memory, in particular when we do not start
the program from the main function as suggested above.
All the tools presented in this section are developed with Python3

and are based on the angr library which is itself based on capstone5

and unicorn6.

7.4.2 Fault simulator

The fault simulator aims at testing a program security by injecting
faults in it at runtime. The main issue about simulating a Linux pro-
gram is the management of the shared libraries. However, angr man-

4 Live examples with sudoers_policy_check and sudoers_policy_main available at
https://thomas.trouchkine.com/demo/

5 http://www.capstone-engine.org/

6 https://www.unicorn-engine.org/docs/

https://thomas.trouchkine.com/demo/
http://www.capstone-engine.org/
https://www.unicorn-engine.org/docs/
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Figure 79: sudoers_policy_check function partial disassembly printed in a
shell.

age them smoothly as it automatically initialize a suitable memory
for the program and able to hook the unresolved functions.
However, as mentioned above in some cases, we do not want to start
the program execution from the start so we have to provide the target
address and modify the memory initialization. Actually, by default
angr allocate a memory but set every address as UNINITIALIZED.
Also, as we want to simulate fault injection, we need to inject faults.
This is done via a fault generator. Currently, the fault generator can
only generates fault instructions. The reason is that we focused on de-
veloping what we actually observed. The faulted instruction replaces
the actual instruction via a hook at the target address.
The last things to configure in the fault simulator are the ending
condition and the winning condition. The ending condition is useful
when we do not want to wait for the program to be fully simulated
but prematurely terminating it when we know that we can verify if
the attack succeed or not, usually we simply check that we reached
a certain instruction (the return of a specific function for instance).
The winning condition able the simulator to verify if the attack was
successful or not, if it is the case, it stores the fault, i.e. the fault in-
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struction and the address and try with another fault and/or another
target address. This process is summarized in figure 80.

Initialization

Generate and hook
fault instruction

One step execution

End ?

Win ?

Store fault

False

True

True

False

Figure 80: Fault simulation process.

This figure shows the main process of the fault simulator, as one can
see, the execution is step by step and the end condition is check after
every step. Therefore, our simulator is instruction accurate, this is
mandatory using angr. Another issue with the simulator is that, in the
case of dynamic linking, the dynamic linker behavior is not simulated.
Therefore, it is possible that our analysis miss the case the dynamic
linker is faulted.
However, we think that adding the simulation of the dynamic will
be too time consuming. An interesting way would be to analyze the
dynamic linker as a standalone program (hoping it does not do a dy-
namic linking itself) and assess its security against faults. If it appears
that the dynamic linker is sensitive to faults, it might be interesting
to model these faults an integrate them in the possible fault models
of our simulator.

7.5 evaluation conclusion

This chapter presented our work to evaluate the security of some
Linux programs against the faults we characterized on our targets.
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We managed to successfully realize a DFA on the OpenSSL implemen-
tation of the AES and a PFA on our AES implemented on our Raspberry
Pi 3 bare metal setup. Regarding the sudo program we identified an
exploitable attack path from a fault attack presented in ?? which is
suitable with our program attack setup. However, the authors have
a different fault model than the one we characterized, therefore, we
did not succeed to do the attack when we tried. But this is only one
attack path and many more might be available.
The attack on the AES gives us the information that despite CPU op-
timizations, it is still possible to synchronize a fault injection with a
specific moment of the program execution. However, the results we
observe does not match with a sequential execution of the AES. Re-
garding the sudo program, our side channel analysis confirm that the
parallel execution is negligible as we were able to observe the timing
differences on the comparison of similar or different hashes in the
strcmp function.
We also defined an analysis method for complex Linux programs like
the sudo one and we started to develop an software which aims at an-
alyzing such programs but also simulate them while injecting faults
to assess their resilience against faults.
This kind of software highlight many challenges as it aims at simu-
lating a complex system with shared library and a dynamic linker.
At the moment, we do not simulate the dynamic linker. We think the
best thing to do is to analyze it as a standalone software and assess
its security against faults. Therefore, not considering it in the simula-
tion will be relevant. Also, all shared libraries are not loaded during
the simulation but some calls are simply hooked at runtime. Despite
this reduces the coverage of the simulation, it makes it faster than an
exhaustive one. But to do so, we need to identify the relevant func-
tions to actually simulate and the one we can hook, this is what the
analysis part of our software is designed for.
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C O N C L U S I O N

This is how it ends.





8
C O N C L U S I O N

During this thesis, we aim at providing elements that would help the
evaluation of modern devices, also known as SoCs, against physical
attacks and in particular, perturbation attacks.
In chapter 1 we presented the need of security evaluation in gen-
eral and the special need regarding new technologies, in particular
mobile devices. Indeed, these mobile devices propose a wide variety
of services, including sensitive ones such as identification, payment
and healthcare. Doing so, they slowly replace security oriented, ded-
icated and evaluated devices, also known as SEs. Therefore, to match
new usages and not reduce our security level, we need to be able to
evaluated the security of these new devices.
Because, we already evaluate SEs, we have a good idea on the existing
physical attacks. However, the differences between SEs and modern
SoCs rise the question about the portability of the evaluation process.
This is why we presented in chapter 2 the main differences between
these devices and we highlighted that modern SoCs have a more com-
plex CPU than SEs, in many ways. More cores with more optimization,
which also execute a more complex architecture.
By considering this complexity, we developed a fault characterization
method we presented in chapter 5 and that we used in chapter 6

on three targets representing the available modern devices with two
ARM and one Intel devices. This characterization work helped us to
determine that all the targets are faulted in the same way indepen-
dently of the injection medium, here EM and laser perturbations, and
independently of their architecture. Despite, the exact fault model
may vary from a target to another, we were able to modify the sec-
ond operand of a target instruction on all of them. This gives us the
information that these targets, and maybe many more, share a similar
mechanism which behave in the same way to perturbations. This is
interesting in many ways, the first one is that if we are able to iden-
tify the mechanism, we can propose a countermeasure and apply it
to all the devices with these mechanism. However, this also means
that if an attack using a fault on this mechanism works on a device,
there is great chances that it works on another devices with the same
mechanism.
However, we did not focused on identifying the mechanism and
proposing a countermeasure but we kept working on the evalua-
tion of SoCs. Indeed, in the chapter 7 we focused on assessing the
exploitability of the fault model we characterized. As we worked
on the Linux ecosystem, we identified all the specific elements of
a program execution in the environment, in particular the dynamic
libraries, the dynamic linker and the asynchronous process execution.
Despite these mechanisms, we were able to attack the AES algorithm
in two different ways, one with the operand corruption fault model
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doing a DFA and one with a persistent corruption in the cache using a
PFA. The DFA confirmed us that we are actually able to target a specific
round of the AES, even in an asynchronous and time variable execu-
tion environment while the PFA able to highlight that synchronization
issues may be avoided if a persistent fault is set in the memory sub-
system of the device.
The final evaluation we have done is on the sudo program. Our aim
was to evaluate the Linux authentication process regarding our fault
model. However, the complexity and size of such program makes
the analysis of such software a tricky and time consuming business
requiring debug tools, binary analysis and fault simulator software.
However, as this is a new topic, there is no such tools available for
modern devices. Therefore, we presented the analysis method and
the first development of tools which aim at easing the evaluation of
such software regarding fault attacks.
Answering all these questions gave us a large but precise overview
of the requirements for evaluating a modern device. However, and
despite it is important, we did not discuss about specific to SoCs coun-
termeasures in this work as it would be to time consuming regarding
the time available for a thesis.

identified research topics and future works

This work helped us to identify several relevant research topics and
future works which would help the scientific community to keep
working on the SoC evaluation against perturbation attacks.

An interesting topic is the development of an open signal manager
for attack benchs. Indeed, as mentioned in section 6.1.1, analyzing
the signals coming from a DUT and being able to produce a relevant
trigger signal for synchronizing a perturbation with a moment of
the target execution will be very helpful for the analysis of modern
devices. The main reason is that most of them, in particular smart-
phones, are closed devices and producing an efficient trigger is a
tricky business. Pattern matching methods are known to be efficient
but their implementations remain under intellectual property. An
open and public initiative on this topic would help researchers in
testing and evaluating relevant attacks while increasing the repeata-
bility of experiments on closed targets.

Regarding our characterization, as we identify similar fault models
on different targets using different injection mediums, it is important
to determine which mechanism is common to these targets, why
its perturbation induces an operand corruption on the executed
instructions. Also, regarding this fault model, an interesting topic
would be the development of a solution to protect instructions
against corruptions.
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From the software point of view, our work highlight the importance
of the dynamic linker in the execution of a program in the Linux
environment. An interesting topic would be to analyze the behavior
of this piece of code regarding perturbation attacks. Moreover,
identifying security concerned pieces of code in the Linux kernel and
propose an analysis against faults and even countermeasure should
be an important research topic in the future.

Finally, the last interesting topic we identified is the development of
a tool which helps in the analysis of programs running in the Linux
environment against faults. Indeed, currently existing code analyzers
work on reduced pieces of code in a simple environment (limited
links and sequential execution).
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(a) Unknown fault model
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(b) “Or with other obs”
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(c) “Other obs value”
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(d) “Or between two other obs”
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(e) “Bit reset”
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(f) “Bit set”
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(g) “Bit flip”

Figure 81: BCM2837 hot spots leading to the different observed fault models
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B
FA U LT A N A LY Z E R I N T E R FA C E

Currently, the fault analyzer (presented in section 6.1.3.2) proposes
two interfaces, a command line interface based on the Cmd frame-
work1 and a graphical interface based on the Gtk3 framework2.
The listings B.1 to B.3 shows how the command line interface look
like.
The listing B.1 presents the first view which lists the available exper-
iments to analyze. The start next to the index means that the exper-
iment is already analyzed and therefore, that the results can be dis-
played. To start an analysis, the user just has to type analyze <index>

and to print the available results print <index>. Which will display
something like presented in listing B.2.

fa> print

Manips

========

[0]* bcm2837_andR8_iv4_EM_fix_20200127

[1]* bcm2837_orrR5_iv3_EM_fix_20200124

[2] bcm2711b0_orrR5_iv5_laser_20x_4v_20ns_carto_zoom_20200210

[3] bcm2711b0_orrR5_iv5_laser_20x_4v_20ns_carto_full_20200210

[4] bcm2711b0_orrR5_iv5_laser_20x_4v_20ns_carto_core_20200211

[5] bcm2711b0_sudo_debut_laser_20x_4v_20ns

Listing B.1: Fault analyzer command line interface (List of experiments). Ex-
periments with a star (*) are already analyzed.

fa> print 0

bcm2837_andR8_iv4_EM_fix_20200127 available results

=====================================================

[0] General statistics

[1] Effect of the power value

[2] Effect of the delay

[3] Observed statistics

[4] Faulted values statistics

[5] Fault model statistics

Listing B.2: Fault analyzer command line interface (List of results)

This listing presents the available results for the selected experiment,
the results vary from an experiment to another but some are always
available such as the general statistics. To display a specific result,
the user has to type print <experiment_index> <result_index> or

1 https://docs.python.org/3/library/cmd.html

2 https://python-gtk-3-tutorial.readthedocs.io/en/latest/
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fa> print 0 0

bcm2837_orrR5_iv3_EM_fix_20200124 results

===========================================

General statistics

+------------------------------------------+-------+

| Statistic | Value |

+------------------------------------------+-------+

| Number of operations to do | 21000 |

| Number of operation done | 13538 |

| Percentage done (%) | 64.47 |

| Number of reboots | 800 |

| Percentage of reboots (%) | 5.909 |

| Number of responses bad formated | 3145 |

| Percentage of responses bad formated (%) | 23.23 |

| Number of faults | 436 |

| Percentage of faults (%) | 3.221 |

| Number of faulted obs | 489 |

| Average faulted obs per fault | 1.122 |

+------------------------------------------+-------+

Listing B.3: Fault analyzer command line interface (Result)

print <experiment_index> a to display all of them. This display the
results in the form of a table as presented in listing B.3.
This listing presents a specific result displayed in the form of a table.
It is possible to display the HTML or the LATEX version of this table
via the -html or -latex flags. Also, it is possible to plot a result via
the plot command or to merge to results in a new one via the merge

command. This is useful for comparing the results of two different
experiments for instance.
The second interface, is the graphical interface based on the Gtk3

framework and is presented in figure 82.

Figure 82: Fault analyzer graphical interface

This interface is divided in two parts, the left part lists the available
experiments and the right part displays the selected results. However,
this interface is not mature and does not implement all the functions
such as the plotting or the merge.
The implementation of such interfaces is made as simple and straight-
forward as possible. To have a functional interface the only needed
thing is to implement functions that are mapped on the analyzer Core
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functions, such as print, plot, analyze, etc. Then the interface must
simply get the Core class as argument such as presented in listing B.4.

1 if __name__ == "__main__":

2 c = Core(**CONFIG)

3

4 # Argument parsing...

5

6 if args.gui:

7 interface = Gtk3FaultAnalyzer(c)

8 interface.start_interface()

9 else:

10 interface = Cmdline(c)

11 interface.cmdloop()

Listing B.4: main of the fault analyzer





C
G D B A N A LY S I S O F SUDO W I T H D E B U G S Y M B O L S

1 Breakpoint 1, __strcmp_avx2 () at

../sysdeps/x86_64/multiarch/strcmp-avx2.S:92→֒

2 92 ../sysdeps/x86_64/multiarch/strcmp-avx2.S: No such file or

directory.→֒

3 0x5637b173b050: "$6$hH.15uU5laaxuXHY$wtSOcCKWmY1JmyY2CWlVs/8ixyO ⌋

N36ZxQV2RpMJkITzqkIM18lyXNMICoYNIVDeUVXqH0Fs390nl6Lw8m5ArZ0"→֒

4 0x5637b173a200: "$6$hH.15uU5laaxuXHY$4b7acwY3u21L9Wd8TxQeCIkpmas ⌋

NufgDzIrScjXreP8oFQA4c.0nZmcYJB2zf5p6rDvPdBC0Fo6JWvquBKaVc."→֒

5 #0 __strcmp_avx2 () at ../sysdeps/x86_64/multiarch/strcmp-avx2.S:92

6 #1 0x00007fb956a006a0 in verify_pwd_hash (p=0x0, hash=0x5637b173a200

"$6$hH.15uU5laaxuXHY$4b7acwY3u21L9Wd8TxQeCIkpmasNufgDzIrScjXreP8oFQ ⌋

A4c.0nZmcYJB2zf5p6rDvPdBC0Fo6JWvquBKaVc.", nullok=0x0) at

passverify.c:124

→֒

→֒

→֒

7 #2 0x00007fb956a00050 in _unix_verify_password (pamh=0x5637b173fd30,

name=0x5637b173fed0 "toto", p=0x5637b173aad0 "", ctrl=0x40800400)

at support.c:792

→֒

→֒

8 #3 0x00007fb9569fc6fb in pam_sm_authenticate (pamh=0x5637b173fd30,

flags=0x8000, argc=0x1, argv=0x5637b1734620) at pam_unix_auth.c:177→֒

9 #4 0x00007fb956a1c024 in _pam_dispatch_aux (pamh=0x5637b173fd30,

flags=0x8000, h=0x5637b173c980, resumed=PAM_FALSE,

use_cached_chain=0x0) at pam_dispatch.c:110

→֒

→֒

10 #5 0x00007fb956a1c62c in _pam_dispatch (pamh=0x5637b173fd30,

flags=0x8000, choice=0x1) at pam_dispatch.c:411→֒

11 #6 0x00007fb956a1b68b in pam_authenticate (pamh=0x5637b173fd30,

flags=0x8000) at pam_auth.c:34→֒

12 #7 0x00007fb956a351f9 in sudo_pam_verify (pw=0x5637b1731318,

prompt=0x5637b1740f10 "[sudo] password for toto: ",

auth=0x7fb956a94220 <auth_switch>, callback=0x7fff76368d50) at

../../../plugins/sudoers/auth/pam.c:187

→֒

→֒

→֒

13 #8 0x00007fb956a3477e in verify_user (pw=0x5637b1731318,

prompt=0x5637b1740f10 "[sudo] password for toto: ", validated=0x2,

callback=0x7fff76368d50) at

../../../plugins/sudoers/auth/sudo_auth.c:328

→֒

→֒

→֒

14 #9 0x00007fb956a36a76 in check_user_interactive (validated=0x2,

mode=0x1, auth_pw=0x5637b1731318) at

../../../plugins/sudoers/check.c:153

→֒

→֒

15 #10 0x00007fb956a36d01 in check_user (validated=0x2, mode=0x1) at

../../../plugins/sudoers/check.c:223→֒

16 #11 0x00007fb956a5356c in sudoers_policy_main (argc=0x1,

argv=0x7fff76369230, pwflag=0x0, env_add=0x0, verbose=0x0,

closure=0x7fff76368ef0) at ../../../plugins/sudoers/sudoers.c:388

→֒

→֒

17 #12 0x00007fb956a4e516 in sudoers_policy_check (argc=0x1,

argv=0x7fff76369230, env_add=0x0, command_infop=0x7fff76368fd8,

argv_out=0x7fff76368fe0, user_env_out=0x7fff76368fe8) at

../../../plugins/sudoers/policy.c:866

→֒

→֒

→֒

18 #13 0x00005637b0270d5d in policy_check (plugin=0x5637b0285580

<policy_plugin>, argc=0x1, argv=0x7fff76369230, env_add=0x0,

command_info=0x7fff76368fd8, argv_out=0x7fff76368fe0,

user_env_out=0x7fff76368fe8) at ../../src/sudo.c:1162

→֒

→֒

→֒

19 #14 0x00005637b026c753 in main (argc=0x2, argv=0x7fff76369228,

envp=0x7fff76369240) at ../../src/sudo.c:250→֒

Listing C.1: gdb output of a strcmp call comparing two hashes with libraries
compiled with debug symbols.
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D
SUDOERS_POLICY_CHECK() D I S A S S E M B LY

0x419274: push r4, r5, r6, r7, r8, sb, sl, fp, lr

0x419278: mov sl, r1

0x41927c: ldr r4, [pc, #0x14c]

0x419280: ldr r5, [pc, #0x14c]

0x419284: add r4, pc, r4

0x419288: ldr lr, [pc, #0x148]

0x41928c: ldr r5, [r4, r5]

0x419290: sub sp, sp, #0x24

0x419294: mov fp, r2

0x419298: ldr r1, [r5]

0x41929c: str r5, [sp, #0xc]

0x4192a0: str r1, [sp, #0x1c]

0x4192a4: ldr r2, [r4, lr]

0x4192a8: ldr ip, [pc, #0x12c]

0x4192ac: ldr r1, [pc, #0x12c]

0x4192b0: ldr r5, [r2, #0x38]

0x4192b4: add ip, pc, ip

0x4192b8: mov r6, r3

0x4192bc: mov sb, r0

0x4192c0: ldr r2, [pc, #0x11c]

0x4192c4: add r0, ip, #0x70

0x4192c8: mov r3, r5

0x4192cc: add r1, pc, r1

0x4192d0: ldr r8, [sp, #0x48]

0x4192d4: ldr r7, [sp, #0x4c]

0x4192d8: bl sudo_debug_enter_v1 @ 0x40376c

0x4192dc: ldr r3, [pc, #0x104]

0x4192e0: mov r1, sl

0x4192e4: mov r0, sb

0x4192e8: ldr r2, [r4, r3]

0x4192ec: str r6, [sp, #0x18]

0x4192f0: str r8, [sp, #0x10]

0x4192f4: ldr r3, [r2]

0x4192f8: str r7, [sp, #0x14]

0x4192fc: tst r3, #2

0x419300: orreq r3, r3, #1

0x419304: streq r3, [r2]

0x419308: add r2, sp, #0x10

0x41930c: str r2, [sp, #4]

0x419310: mov r2, #0

0x419314: mov r3, fp

0x419318: str r2, [sp]

0x41931c: bl sudoers_policy_main @ 0x42029c

0x419320: cmp r0, #1

0x419324: mov r6, r0

0x419328: beq #0x419370

0x41932c: ldr r0, [pc, #0xb8]

0x419330: ldr r1, [pc, #0xb8]

0x419334: add r0, pc, r0

0x419338: mov r3, r5

0x41933c: add r0, r0, #0x70

0x419340: ldr r2, [pc, #0xac]

0x419344: str r6, [sp]

0x419348: add r1, pc, r1

0x41934c: bl sudo_debug_exit_int_v1 @ 0x403f88

0x419350: ldr r3, [sp, #0xc]

0x419354: ldr r2, [sp, #0x1c]

0x419358: mov r0, r6

0x41935c: ldr r3, [r3]

0x419360: cmp r2, r3

0x419364: bne #0x4193cc

0x419368: add sp, sp, #0x24

0x41936c: pop r4, r5, r6, r7, r8, sb, sl, fp, pc

0x419370: ldr r3, [pc, #0x80]

0x419374: ldr r2, [pc, #0x80]

0x419378: add r3, pc, r3

0x41937c: ldr r3, [r3]

0x419380: cmp r3, r2

0x419384: bls #0x41932c

0x419388: ldr r3, [pc, #0x70]

0x41938c: ldr r3, [r4, r3]

0x419390: ldr r2, [r3, #0x82c]

0x419394: cmp r2, #0

0x419398: bne #0x41932c

0x41939c: ldr r2, [r3, #0x848]

0x4193a0: cmp r2, #0

0x4193a4: bne #0x41932c

0x4193a8: ldr r3, [r3, #0x880]

0x4193ac: cmp r3, #0

0x4193b0: bne #0x41932c

0x4193b4: bl sudo_auth_needs_end_session @ 0x40480c

0x4193b8: cmp r0, #0

0x4193bc: ldreq r3, [pc, #0x40]

0x4193c0: ldreq r3, [r4, r3]

0x4193c4: streq r0, [r3, #0xc]

0x4193c8: b #0x41932c

0x4193cc: bl __stack_chk_fail @ 0x403898

Figure 83: sudoers_policy_check() Tikz disassembly.
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E
O P E N S S L A E S AES_ENCRYPT() R O U N D F U N C T I O N
( D I S S A S S E M B L E D )

This appendix presents the disassembled code corresponding to the
round introduced in listing 7.2. As this sample doesn’t not present the
full function, in particular the initialization steps, it is not enough to
understand the whole implementation of the round. However, some
information may help to understand.
The registers r0 to r3 are initialized with the first AES state XORed
with the first round key. The ip register stores the remaining number
of rounds (line 53).
The registers r0 and r7 to r9 contains the shifted and masked values
of the current state which are used as input for the pre-computed
tables.
The sl register corresponds to the stack limit of the current process.
It is the base address for the pre-computed tables.

e.1 openssl aes round computation (disassembled)

1 537b4: e79a4107 ldr r4, [sl, r7, lsl #2]

2 537b8: e00e7821 and r7, 0xff, r1, lsr #16

3 537bc: e79a5108 ldr r5, [sl, r8, lsl #2]

4 537c0: e00e8001 and r8, 0xff, r1

5 537c4: e79a6109 ldr r6, [sl, r9, lsl #2]

6 537c8: e00e9421 and r9, 0xff, r1, lsr #8

7 537cc: e79a0100 ldr r0, [sl, r0, lsl #2]

8 537d0: e1a01c21 lsr r1, r1, #24

9 537d4: e79a7107 ldr r7, [sl, r7, lsl #2]

10 537d8: e79a8108 ldr r8, [sl, r8, lsl #2]

11 537dc: e79a9109 ldr r9, [sl, r9, lsl #2]

12 537e0: e0200467 eor r0, r0, r7, ror #8

13 537e4: e79a1101 ldr r1, [sl, r1, lsl #2]

14 537e8: e00e7422 and r7, 0xff, r2, lsr #8

15 537ec: e0255468 eor r5, r5, r8, ror #8

16 537f0: e00e8822 and r8, 0xff, r2, lsr #16

17 537f4: e0266469 eor r6, r6, r9, ror #8

18 537f8: e00e9002 and r9, 0xff, r2

19 537fc: e79a7107 ldr r7, [sl, r7, lsl #2]

20 53800: e0211c64 eor r1, r1, r4, ror #24

21 53804: e79a8108 ldr r8, [sl, r8, lsl #2]

22 53808: e1a02c22 lsr r2, r2, #24

23 5380c: e79a9109 ldr r9, [sl, r9, lsl #2]

24 53810: e0200867 eor r0, r0, r7, ror #16

25 53814: e79a2102 ldr r2, [sl, r2, lsl #2]

26 53818: e00e7003 and r7, 0xff, r3

27 5381c: e0211468 eor r1, r1, r8, ror #8
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172 openssl aes aes_encrypt() round function (dissassembled)

28 53820: e00e8423 and r8, 0xff, r3, lsr #8

29 53824: e0266869 eor r6, r6, r9, ror #16

30 53828: e00e9823 and r9, 0xff, r3, lsr #16

31 5382c: e79a7107 ldr r7, [sl, r7, lsl #2]

32 53830: e0222865 eor r2, r2, r5, ror #16

33 53834: e79a8108 ldr r8, [sl, r8, lsl #2]

34 53838: e1a03c23 lsr r3, r3, #24

35 5383c: e79a9109 ldr r9, [sl, r9, lsl #2]

36 53840: e0200c67 eor r0, r0, r7, ror #24

37 53844: e49b7010 ldr r7, [fp], #16

38 53848: e0211868 eor r1, r1, r8, ror #16

39 5384c: e79a3103 ldr r3, [sl, r3, lsl #2]

40 53850: e0222469 eor r2, r2, r9, ror #8

41 53854: e51b400c ldr r4, [fp, #-12]

42 53858: e0233466 eor r3, r3, r6, ror #8

43 5385c: e51b5008 ldr r5, [fp, #-8]

44 53860: e0200007 eor r0, r0, r7

45 53864: e51b6004 ldr r6, [fp, #-4]

46 53868: e00e7000 and r7, 0xff, r0

47 5386c: e0211004 eor r1, r1, r4

48 53870: e00e8420 and r8, 0xff, r0, lsr #8

49 53874: e0222005 eor r2, r2, r5

50 53878: e00e9820 and r9, 0xff, r0, lsr #16

51 5387c: e0233006 eor r3, r3, r6

52 53880: e1a00c20 lsr r0, r0, #24

53 53884: e25cc001 subs ip, ip, #1

54 53888: 1affffc9 bne 537b4 <_armv4_AES_encrypt+0x34>
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abstract

Since the democratization of mobile devices, sensitive operations like payment, identification or healthcare, usually done
using security evaluated smartcards, are handled by these devices. However, mobile devices neither are designed for
security nor security evaluated. Therefore, their resistance against powerful attacks, like physical attacks is questionable.
In this thesis, we aim at evaluating the security of mobile devices against physical attacks, in particular perturbation
attacks. These attacks aims at modifying the execution environment of the device to induce bugs during its computation.
These bugs are called faults. These faults can compromise the security of a device by allowing the cryptanalysis of its
secret or forcing an unauthorized authentication for instance.
Mobile devices are powered by modern processors, which are the heart of this work, and are never evaluated against fault
attacks. However, our knowledge about fault attacks on smartcards is not relevant as the processors powering smartcards
are way less complex, in terms of number of modules, technology node and optimization mechanisms, than modern
processors.
Regarding this situation, we aim at providing rationals on the security of modern processors against fault attacks by
defining a fault characterization method, using it on representative modern processors and analyzing classical security
mechanisms against the characterized faults.
We characterized three devices, namely the BCM2837, BCM2711b0 and the Intel Core i3-6100T against fault attacks using
two different injection mediums: electromagnetic perturbations and a laser. We determined that these devices, despite
having different architecture and using different mediums are faulted in similar ways. Most of the time, a perturbation
on these devices modify their executed instructions.
As this is a powerful fault, we also analyzed classical security mechanisms embedded in such devices. We successfully
realized a differential fault analysis on the AES implementation of the OpenSSL library, which is used in every Linux
based operating system. We also analyzed the Linux user authentication process involved in the sudo program. This
work highlights the lack of tools to efficiently analyze Linux programs, which are rather complex with dynamic linking
mechanisms, against fault attacks.

résumé

De nos jours, nos appareils mobiles sont utilisés pour réaliser des opérations sensibles telles que du paiement, de
l’identification ou la gestion de services santé. Historiquement, ces opérations sont réalisées par des appareils conçus
et évalués pour résister à diverses attaques: les éléments sécurisés. En revanche, les appareils mobiles sont conçus pour
fournir la meilleure performance possible et ne subissent aucune évaluation de sécurité. Cet état de fait interroge sur la
résistance de ces appareils face aux attaques classiques contre lesquelles se protègent les éléments sécurisés.
Parmi ces attaques, nous nous proposons, dans cette thèse, d’étudier les attaques par perturbations. Ces attaques con-
sistent à modifier les conditions d’exécution du circuit ciblé afin d’induire des erreurs dans son fonctionnement. Ces
erreurs volontaires, communément appelées fautes, permettent de créer des failles dans la cible pouvant aller jusqu’à la
cryptanalyse d’un algorithme de chiffrement ou l’authentification d’un utilisateur non autorisé.
Bien que ces méthodes d’attaques soient connues et étudiées sur les éléments sécurisés, les appareils modernes reposent
sur des processeurs modernes présentant des différences par rapport aux processeur des éléments sécurisés. Cela peut
être le nombre de module qu’ils embarquent, leur finesse de gravure ou des optimisations.
L’impact de ces différences sur la sécurité des processeur n’a pas été étudié en prenant en compte la possibilité d’induire
des fautes. C’est ce que nous réalisons dans cette thèse. Nous définissons une méthode permettant de caractériser les
effets de perturbations sur un processeur moderne que nous appliquons sur trois processeurs représentatifs des appareils
existants: le BCM2837, le BCM2711b0 et l’Intel Core i3-6100T. Nous avons également utilisés deux moyens de perturba-
tion classiques: l’injection d’onde électromagnétique et l’utilisation d’un laser. L’étude de ces cibles, en variant les moyens
d’injections de faute, nous a permis de déterminer qu’elles réagissent toutes de manière similaire aux différentes pertur-
bations malgré leur différentes architectures. L’effet le plus marquant étant la modification des instructions exécutées.
Ce type de faute est très fort car il permet de modifier une partie du programme exécuté pendant son exécution. Vérifier
le programme avant de l’exécuter ne protège en rien face à ce type de fautes, par exemple. C’est pourquoi nous avons
également étudié la résistance des mécanismes de sécurité présents dans ces cibles face à ce type de faute. Nous avons
notamment réussi à cryptanalyser l’implémentation de l’algorithme de chiffrement AES de la bibliothèque OpenSSL, très
utilisé dans les systèmes utilisant Linux. Nous avons également étudié la résistance du mécanisme d’authentification des
utilisateurs d’un système Linux en regardant le programme sudo. Cette étude nous a, en particulier, révélé que la commu-
nauté manque d’outils efficace pour analyser ce type de programmes face aux fautes. En effet, les programmes s’exécutent
dans un environnement Linux bénéficient de nombreux mécanismes liés au noyau Linux qui rendent l’exécution d’un
programme difficile à étudier.


