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Chapter 1

INTRODUCTION

Electronic devices are part of our daily lives. Within the last two decades, their number

has grown significantly, notably due to the expansion of Internet of Things (IoT) devices.

These devices, connected (often wirelessly) to the Internet, are combined with sensors (to

collect "useful" data) and branded as "smart": smart watches, smart locks, smart cars,

smart homes, etc. IoT devices are exposed to numerous threats due to their broad use

[5]. As such, they are the target of attacks, aiming to retrieve sensitive informations, gain

control of the device, etc. Understanding where the vulnerability comes from (software

implementation, interactions with the physical world, microarchitectural optimizations,

etc.), how it is exploitable and how to fix it is essential to make better secured electronic

devices.

While most of these attacks are perpetrated willingly, the devices are also vulnerable

to a natural phenomenon: faults. A fault is a hardware failure, born from the interaction

between an electronic component and particles (namely, when it happens naturally, cos-

mic rays or radiations). If not detected and corrected, faults can have consequences that

range from enhancing a video game speedrun [14] to modifying an election result [13].

Furthermore, faults are a major concern for electronic devices used in space applications

[41]. Hardening the devices against faults is crucial to prevent abnormal behaviours. But

since natural faults are uncontrollable, several means to inject faults on purpose exist,

and their impact is analyzed to either perform attacks or design countermeasures.

The impact of faults is not limited to electronic components, it translates into higher

level effects, on the microarchitecture, on instructions. For example, a fault can affect

the control flow of a target program and be used to bypass security mechanisms [22].

Similarly, a fault can be used to recover information such as secret keys [28].

Fault injection means are various. For example, pushing your target beyond its opera-
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Introduction

tional limits by underpowering or overclocking it will cause faults. Electromagnetic fault

injections (EMFIs) are noteworthy as frequently employed due to their minimal setup

requirements. However, an EM fault impacts several signals at once, so its study can be

complex. In [8], Claudepierre et al. isolated a particular effect of EM on the phase-locked

loop (PLL), resulting in a specific alteration of the clock, that we call the synchronous

clock glitch (SCG). This glitch, when injected via TRAITOR (TRAnsportable glItch aT-

tack platfORm) [9], can be used in many-fault injection campaigns. Instead of injecting

one or two faults, as most fault injection means are capable of, TRAITOR can inject

dozens of faults, perturbing several instructions. This is particularly useful to bypass se-

curity measures [22, 39].

Several fault models explaining the impact of EMFI on electronic components [17, 36,

15] and at microarchitectural level (on instructions, data transfers, etc. [33, 34, 49, 50, 35])

have been published. Although explaining the consequences of the same fault impacts,

the link between the characterization levels is, as far as we know, not the main interest

of research works on fault injection. Concerning the SCG, the interest so far was on its

exploitation potential to perform attacks. The only characterization was done at microar-

chitectural level, the glitch supposedly causing instruction skip or repeat. By performing

fault injection using the SCG on an integrated circuit (IC), we quickly realised that the

microarchitectural characterization was lacking, the fault models being more diverse than

just instruction skip and repeat [9]. Furthermore, the existing physical fault models (fault

models that consider the impact on electronic components) do not explain how the SCG

leads to faults.

Our contributions, presented in this document, aim to offer an advanced characteriza-

tion of the SCG, from its impact on electrical components to the instructions. We believe

it is important work since this glitch has proven to be used in successful attacks and has

the capability to bypass software-based countermeasures. Understanding how the SCG

leads to faults in a circuit is crucial to design countermeasures against it. Furthermore, it

adds general knowledge on EMFI.
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Introduction

Our document is organized as follows. In Chapter 2, we give an overall view of the secu-

rity context of electronic devices, mainly their vulnerabilities and the existing exploitation

methods. Fault injections (FIs) (also referred to as fault injection attacks (FIAs)) are one

of many threats electronic devices are concerned with and are our main interest, due to

their potential for nuisance and their general impact on various targets. Chapter 3 gives

some basic knowledge on FI. To be able to understand correctly their impact on elec-

tronic devices, it is useful to have in mind the different impacted elements and targets.

Although we only mentioned EMFI in this introduction, several other FI methods exist

and are presented. Some of these methods are akin to EMFI in their impact character-

ization. In Chapter 4, we present state-of-the-art fault models that apply to EMFI and

associated injection means. This way, we highlight the diversity and complex nature of

EMFI impact on IC. From this diversity, we pick the SCG to study. Chapters 5 and 6 are

dedicated to understanding as well as possible this glitch and the impact it has at different

abstraction levels. First, we identify the vulnerable electronic components and the main

fault mechanism, from which we theorize the Energy Threshold Fault Model (ETFM).

This model is then expanded to higher levels to characterize the impact of the glitch; first

on a simple circuit, and finally on a processor. This last study, done on a commercial ASIC,

revealed that while we can gather some clues on how the microarchitecture elements are

impacted by the SCG, further research needs to be done on targets we have more control

and information on. Chapter 7 concludes this document and gives perspectives on future

works.
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Chapter 2

CONTEXT: THE VARIOUS SOURCES OF

SECURITY VULNERABILITY

Fault injection is part of a bigger ecosystem of vulnerability exploitation methods,

which it can be paired with. To make the study of the security challenges of electronic

devices easier, we define three sources of vulnerabilities, as depicted in Figure 2.1: software,

microarchitectural, and physical levels. The boundaries between these sources are porous:

vulnerabilities or their exploitation may come from the interactions between these levels.

application

software

library

function

code

instruction

processor

pipeline

memory, sensor, etc.

circuit

wires

DFF, logic gates

transistors

software

microarchitectural

physical

Figure 2.1 – Abstraction levels

Every aspect concerning the design of an electronic device can be a source of vulner-

ability exploitable by an attacker. For an electronic device to serve its purpose, it needs

to run specific software. Software can be seen as a succession of code lines written by a

human being with a specific goal. The software code is understandable by humans but

has to be broken down into smaller, simpler instructions in another language that the

hardware understands (this process is called compilation). This translation depends on

the underlying processor that runs the instructions according to a specific instruction set
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architecture (ISA). The most widely deployed ISAs are ARM, RISC-V, and x86. The

processor is in charge of executing each instruction and controlling the other electronic

components, such as memories, sensors, etc. To go even deeper, when we look at a proces-

sor at an electronic, physical level, we see an arrangement of smaller, lower-level electronic

components (registers, logic gates) designed to be as efficient as possible.

Throughout this chapter, to illustrate the different sources of vulnerabilities and the

different abstraction levels, we use the example of a PIN (Personal Identification Number)

verifier. To unlock a smartphone or pay with a credit card, a passcode (usually composed

of at least four numbers) is asked and compared with the device PIN. If the comparison

is valid, the operation is successful. Otherwise, the passcode is asked again. Usually, the

number of trials is limited, and each incorrect attempt decreases a counter that monitors

the number of failed trials.

2.1 Software Level

A simple PIN verification algorithm, inspired by the VerifyPin in [18], is presented

in Listing 2.2.

1 verify_pin()

2 if nb_try > 0:

3 if compare(userPin, devicePin) == True:

4 nb_try = 3

5 return True

6 else:

7 nb_try--

8 return False

9 return False

Figure 2.2 – PIN verification algorithm

Software can have numerous vulnerabilities, including the code itself, the compilation

process, the environment it runs in, etc. Since humans write software, mistakes in code

happen. One example is the use of a function or library that introduces vulnerabilities.

For example, stack buffer overflow attacks [46] rely on the use of a function that takes

data as an argument without checking its size. To explain this attack, we schematized a

simple function call and return in Figure 2.3. The numbers present on the left of the code

12
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listing serve as addresses for the sake of simplicity. In the main function, a function call to

my_function occurs (Figure 2.3a). For the execution to return to the main function after

it reaches a return instruction, the address of the following instruction (in our example,

8) is stored in an accessible part of the memory called the stack. When the execution

returns to the main function, it is removed from the stack (Figure 2.3b).

1 function my_function (arg)

2 variable var[size]

3 vuln_copy(arg, var)

4 return

5

6 function main (arg_from_user)

7 my_function (arg_from_user)

8 do_something_else()

function call

addr 8 pushed on the stack

Stack

var

addr 8

(a) Schematized function call routine

1 function my_function (arg)

2 variable var[size]

3 vuln_copy(arg, var)

4 return

5

6 function main (arg_from_user)

7 my_function (arg_from_user)

8 do_something_else()

function return

addr 8 pulled

from the stack

Stack

var

addr 8

(b) Schematized function return routine

Figure 2.3 – Function call and return

The buffer overflow attack exploits this mechanism, as well as the vulnerable function

defined earlier. By sending sufficient data to the vulnerable function, the attacker over-

writes critical information, such as the return address of my_function, and replaces it

with the address of the code they control, as illustrated in Figure 2.4.

13



Context: the Various Sources of Security Vulnerability

1 function my_function (arg)

2 variable var[size]

3 vuln_copy(arg, var)

4 return

5

6 function main (arg_overflow)

7 my_function (arg_overflow)

8 do_something_else()✗

function return

malicious address

pulled from the stack

Stack

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

address

Figure 2.4 – Schematized buffer overflow

Different solutions exist to prevent this attack, such as the use of canaries [16]. Some

data is placed before the return address and checked anytime a return procedure is engaged

to detect a stack buffer overflow attack. Additionally, parts of the memory where the

attacker could place their own code can be rendered unexploitable.

But these countermeasures are sometimes not enough. To bypass the non-executable

stack, an attacker can use a Return-Oriented Programming (ROP) attack [6]. Instead of

writing their own code on the stack, an attacker will craft their malicious code by using

already present instructions (found in functions, libraries, etc.). The attacker still needs to

perform a buffer overflow and take control of the control flow. Since the code is already in

exploitable zones in memory, the countermeasure is ineffective. ROP attacks rely on the

diversity of instructions accessible to the attacker. Reducing the number of instructions

by changing the compilation makes it harder to perform.

Network communications are also vulnerable. Among the various attacks, we can cite

spoofing (or cache poisoning), where an attacker corrupts specific data, such as IP ad-

dresses contained in the Domain Name System (DNS), to falsify their identity [25]. This

can be part of man-in-the-middle attacks, where the attacker inserts themselves into a

communication between two parties, acting as a malicious relay.
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2.2 Microarchitectural Level

At the microarchitectural level, vulnerabilities come from the processor, its implemen-

tation, or its communications with memories, sensors, etc. For example, Spectre [27] and

Meltdown [31] are attacks on the microarchitecture that target speculative execution.

Some processors implement speculative execution to enhance their performance. When

the execution reaches a branch, two choices are possible: the branch is taken, and the

execution resumes somewhere else in the code, or the branch is not taken, and the exe-

cution resumes at the very next instruction in the code. Whether the branch is taken or

not depends on a condition verification, which requires computations done beforehand.

These computations might take too long, and to optimize the branch mechanism, the

processor can “guess” if the condition will be verified or not. The processor can then start

executing the following instructions while the computations are still running. When the

computations are done, either the guess was correct, and the execution proceeds, or it

was incorrect, and the execution rolls back to the branch, and the other execution path

is taken. Although the instructions were “canceled,” they leave traces in the processor,

notably in caches, which an attacker can exploit. For example, Meltdown and Spectre can

be used to access higher-privileged data.

At this microarchitectural level (also at the physical level), the application of the

attacks to our example of the PIN verification code is less evident. Sometimes, attacks

(like Meltdown) can be used directly. Sometimes, the exploitation of microarchitectural

or physical vulnerabilities is used to perform a higher-level attack.

2.3 Physical Level

At the physical level, we consider hardware elements to be the source of vulnerabilities.

Observation attacks, such as side-channel attacks (SCA), are “passive” attacks. An at-

tacker measures the leaked physical information of a target, which includes timing, power

consumption, EM leakage, temperature changes, etc. without tampering with it. Histori-

cally, the main target of SCA was cryptosystems, with the goal to retrieve part of a secret

key used for decryption. These systems exist in a microarchitectural context, as they are

implemented in a general-purpose processor or have their own unit. For example, this

includes memory accesses, often through caches. SCA methods such as PRIME+PROBE

[47] and FLUSH+RELOAD [51] monitor the cache accesses. More specifically, an attacker
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can retrieve precious information, for example, on the secret key used in a cipher, by com-

paring the different amounts of time needed to access data in caches by the algorithm. This

is an example of a porous attack between two levels: although it is the microarchitecture

that is targeted, an attacker measures physical data such as time to perform their attack.

Today, applications for SCA are more diverse. It can be used for malware identification

[40] or to retrieve information on applications other than cryptographic, such as neural

networks [11].

If observation attacks are called “passive”, fault injection attacks (FIAs) (also men-

tioned interchangeably as FIs) are “active”: by perturbing the target signals, a fault alters

its behavior. Moreover, a fault affects physical and electronic elements (such as flip-flops

or transistors) but has repercussions at all levels. Since FIAs are our core interest in this

thesis, they will be explored in length in the following chapters.

Chapter Conclusion

Various methods exist to exploit vulnerabilities. Although it is not an absolute concept,

we divided attacks into three levels: software, microarchitectural, and physical. Some at-

tacks exploit vulnerabilities from one level, which then have repercussions on other levels.

Among these attacks, fault injections are a perfect example of this phenomenon. Although

considered here as physical attacks, faults are mostly exploited at the microarchitectural

level [43, 26, 50]. Understanding precisely a fault’s effect at several levels simultaneously

consists of a complex task. To do so, we must first have a solid knowledge of the possible

effects a fault has.
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Chapter 3

FAULT INJECTION

In this chapter, we give basic knowledge about fault injection. In order to inject faults,

it is essential to have knowledge on the impacted elements, as well as the different levels

of fault interpretation. Fault injection, as described in Chapter 2, is a physical means

of attack: it affects electronic elements such as transistors or D flip-flops (DFFs). The

chosen fault injection mean determines partly which elements are going to be faulted:

for example, clock glitching affects clocked elements. This being said, these electronical

elements often exist in bigger structures, such as processors. Thus, the fault does not

only impact a transistor or a DFF, it also affects cache transfers, pipelining, instructions,

etc. Interpreting the fault effects, i.e. finding fault models, can then focus on different

levels. For example, why EMFI prevents a DFF from sampling, or why it causes an

instruction to be skipped. Depending on the target, the interpretation is more difficult

or even impossible: most fault campaigns are done on commercialized integrated circuits,

and the amount of control and information on their implementation a user has can be

limited.

3.1 Knowing your target

3.1.1 A bit of electronic

First, we define the most common (or at least the most frequently mentioned in the

literature) electronic components (schematized in Figure 3.1) susceptible to fault injection:

transistors, logic gates, and DFFs. Transistors, when combined in certain ways, form logic

gates. A particular kind of gate, the not gate, is used to make DFFs.

17



Fault Injection

g

d

s

◦ D
Q

transistors logic gates flip-flops

Figure 3.1 – Vulnerable electronical elements

Transistors The most basic component of a circuit is the transistor. For the scope of this

thesis, transistors will be considered as switches that control the flow of current between

two terminals, the drain d and the source s, depending on an input g. There are two

kinds of transistors, nMOS and pMOS as depicted in Figure 3.2, that have complementary

behaviour. When g equals 1 in nMOS transistors, the source and the drain are connected,

thus closing the switch while they are disconnected in pMOS transistors. Inversely, when

g equals 0, the source and the drain are connected in pMOS transistors and disconnected

in nMOS transistors.

g

d

s

g

d

s

◦

Figure 3.2 – Simplified nMOS and pMOS transistors

Logic gates As their name suggests, they perform logic operations such as not, and,

or, etc. Let us take the example of a not gate. It is made of pMOS and nMOS transistors,

linked to each other, as well as to Vdd and Vss, as depicted in Figure 3.3.

18



Fault Injection

Power and ground

Vdd (or power) is a positive voltage signal. It can take different values depending

on the context such as 3.3V or 1.5V, for example. Here, Vdd will represent a logic

‘1’ value.

Vss (or ground, Gnd) is usually at 0V. Here, Vss will represent a logic ‘0’ value.

When the input is at 0, the pMOS transistor conducts (and the nMOS transistor does

not), which means that Vdd is connected to the output, which is then set to 1. When the

input is at 1, the nMOS transistor conducts (and the pMOS transistor does not), which

means that Vss is connected to the output, which is then set to 0.

◦

Vdd

Vss

input output input output◦

Figure 3.3 – not gate

All other logic gates are also made of a combination of transistors. It is then possible

to build combinational circuits made of logic gates. Another component necessary to

memorize data to build sequential circuits is the register.

Registers The main type of register considered in this thesis is the D-type Flip-Flop

(DFF). First, we need to define what is a latch. Latches are level-sensitive devices: the

state of the clock signal determines their behavior.
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Clock

The clock is used to set the cadence of a circuit. The signal oscillates between 0 and

1 every half period Tclk/2.

Tclk

Latches can be positive-level-sensitive (resp. negative), meaning they let data through

(transparent mode) when the clock is at 1 (resp. at 0). When the clock signal switches

to 0, the data is stored in the latch and stays latched until the next corresponding clock

state changes (latch mode).

D

clk = 0

CLK

CLK

clk = 1

CLK

CLK

clk = 1

CLK

CLK

clk = 0

CLK

CLK

Q

negative latch positive latch

Figure 3.4 – Schematized DFF

A DFF, as depicted in Figure 3.4, is composed of two level-sensitive latches, a negative

and a positive one. When the clock signal is at 0, the first latch is in transparent mode

and lets the data through, while the second is in latch mode and keeps the previous input

value. When the clock signal is at 1, the first latch is in latch mode while the second is

in transparent mode, and the data goes through the second latch. The instant when the

clock rises from 0 to 1 is called the sampling time. We call TD2Q the amount of time it

takes for the signal to go from D to Q after a clock rising edge.
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3.1.2 Let’s make a circuit

Normal execution:

LOGIC
D0 Q0

D1 Q1

clk

tsetup thold

clk

D1

Q1

Figure 3.5 – Normal execution of a simple synchronous circuit.

Using the components we defined above, we can make a circuit. An example composed

of two DFFs with some logic in between is depicted in the left part of Figure 3.5. For

proper sampling (or storage) to occur from D1 to Q1 in a DFF, the data coming from D1

must be stable during the setup and hold time window, defined by tsetup before and thold

after the rising edge of clk, respectively. This is illustrated in the right part of Figure 3.5.

Applied to the simple circuit of Figure 3.5, this window is conditioned by the propaga-

tion time of the signal from Q0 to D1, called Tprop. With Tclk the clock period and TD02Q0 the

propagation delay between D0 and Q0, the following equation must be verified otherwise a

timing violation may occur:

Tclk > TD02Q0 + Tprop + tsetup

If the right member of the equation is less than the left member, the surplus of time is

called the slack.

3.1.3 What makes a processor?

Now that we know some basic electronic components and how they interact with each

other, we can build more sophisticated circuits such as processors (or processing units).

In electronic devices (such as smartphones and computers), processors are the central

piece. Processors are often composed of many elements, schematized in Figure 3.6, that

interact with each other. Whether playing music, recording a video, or accessing protected

data, one (or several) processor is required to perform the operations and communicate

with other elements such as memories, sensors, or peripherals. How a processor behaves is

defined by its microarchitecture, which depends on its instruction-set architecture (ISA).
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cache
IF

ID EXE MEM
WB

register file

forwarding

unit

main

memory

Figure 3.6 – Schematized 5-stages in-order pipeline

Pipeline

To improve performance, most processors implement a pipeline, as schematized in

Figure 3.7. To allow instructions to be executed in parallel, each instruction is split into

several steps or pipeline stages. Let us assume that each step takes one clock cycle to com-

plete. Each step uses a different part of the processor, meaning that successive instructions

can be executed simultaneously as long as they are not at the same step.

cache
IF

ID EXE MEM
WB

register file

Figure 3.7 – Schematized 5-stages in-order pipeline (simplified)

The number of stages varies between processors. Figure 3.7 illustrates a 5-stage pipeline:

1. Instruction Fetch (IF): fetch the instruction from memory and update the Program

Counter (PC)

2. Instruction Decode (ID): decode the instruction
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Clock cycle 1 2 3 4 5 6 7 8 9

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

Figure 3.8 – Pipelined instruction chronogram ; each colored case corresponds to the data
sampled in the corresponding colored register or the register file

3. Execute (EX): read the needed registers from the register file and execute the

operations of the instruction

4. Memory access (MEM): if required, read or write data in memory

5. Write Back (WB): write the results of the previous step into the appropriate register

With a 5-stage pipeline, five instructions can be executed in parallel. At each clock cycle,

an instruction achieves completion, as represented in Figure 3.8.

This simplified explanation does not consider instructions that require more than one

clock cycle to complete. For example, arithmetic operations such as multiplication, or

instructions that require fetching data from memory. As it is, the pipeline we introduced

would need to stall for a few cycles to perform such operations. To avoid this situation, we

introduce two additional optimization mechanisms linked to the pipeline: cache memory

(and prefetch buffer) and forwarding.

Caches and prefetch buffer

To store data and instructions, processors need memory components that are accessi-

ble to the processor. To put it simply, if the access time of a memory is small (if retrieving

data from the memory takes little time), then it is expensive to implement. Conversely,

memories with longer access times are cheaper. To improve performance, processors im-

plement both types of memories. Faster memories, called caches, are small and placed

on-chip to limit costs.

As illustrated in Figure 3.9 and Figure 3.10, when the processor needs some data

(including instructions), it will first look into caches. If the data is there, it is a hit, and

the transfer of the data to the processor is quick (Figure 3.9). If not, it is a miss, and the

data needs to be transferred from other levels (further away from the processor) of the

memory hierarchy, which takes additional time (Figure 3.10).
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Figure 3.9 – Cache hit
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Figure 3.10 – Cache miss

In addition to caches, some processor implement a prefetch buffer: a small buffer that
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can carry a limited number of instructions, accessed in priority, before any caches.

Forwarding

Some processors implement an additional optimization mechanism: the forwarding

unit. To illustrate this mechanism, we take as an example a small snippet of RISC-V

assembly code in Figure 3.11. ins. 3 performs an addition between registers t3 and t4

ins. 1 addi t3, t3, 1 # t3 = t3 + 1
ins. 2 addi t4, t4, 2 # t4 = t4 + 2
ins. 3 add t5, t4, t3 # t5 = t4 + t3

Figure 3.11 – RISC-V assembly code example

and stores the result in register t5. However, t3 and t4 are modified in the previous

instructions.

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10

cache
IF

ID EXE MEM
WB

register file

addi t3, t3, 1

cache
IF

ID EXE MEM
WB

register file

addi t4, t4, 2

cache
IF

ID EXE MEM
WB

register file

add t5, t4, t3

t3 updated

t4 updated

t5 updated

2 cycle stall

Figure 3.12 – Pipeline - without forwarding

Without forwarding, as illustrated in Figure 3.12, ins. 1 and ins. 2 have to complete

their WB stage for ins. 3 to access the updated value of the registers, causing a stall of

two cycles. With forwarding, as illustrated in Figure 3.13, instead of only fetching the

register value from the register file, it is possible to get it from the MEM or EXE stage

of the previous instructions, and the instruction completes without any stall.
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CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

cache
IF

ID EXE MEM
WB

register file

addi t3, t3, 1

cache
IF

ID EXE MEM
WB

register file

addi t4, t4, 2

cache
IF

ID EXE MEM
WB

register file

add t5, t4, t3

t3 updated

t4 updated

t5 updated

Figure 3.13 – Pipeline - with forwarding

3.2 Abstraction levels

Each section presented so far in this chapter represents a level of interpretation of the

fault. The lowest level is the physical level, where fault models analyze the interaction

between FI and basic electronic components. At the physical level, the goal is to under-

stand why the photons injected from a laser pulse can switch a logic gate output or why

a DFF samples an incorrect value under EMFI. This level considers the analog nature of

electrical current and voltage signals.

By combining basic electronic elements into a circuit, we gain an abstraction level.

This is named the register-transfer level, where a fault is modeled as a logic signal al-

teration. Here, the analysis focuses on how a bit flip or a ’stuck at 0’ (or 1) propagates

through a circuit.

Finally, at the microarchitectural level, a fault is analyzed by its impact on the micro-

architecture. For instance, a bit-flip on the forwarding control signal in the pipeline can

lead to an instruction skip.Microarchitectural fault models include instruction-set archi-

tecture (ISA) fault models that represent a fault as an instruction modification. In other

words, at the ISA level, the consequence of a fault can be linked to one instruction be-

ing transformed into another. Some microarchitectural faults cannot be modeled at the

ISA level and can impact the data cache only. Figure 3.14 summarizes these different
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abstraction levels.

LOGIC
D0 Q0

D1 Q1

clk

register

file
cache

physical

register-transfer

microarchitectural

fault

interpretation

Figure 3.14 – Abstraction levels

3.3 Fault injection means

An attacker disposes of various means to inject faults. The first method of inducing

faults is to push the target beyond its nominal operating conditions. For example, under-

powering or overclocking the device will cause a fault in the target’s critical path. These

methods offer limited control over the fault.

The aim of laser fault injection is to perturb transistors by inducing localized electrical

currents. At the physical level, faults induced by lasers have been studied on memory cells

such as DFF [44] or SRAM cells [19], causing bit-set or bit-reset. This can translate at the

microarchitectural level into instruction skip [20] or instruction and data corruption [10].

Laser fault injection has a high spatial resolution, which makes it theoretically possible to

target any transistor in an electronic device with precision. However, to do so, the target

has to undergo physical modifications as to ease the laser beam action (a process known
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as decapping or decapsulation).

The aim of electromagnetic fault injection (EMFI) is to modify the electromagnetic

field of the target device, which induces swings in signals such as the clock, Vdd or Vss.

Similarly, voltage and clock glitching also induce swings in their respective networks. EM

faults are injected using a probe, meaning their impact is localized. Regarding voltage

and clock glitching, an attacker usually replaces the target’s source with their own, and

the fault impact is global to the circuit. As such, EMFI is similar to voltage and clock

glitching, and the fault models associated are discussed in length in Chapter 4.

3.4 And in practice, what do we fault?

The previous sections presented out-of-context, isolated elements. When performing

fault injection, we can not target an isolated register. This register is most likely part

of an Integrated Circuit (IC), i.e., a device composed of electrical components designed

for a specific use. This broad definition encompasses a wide range of objects, including

programmable devices, memories of every kind, microcontrollers, and Systems on Chip

(SoCs). For the scope of this thesis, we only focus on a subset of ICs: Application-specific

Integrated Circuits (ASICs) and field programmable gate arrays (FPGAs).

3.4.1 Field Programmable Gate Array (FPGA)

Definition An FPGA is a reprogrammable IC. As illustrated in Figure 3.15, an FPGA

contains the basic electronic elements defined in Section 3.1.1, grouped into Programmable

Logic Blocks (PLBs). An FPGA also has a grid of wires used to connect the PLBs.

At the intersection of wires, there are programmable Switching Matrices (SMs) to do

so. In addition, FPGAs include proprietary elements (pre-made resources such as clock

managers, etc.) whose sources are concealed.

Programming The PLBs and SMs are programmable using a Hardware Description

Language (HDL) such as VHDL or Verilog. HDLs describe a circuit and its behavior over

time (usually, the clock signal is used as a time reference). To transform the register-

transfer level (RTL) description of the circuit into a working application (ranging from a

blinking LED to a sophisticated processor softcore), we need specific software to do so,

usually proprietary (such as Vivado from Xilinx) and dependent on the target FPGA.
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PLB

PLB

PLB

PLB

SMSM

SM

SM

SM

Figure 3.15 – Schematized physical layout of a FPGA

The first step of the transformation is to simulate the circuit to check the code syntax

and the circuit behavior. The second step is the synthesis: the tool determines which hard-

ware components are needed and how to link them together. It might also optimize the

circuit (remove unused parts, factorize, etc.). The last step is the implementation. If place-

ment constraints were given, the tool maps the circuit (or circuit elements) accordingly.

The constraints may also specify which routes link two elements together. Otherwise, the

tool maps and routes the design with time and space optimization in mind. Finally, a

bitstream is created and can be uploaded into an FPGA.

Fault characterization We previously defined three levels of characterization: physi-

cal, register-transfer, and microarchitectural. For most FPGAs, we do not have access to

extensive information on their layout and the proprietary elements they integrate. How-

ever, if we want to look into DFF and their behavior for example, it is possible to gather

information on the fault impact by analyzing the DFF behavior.

First, since we can place and route our custom circuit at will, we can (depending on

the injection method) target specific DFFs directly. Otherwise, it is possible to recover the

DFF state at any time and thus locate faulted DFFs. Naturally, we can also get informa-

tion at higher characterization levels. For example, at the register-transfer level (RTL),

we can investigate whether the presence of logic gates between two registers influences the

fault impact. At the microarchitectural level, with a processor softcore implemented in an

FPGA, we can isolate the different vulnerable elements (pipeline stages, for example).
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In conclusion, FPGAs appear to be ideal for theorizing fault models. Nevertheless,

FPGAs are not used as much in everyday life as ASICs.

3.4.2 Application-Specific Integrated Circuits (ASICs)

Definition ASICs can be microprocessors, microcontrollers, or more complex Systems

on Chip (SoCs). Our interest in this thesis mainly focuses on processors. The same elec-

tronic components as in FPGAs are present, but these ICs are mostly proprietary, so we

may lack informations on the core layout and operation, which can be quite complex.

Programming We program applications to send to the core using general-purpose pro-

gramming languages (such as C) compiled for the target ISA (ARM, RISC-V, etc.), which

will be executed by the core (either bare-metal or through an Operating System).

Fault characterization The first challenge regarding fault injection on ASICs is to

identify the vulnerable physical parts of the processor. When using spatial fault injection

methods such as EM or laser, multiple fault injections are performed all over the target to

associate different zones with different fault models. Regarding power or clock glitching,

the fault effect is global in the processor, meaning that, in theory, any element receiving

power or clock signals can be faulted.

Given the lack of information about the physical layout, it is hardly possible to gather

experimental clues that confirm or deny fault models, both at physical or register-transfer

levels. Concretely speaking, fault models are mainly theorized at the microarchitecture

level. Contrary to FPGAs, ASICs are the most targeted ICs, as they are found in ev-

eryday electronic devices. Fault models, outside of their theoretical aspect, are used to

both lead successful fault injection campaigns and develop countermeasures, meaning that

understanding the fault impact at this level is crucial.

Chapter conclusion

This chapter aims to answer the following question: when performing fault injection

attacks, what elements are affected? Depending on the interpretation level, the answer

differs. If the goal is to design countermeasures at the physical level, then we will consider

that electronic elements are impacted. On the other hand, if we want to perform a fault

injection campaign to bypass security measures, we will look into the fault effect on the
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microarchitecture. Additionally, reaching our goal is also conditioned by the fault injection

means and the target.

In this chapter, we presented four means of fault injection: laser fault injection, EMFI,

voltage glitching, and clock glitching. For the remainder of this document, we only explore

the effect of the latter three because their impacts are similar. An overview of the fault

models that apply to these three fault models is presented in Chapter 4.
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Chapter 4

ANALYZING THE FAULT IMPACT

Although electromagnetic fault injection (EMFI), voltage and clock glitching differ in

their injection methods, some of their impacts are similar. For the sake of simplicity, in

this chapter, we present fault models tied to EMFI. However, some models could also be

applied to either voltage or clock glitching. The first section of this chapter describes the

general impact of EMFI. The next three sections present fault models for each abstraction

level (physical, register-transfer, and microarchitectural).

4.1 General Impact

4.1.1 Wires

In Chapter 3, we mentioned that ICs contain wires such as power, ground, and clock.

It was theorized in [17] that wires that form loops, such as power and ground wires,

are more likely to be impacted by an electromagnetic pulse (EMP). More precisely, wire

loops have a magnetic flux passing through them. When this flux encounters an EMP, it

is affected, which induces a parasitic current (swings, either positive or negative, in the

signal that is proportional to the EMP amplitude) in the loop. The induction current

provoked by the EMP mainly happens at the edges of the probe, with a much smaller

impact at the center of the probe. Two EMP-wire couplings can happen: one with Gnd

and one with Vdd. Within the same injection, both wires located underneath the probe

are affected simultaneously but asymmetrically. An IC contains many more wires, and it

would be hazardous to rule out couplings with other wires.

4.1.2 Capacitance

In [30], Liao et al. describe the Charge-based Fault Model. This model posits that an

EM pulse influences the circuit’s capacitance. When a circuit is overclocked or powered

with sub-nominal voltage, the amount of charge present is closer to the threshold required
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to flip a DFF under normal conditions. As a result, EM pulses can more easily perturb

DFFs. While it presents an interesting concept, it is primarily supported by experimental

data; no comprehensive explanatory model or simulation has yet been proposed. The

Charge-Based Fault Model does not provide a clear explanation of why a DFF would

store erroneous data. It only states that charges influence this outcome. Instead, it can

be viewed as a description of how other factors might aid in facilitating EMFI.

4.1.3 PLL

To the best of our knowledge, the first mention of the influence of EMFI on the PLL

was in [52]. The objective was to use the PLL as a detector for EMFI. The authors

consider the booting-up phase of the PLL, where it transitions from an “unlocked” state

to a “locked” one. This transition does not take the same amount of clock cycles with and

without EMFI, thus demonstrating the sensitivity of the PLL to EMFI.

Claudepierre et al.[8] have built on this work. When doing their own EMFI experi-

ments, they notice that the clock is significantly impacted. More precisely, the injection

modifies a clock cycle: the rising edge does not reach the high state because the injection

causes a drop in the signal until the next clock cycle. The glitched clock cycle delivers

less energy (it has a lower voltage for a shorter duration) but remains synchronous. The

authors also show that the injection may eliminate the cycle altogether, suggesting that

the characteristics of glitched clock cycles may vary between injections. In this thesis, this

specific clock glitch is referred to as synchronous clock glitch. Considering Yuan et al.

work, they assume that the PLL is the component vulnerable to EMFI. They bring two

additional arguments. The first one is of a geographical nature. Even if Claudepierre et

al. do not have the exact layout of their target chip, they hint at the position of the PLL

thanks to two pins carrying signals feeding it. When performing fault injections, this area

is the most sensitive. Furthermore, when the PLL is deactivated, they don’t observe any

fault. Although Claudepierre et al. identify the PLL as the vulnerable part of the chip,

they do not offer insight into the related mechanisms and why, when faulted, this triggers

incorrect behavior.
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4.2 Physical Fault Model

While EMFI has a global impact over a circuit, most physical fault models, presented

in this section, aim to explain how it influences DFFs behaviour.

4.2.1 Timing Fault Model

The Timing Fault Model (TFM) was the first of its kind to be proposed. In 2008,

Selman et al. [45] demonstrated that underpowering a circuit could lead to errors due

to setup time violations. Subsequently, in 2010, Agoyan et al. [2] showed that shifting a

clock’s rising edge in time can trigger similar effects. As illustrated in Figure 4.1, D1 is

unstable during the tsetup time. This violation of the timing constraint can cause Q1 to

enter a metastable state, potentially leading to a fault. In other words, when the input

timing constraints are not met, the value of Q1 becomes non-deterministic. In this context,

metastability refers to the phenomenon where a non-deterministic output is generated if

the DFF signal constraints are not adhered to. This setup time violation can occur due

to a reduction in the supply voltage of the logic, which extends its execution time (for

instance, by underpowering the circuit), or by advancing a clock cycle, resulting in the

logic having insufficient time to execute before the next rising edge. This model was

tsetup thold

Faulted execution:

LOGIC
D0 Q0

D1 Q1

clk

E

E

clk

D1

Q1 ?

Figure 4.1 – Timing Fault Model on a simple circuit.

initially suggested [15] to explain the effects of EMFI.
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The Timing Fault Model in a nutshell

→ data dependant

→ slack dependant

→ impacts power network

→ impacts critical paths first

→ fault window is timing independant

4.2.2 Sampling Fault Model

In [38], the authors question if an EMP only causes faults at the circuit level, as

introduced by the Timing Fault Model. Therefore, they propose their own fault model.

The Sampling Fault Model (SFM) says that faults happen at the gate level, meaning that

it is the DFFs’ behavior (more precisely, the sampling) that is impacted by the EMP.

The authors have developed specificities for their model to determine if a fault is due

to the Timing Fault Model or the Sampling Fault Model. First, they propose to increase

the target slack to prevent timing violations, thus preventing faults explained by the Tim-

ing Fault Model from occurring. Then, they look at the timing of a fault. In the case of

the Timing Fault Model, an EMP injected whenever in the clock cycle should lead to a

fault. In the case of the Sampling Fault Model, faults only happen around the rising clock

edge because the sampling process is impacted.

To the best of our knowledge, the most recent description of the Sampling Fault Model

is found in [17]. This article explains that an EM-pulse induces parasitic currents in wire

loops located beneath the probe. Consequently, as depicted in Figure 4.2, fluctuations

occur in the current of Vdd and Gnd, causing voltage bounces and drops, depending on

the injection polarity, which impacts all other wires in the circuit (the clock tree, DFF

routing, and others). In scenarios where a drop occurs, the pulse causes S = Vdd − Gnd

(and consequently all others signals) to temporarily decrease, halting circuit operation.

Depending on when S crosses the required energy threshold for all signals to return to

their nominal values, a fault may appear:

→ if S crosses the threshold before the nominal rising edge of clk, then D1 has enough

time to go back to normal and respect the timing constraints

→ if S crosses the threshold just before the nominal rising clock edge of clk, then a

race between D1 and clk ensues. Since the clock buffers are more powerful than
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the datapath ones, clk is more likely to recover its initial state while D remains at

0. The authors define this as a violation of the tsetup time constraint, leading to a

fault.

Normal execution:

LOGIC
D0 Q0

D1 Q1

clk

S

clk
•

D1

Q1

Faulted execution:

LOGIC
D0 Q0

D1 Q1

clk

E

S

clk
•

D1

Q1

Figure 4.2 – Sampling Fault Model on a simple circuit. The green signal represents the nominal
behavior of the clock.

This model has been further explored and reproduced in [53], with refinements to the

coupling model and coverage of cases not previously examined: how to create a fault with

a positive pulse when the DFF input is high. A distinctive characteristic of the Sampling

Fault Model is the fault sensitivity window which has been experimentally confirmed as a

specific timing window relative to the rising edge of the clock, during which faults can be

induced. Because of the race condition between clk and D1, a fault can only occur within

a narrowly defined timing window around the clock’s rising edge. This sensitivity window

remains constant for a given circuit, irrespective of its frequency, but is influenced by the

logic situated before the targeted DFFs.
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The Sampling Fault Model in a nutshell

→ data dependent

→ slack independent

→ impacts all wires

→ impacts DFFs, depending on the probe position

→ fault window constant, around rising clock edge

4.2.3 Nabhan’s Fault Model

In [37], the authors question the legitimacy of the Sampling Fault Model. They find

inconsistencies in the Sampling Fault Model based on their experiments and subsequent

observations:

— The injection window (period of time where an EMP causes faults) shrinks when

the target’s frequency grows, whereas the Sampling Fault Model says that this

window should be constant independently of the frequency.

— The faults are data dependent, which contradicts the authors’ understanding of

the Sampling Fault Model.

— The fault window length is tied to the propagation path of logic, but the Sampling

Fault Model says that faults happen in DFFs, so logic before it doesn’t matter.

— They do not observe a link between the kind of fault (bit-set and bit-reset) and

the polarity of the injection, contrary to the Sampling Fault Model.

Furthermore, the authors of [37] theorize that it is the clock wires that are impacted by

EMFI, whereas the Sampling Fault Model’s authors think it is the power and ground

network. Nabhan et al. propose their fault model based on EM-generated clock glitches

only. Since the authors do not name their model, we will call it Nabhan’s Fault Model

(NFM) in this thesis.

This model states that the EM pulse will trigger either a bounce or a drop of the clock

signal, depending on the pulse polarity. It echoes the swing model in the Sampling Fault

Model. They observe three cases, as illustrated in Figure 4.3.

1. The swing does not trigger any effect if

— a drop happens when the signal is already low,

— a bounce happens when the signal is already high.

2. The swing causes a shift of the clock’s rising edge if
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— a drop happens just after the rising clock edge, the edge is shifted later,

— a bounce happens just before the rising clock edge, the edge is shifted earlier.

3. The swing creates an additional clock cycle when

— the signal is high, a drop cuts a regular clock cycle into two shorter cycles,

— the signal is low, a bounce causes the signal to rise enough to be considered as

a proper clock cycle.

clk_ok

- glitch

+ glitch

- inj. window

+ inj. window

E E

E E

Figure 4.3 – Impact of negative and positive swing on the clock signal

The perturbations described in cases 2 and 3 may cause timing violations of tsetup. Nabhan

shows that this depends significantly on the slack size. He considers two situations:

— the target path has a large slack, i.e., superior to half the clock period, as depicted

in Figure 4.4, and

— the target path has a small slack, i.e., inferior to half the clock period, as depicted

in Figure 4.5.

The Nabhan’s Fault Model in a nutshell

→ data dependent

→ slack dependent

→ impacts clock network

→ impacts DFFs, with the main fault mechanism being timing violation of

tsetup

→ fault window changes depending on the target frequency
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Figure 4.4 – NFM with large slack. The light blue area represents the slack. The purple
squares represent the signal in a metastable state due to the timing violation.
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Figure 4.5 – NFM with small slack . The light blue area represents the slack. The purple
squares represent the signal in a metastable state due to the timing violation.
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4.2.4 Theoretical additional effects

Fault injection means such as EMFI have several complex effects on IC. When studying

the previously presented fault models, we noticed that some of these effects, although

theoretically possible, were not described.

Sampling Fault Model In the SFM, the fault comes from the clock winning the race

against D1, provoked by a drop of all signals. This being the case, the DFF registers a

value D that has not reached its nominal value. The authors of the SFM describe this as

a timing violation. Our interpretation differs: if D has not reached the threshold towards

its nominal value when the sampling happens, then this is not a timing violation (because

D didn’t change during tsetup), but the sampling of the wrong value. Since metastability

is not part of this, the fault rate should be 100%. Then, D may cross the threshold during

tsetup, causing a timing violation.

In addition, we would like to point out another cause of fault where D wins the race

against the clock but not early enough, causing a timing violation of tsetup. This induces

a metastable output. Thus, the probability of fault is not equal to 1. The clock signal

goes back faster than the other signals, which might be unlikely unless D suffers a less

powerful bounce than the clock.

Nabhan’s Fault Model The NFM states that an EMP happening just after (0.8 to

1.2ns) a clock rising edge delays it. "Just after" indicates that the edge rises for a short

time before the electromagnetic pulse (EMP). In Chapter 5, our simulation shows that

for a DFF to sample, the clock energy required is actually "quite low". From these two

statements, we deduce that sampling is possible before the EMP. The causes of fault

might be different or even double: two timing violations back to back. We also want to

introduce two phenomena not mentioned by Nabhan that could be a source of the fault.

When clock cycles are close (high frequencies), an EMP could either "link" two clock cycles

or deny one. This would lead to a missing clock cycle in both cases.

4.3 RTL fault models

In this section, we explore fault models at register-transfer level. Most fault models

presented in this thesis rely on experimental verifications and often simulations as well.

In their majority, these models focus on either the microarchitectural level or the physical
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level. The propagation of the physical perturbation up to the microarchitecture, i.e.,

an RTL fault model, is rarely explored, at least experimentally. In other fields, such as

cryptography, this level of abstraction is commonly used to model the impact of faults

on cryptographic algorithms. This section details how an additional clock cycle modifies

a circuit’s behavior.

Alshaer et al. [3] offer an RTL fault model that explains the impact of an additional

clock cycle at the microarchitectural level. In a pipelined processor, executing instructions

Path 1

LOGIC
D0 Q0

D1 Q1

clk

slack_1

clk

D1

Q1

Path 2

LOGIC
D0 Q0

D1 Q1

clk

slack_2

clk

D1

Q1

Figure 4.6 – Partial update fault model

takes several steps. The first one consists of fetching the instruction from memory. Con-

cretely speaking, this means that each bit of the instruction’s binary encoding will transit

from one register to another. For Alshaer et al., this transition is vulnerable to fault. At a

physical level, the bits transfer corresponds to a signal (for each bit) carried out by a wire

between two registers. These signals will arrive with different slack amounts, as depicted

in Figure 4.6. When an additional clock cycle is injected, some destination registers will

sample the newly actualized value (if the signal has a big enough slack), the previous

value, or the bus’s precharge value.

This model is based on a specific effect of EMFI on an IC: an additional clock cycle.

How an additional clock cycle happens and why it causes faults consists of one physical
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fault model, but it is not the only one proposed.

4.4 Microarchitectural fault models

At the highest level, a fault translates into a change in the program’s normal execution.

The first cause of perturbation comes from cache data transfers. Some processors have a

prefetch buffer that fetches several instructions at once from a cache and transfers them

to the pipeline, one instruction at a time. In [42], the authors demonstrate that it is

possible to prevent the buffer from loading new instructions by faulting the transfer from

the cache. By doing so, the buffer keeps the previous instructions, meaning they will be

executed again.

In [50], the authors fault a 2-level cache hierarchy, as depicted in Figure . They show

it is possible to fault multiple data transfers. Faulting a transfer between the RAM and

the L2 cache shifts the position of the data in L2. Faulting a transfer between L2 and L1I

(the instruction cache) results in modified instructions stored in L2. It is then possible

to fault the forwarding hidden register, and these two ways are presented in [29]. First,

it is possible to deactivate the forwarding; in the article, they do it to retrieve secret

information. It is also possible to modify the hidden register value to modify the EXE

stage arguments.

Other articles present altered program execution without giving a reason for it. In [48],

the faulted instructions have modified opcodes, leading to modified operands or instruc-

tion types. In [34], the authors perform single and multiple instruction skips.

Chapter conclusion

EMFI impacts a circuit as a whole. Concerning the effects on the voltage of clock wires,

EMFI, voltage and clock glitching fault models share similarities. When looking at a higher

level, the fault models converge. Overall, among the various effects a fault can have on

a processor, the three main explainable changes are instruction skip, instruction repeat,

and instruction modification. They have the same roots, with two processor mechanisms

impacted as far as we know: cache transfers and hidden registers. Most fault models

either concentrate on the physical or microarchitectural level. Bridging the two levels is

less common.
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Among the fault effects presented in this chapter, the impact of EMFI on the PLL

has not been explored outside of Claudepierre et al. works. Chapter 5 and Chapter 6 are

dedicated to finding fault models at all levels that apply to this specific perturbation.
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Chapter 5

EXPLAINING THE SYNCHRONOUS CLOCK

GLITCH - PART 1: PHYSICAL LEVEL

In Chapter 4, the Synchronous Clock Glitch (SCG) was introduced. Outside of the

work done by Claudepierre et al. [9], where the analysis focuses only on the microarchi-

tectural level, this perturbation has not been studied thoroughly. This chapter, as well as

the next chapter, is dedicated to investigating the SCG at all levels to find a complete

fault model. First, we focus on the physical and register-transfer levels.

To develop a fault model that explains why the SCG causes faults, it is essential to

identify which component is most susceptible to being impacted. Given that the glitch is

carried out by the clock, we hypothesize that DFFs are likely to be affected, as illustrated

in Figure 5.1. The results presented in this chapter have been published at COSADE24

[32].

Furthermore, the Timing Fault Model, the Sampling Fault Model and Nabhan’s Fault

Model do not sufficiently explain why the SCG causes faults since:

— Only the clock is modified and other signals, particularly D1, remain stable, there

is no race condition between clk and D1. Therefore, the Sampling Fault Model is

excluded.

Faulted execution:

LOGIC
D0 Q0

D1 Q1

clk

E

clk

D1

Q1
?

Figure 5.1 – Synchronous clock glitch impact on a simple circuit.
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— There are no timing variations for either the clock or D1, thus no setup time viola-

tions can occur, ruling out the Timing Fault Model.

— the SCG concerns only the rising edge of clock cycles, without modifying their

timing. There are no additional clock cycle created either. This excludes Nabhan’s

Fault Model.

Given that the SCG cannot be accounted for by existing published fault models, further

study is necessary to identify a fault model that accurately describes its effects.

5.1 Understanding the Synchronous Clock Glitch

In this section, we propose several hypotheses that can explain the SCG fault model.

Hypothesis (Energy Threshold) For a DFF to correctly sample a clock’s rising edge,

the clock signal must meet a certain energy threshold, which represents the combination

of voltage amplitude and width thresholds.

The energy of the clock signal determines whether the DFF samples the incoming

data. A failure to sample is considered a fault. Depending on the energy of the clock

signal, three states of the DFF are observed, as depicted in Figure 5.2:

1. When the energy of the clock signal is too low, falling below the required energy

threshold, the DFF is in a always faulted state.

2. Conversely, when the energy of the clock signal is sufficiently high, surpassing the

threshold, the DFF is in an always unfaulted state.

3. When the clock signal hovers around the required threshold, the DFF enters a

sometimes unfaulted state (i.e. when out of X FIs, it has sampled at least once).

In this state, the output of the DFF is in a metastable state, influenced by the

amount of clock energy. This phenomenon is further explored in Section 5.3.1.

This hypothesis alone is insufficient to fully explain the effect of the SCG. We propose

below two additional hypotheses, following the introduction of the fault sensitivity con-

cept.

Definition (Fault Sensitivity) The minimum amplitude at which a DFF becomes some-

times unfaulted is called its fault sensitivity.
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amplitude

clk
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always

faulted

always

unfaulted

sometimes

unfaulted

Figure 5.2 – Register behaviour depending on the rising clock edge

When faulting two DFFs, for instance, on a FPGA, their behaviors should be similar

but not identical, and they may not share the same fault sensitivity. This difference

can be attributed to variability in the manufacturing process among ICs and within

individual DFFs of the same IC die. In other words, two identical DFFs, i.e., with the

same characteristics and hardware layout, may not share the same fault sensitivity. Also,

if the two DFFs are from two FPGAs of the same model, they may not share the same

fault sensitivity.

Hypothesis (Fault Sensitivity Dependency on Intrinsic Properties) The fault sen-

sitivity of a DFF depends on its intrinsic properties, such as process variability and clock

routing up to the DFF, among others.

However, the intrinsic properties alone are not sufficient to explain observed variations

in fault sensitivity. To add a layer of complexity, we consider the environment surrounding

the glitched DFFs, specifically focusing on the wires carrying signals (e.g., clock, Vdd,

Vss between DFFs). The energy from neighboring wires may influence the glitched clock,

altering the behavior of the target DFFs. This includes both data routing between DFFs

and the clock routing on the dedicated clock network.

Hypothesis (Fault Sensitivity Dependency on Extrinsic Properties) The fault sen-

sitivity of a DFF may also be affected by extrinsic factors, such as the activity in neigh-

boring wires (including routing between DFFs and the routing of the clock tree).

Experiments (either through simulation or on actual hardware) are necessary to validate

these hypotheses. The experimental setup is presented in the following section.
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5.2 Experimental Setup

The previous section has introduced hypotheses that may explain the effects of the

SCG. In this section, we describe experiments aimed at confirming or refuting these hy-

potheses. The experiments are categorized into two types: physical FI and simulated

experiments.

5.2.1 Physical Experiments

The SCG may be obtained with EMFI. However, this method leads to too chaotic

results, so we will use a different analysis method.

TRAITOR

To reproduce EMFI clock cycle perturbations, Claudepierre et al. introduced an FI

tool named TRAITOR [9]. TRAITOR can control the amplitude parameter, which defines

the energy level of the synchronous clock glitch. This allows for more precise control over

the glitch. For the remainder of this article, this perturbation is referred to as CSCG. Since

there is currently no method to demonstrate equivalence, we refer to EM-induced clock

glitches as synchronous clock glitch and TRAITOR-induced clock glitches as controlled

synchronous clock glitch.

In their study, Claudepierre et al. targeted a microcontroller to analyze the TRAITOR

fault model [9]. The primary induced microarchitectural fault model is an instruction skip.

As a result, with its very high success rate and ability to perform a large number of faults,

TRAITOR is a suitable FI tool for NOP-oriented programming, as explained in [39]. By

carefully replacing selected instructions with a NOP assembly instruction, an attacker can

modify a running program, akin to a Returned-Oriented Programming (ROP) attack. As

demonstrated by Gicquel et al. in [23], without appropriate hardware countermeasures,

such an attack is almost guaranteed to succeed

How does TRAITOR work?

To generate a CSCG, we can control the occurrence of the corrupted clock edge in

each clock cycle and adjust a single parameter known as the amplitude, which shapes

the corrupted edge. Figure 5.4 illustrates the generation of the corrupted edge using two

phase-shifted clocks, with the phase under the TRAITOR user’s control. Ideally, this
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TRAITOR TARGET

clk glitched

trigger

TARGET
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TRAITOR 1

2

3
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delay

width
amp. a amp. b

burst 1 burst 2 burst 3

Figure 5.3 – TRAITOR’s usage

method would result in a square pulse. However, the theoretical pulse width, equivalent

to the phase shift, is too small relative to the circuit’s inductance, preventing the signal

from reaching its high value within the available time. Consequently, the amplitude

of the corrupted edge is determined by the phase shift; a larger phase shift allows the

corrupted signal to reach a higher level. Thus, the amplitude parameter influences both

the height and the duration (also referred to as width) of the corrupted clock edge.

In our implementation, the phase shift is adjustable in increments of 32 ps. Throughout

this paper, the term “amplitude” applied to TRAITOR will refer to the number of these

32 ps steps in the phase shift.

TRAITOR has two additional parameters. The width parameter indicates how many

cycles are replaced with the CSCG. The delay parameter controls which clock cycle is

affected (or the first affected in case of a width equal or superior to two). Our implemen-

tation of TRAITOR can set two different amplitudes. In this chapter, we set the delay

and the width to 1, with the amplitude ranging, intending to inject a single CSCG. In

other applications, TRAITOR can inject bursts (one or several successive glitches) with

varying parameters.

TRAITOR produces two clocks: a regular clock, referred to as clk_ok, and a clock

that incorporates the CSCG, referred to as clk_glitched. Both clocks are synchronous,

operating at 16MHz, and are supplied to the device under test (DUT).
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clk1

clk2

phase shift

amplitude
CSCG

CSCG = (clk1 ⊕ clk2) · clk1

Figure 5.4 – The CSCG is generated using two out-of-phase clocks, clk1 and clk2. The
TRAITOR user can choose to replace the regular clock signal with CSCG.

Composition of the DUT

Physical FIs are performed using TRAITOR implemented on an Artix-7 FPGA to

inject CSCG into our DUT, which can be considered as a hardware microbenchmark.

To facilitate comprehension, we will begin by elucidating the use of TRAITOR for FI,

embedded into our DUT. In preparation for subsequent discussions, it is imperative to

make a clear distinction between logical DFF and physical DFF:

— The logical DFF represents an abstract conceptualization of a DFF in our DUT,

with multiple possible mappings onto physical DFFs.

— The Physical DFFs are tangible components found on the ICs, such as FPGAs,

serving as the foundational element for logical DFF. A logical DFF is mapped onto

a given physical DFF.

When logical or physical is not mentioned, then the representation of the DFFs can be

either.

The DUT, depicted in Figure 5.5, comprises several logical DFFs, categorized into two

types:

1. Target logical DFFs that receive clk_glitched.

2. Control logical DFFs that receive clk_ok.

These DFFs are organized into groups of 6, with a group consisting of either target logical

DFFs (referred to as a target chain) or control logical DFFs (referred to as a control chain).

There is one control chain and 32 target chains. Each chain, whether control or target,
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is fed the same input: a sequence alternating between 0 and 1. This sequence ensures

that the content of every DFF, whether logical or physical, changes with each clock cycle.

The outputs of the target chains are compared with the output of the control chain. Any

discrepancy in at least one target output is indicative of a fault. By examining the timing

between the FI and the appearance of the faulty output at the end of a chain, the specific

logical DFF affected in the chain can be identified.

target registers

control registers

TRAITOR

clk glitched

clk ok

010101

010101

010101

010101

010101

010101

010111

010101

010101

010101

fault!

Figure 5.5 – DUT and TRAITOR on an Artix-7 FPGA.

The logical DFFs are mapped onto the physical DFFs of an Artix-7 FPGA, which are

located in slices (8 physical DFFs per slice). Although slices contain other components,

for clarity, these are not considered in our discussion. Two distinct mappings, as shown

in Figure 5.6, are used to investigate how these mappings influence our results.

Fault Injection Protocol

The physical experiments are detailed in Section 5.3. To conduct these experiments,

the following protocol is adhered to:

1. Both TRAITOR and the DUT are implemented on the same Artix-7 FPGA. This

setup ensures the shortest and simplest clock paths, avoiding additional hardware

components such as IOs or external wiring. To ensure consistency across all exper-
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mapping 1

in-order

mapping 2

randomized

logical DFFs physical DFFs

Figure 5.6 – The two logical-to-hardware mappings: mapping 1 is in-order and mapping 2 is
randomized.

iments, we meticulously determine the placement of TRAITOR and our DUT on

the FPGA, aiming for precision. This guarantees that TRAITOR is consistently

mapped to the same location for every experiment.

2. The FI process remains constant. Upon receiving a trigger from the target, a CSCG

with a specified amplitude is injected. This process is repeated 100 times for each

amplitude, ranging from 0 to 29. Subsequently, we analyze which DFF, if any, has

been impacted by the FI.

3. Conclusions are drawn based on the observed outcomes and the analysis of results.

5.2.2 Transistor-Level Simulations

The simulations were carried out using Eldo [21], an ASIC-oriented SPICE simulator.

Given the proprietary nature of the Artix-7 FPGA design, replicating the exact 28 nm

physical DFFs targeted in the physical experiments is not feasible. Instead, the simulations

employ DFFs from a similar CMOS technology available in our laboratory, i.e., a 28 nm

FDSOI (Fully Depleted Silicon On Insulator) Process Design Kit. These physical DFFs

feature three connections: D, Q, and a clock input. However, unlike the physical DFFs used

in the Artix-7 experiments, they lack a reset pin. Although the simulated DFFs and the

Artix-7 physical DFFs do not have the same implementation, they do not significantly

differ since they are designed for a similar technology node and tend to behave the same

way.
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The simulated circuit consists of two DFFs. They first undergo a normal clock cycle,

followed by a glitched one. Although a fault is injected into both DFFs, only the first

one is considered for analysis; the second DFF is included to more closely mirror our

physical experiments by simulating a load. The clock operates at 100 MHz with a voltage

amplitude ranging from 0 V to 1 V.

The simulation focuses on a state change in the first DFF, transitioning from 0 to 1. It

is important to note that the metastability phenomenon observed in physical experiments

is not replicable in simulation. The primary goal of the simulation is to estimate the

impact of the voltage and width of the controlled synchronous clock glitch. To achieve

this, we independently vary both parameters, incrementally increasing them from low

values until the DFF under test samples the input.

5.3 Hypotheses validation

In this section, multiple experiments and simulations are conducted to validate the

hypotheses presented in Section 5.1.

5.3.1 Hypothesis 1: Energy Threshold

We examine the behavior of physical DFFs faulted with TRAITOR, observing vari-

ations depending on the amplitude parameter. The results of the FI campaign validate

Hypothesis 1. The target physical DFFs exhibit the following behaviour, shown on Fig-

ure 5.7, for 3 distinct DFFs:

1. For amplitudes ranging from 0 to 21, inclusive, all DFFs are in a always faulted

state.

2. For amplitudes between 22 and 24, inclusive, some DFFs are in a always faulted

state, while others are in a sometimes unfaulted state.

3. Starting from amplitude 25, all DFFs are in a always unfaulted state.

A single amplitude does not identify the energy threshold. Instead, it is characterized

by a range of 2 to 3 amplitudes in this experiment, with the fault sensitivity as the

lower bound. During this transition phase from faulted to unfaulted, a physical DFF

progressively experiences fewer faults until it becomes entirely unfaulted. The transition

phases of the 192 physical DFFs overlap but are not identical, as illustrated in Figure 5.7.
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Figure 5.7 – Transitions phases of three target physical DFFs chosen since they exhibit different
characteristics.

Energy Propagation and Metastability

Figure 5.7 illustrates the variation in fault occurrence probability relative to the glitch

amplitude for three distinct DFFs, selected for their different characteristics. This figure

shows various behaviors.

First, the three DFFs exhibit different fault sensitivities (22 for DFF 1, 23 for DFF 3,

24 for DFF 2). DFF 2 remains in a always faulted state at a higher amplitude, suggesting

more energy loss during clock signal propagation. The causes of this energy loss are

examined with Hypotheses 2 and 3. Then, at an amplitude equal to their fault sensitivity,

each DFF shows a fraction of samplings being unfaulted and the rest faulted, indicative

of metastable behavior. This ratio is consistent and reproducible for each physical DFF.

The standard error of the mean (SEM) is easily calculated: in the worst-case scenario

where the fault probability is p = 0.5, the standard deviation σ is σ =
√

p · (1 − p) = 0.5.

Therefore, the SEM is SEM = σ/100 = 0.005, as we have 100 experiments for each DFF.

We can deduce that our fault probability falls within 3 error deviations (= 0.015) for

approximately 99 % confidence. For instance, our metastability evaluation suggests that

at amplitude 23, DFF 1 registers a fault in 22 ± 1.5% of injection attempts with 99 %
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confidence.

What we observe in Figure 5.7 is a typical S-curve characteristic of metastable behavior

due to insufficient energy at the DFF’s clock pin [7]. However, only one amplitude per

DFF triggers the metastable output.

As a conclusion, each DFF undergoes a transition phase, displaying a limited metastable

behavior. The transition phases of different DFFs may overlap but are not identical, at-

tributed to the energy loss during clock signal propagation. This results in a collective

transition phase for all DFFs from amplitudes 22 to 24 inclusive.

Simulating the Influence of Glitch Width and Voltage Amplitude Indepen-

dently

While the previous experiment emphasizes the existence of an energy threshold, the

specific design of TRAITOR does not allow for independent testing of the influence of

the glitch width and voltage amplitude on this threshold. To overcome this limitation,

we simulate a small circuit (as described in Section 5.2.2) where we send a glitched clock

pulse while varying the glitch width and voltage amplitude independently to observe if

the sampling occurs.

The simulation is performed with a glitch width ranging from 0 ns to 5 ns by steps

of 0.01 ns and voltage amplitude ranging from 0 V to 1 V by steps of 0.01 V). Figure 5.8

illustrates the sampling behavior with respect to glitch width and voltage amplitude

parameters. The DFF successfully samples above the curve. The plot is constrained to

the range of 0 ns to 1 ns, reflecting the fact that the amplitude reaches a lower plateau at

0.46 V.

Remarkably, sampling occurs for very small widths, as long as the voltage amplitude is

sufficiently high; the minimum width for this occurrence is 0.03 ns at a voltage of 0.84 V.

However, the opposite is not true: the glitch voltage amplitude must be at least 0.46 V for

the DFF to sample, regardless of the width. In other words, it is “sufficient” for the DFF

to sample that the controlled synchronous clock glitch has a high voltage amplitude for

a short width, but not a long width with a low amplitude. Hence, the voltage amplitude

threshold appears to be more restrictive than the width threshold.
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Figure 5.8 – Simulated sampling results: for a glitch with a given voltage amplitude and width
above this curve, the sampling is correct. Otherwise, the sampling is incorrect.

5.3.2 Hypothesis 2: Fault Sensitivity Dependency on Intrinsic

Properties

In this part of the study, we aim to understand why the transition phase, particularly

the fault sensitivity, varies among physical DFFs. Our primary focus is on the potential

dependency of fault sensitivity on the intrinsic properties of physical DFFs.

As discussed in Section 5.3.1, each physical DFF exhibits a specific and reproducible

fault sensitivity. One primary factor influencing this sensitivity is the layout of clock rout-

ing: not all physical DFF on an FPGA share identical clock signal paths. Variations in

these paths, potentially due to length differences or coupling with neighboring wires, can

introduce disparities in inductance. If the layout of the clock routing was the sole intrinsic

factor affecting fault sensitivity, then replicating the same design (with identical mapping)

on another FPGA of the same model would result in the same sensitivity for identical

logical DFFs.

In the ensuing experiment, the same DUT is mapped onto two Artix-7 FPGAs in the

exact same manner. Practically, this involves using the same bitstream FPGA image on
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Figure 5.9 – Comparing fault sensitivities between physical DFFs for various settings.

both FPGAs. The resulting fault sensitivities are depicted in Figures 5.9a and 5.9b. One

can see that while the fault sensitivities of the two FPGAs do show some similarities,

notable differences exist. Given that both FPGAs are programmed with the same image

and, therefore, have identical clock routings, the discrepancies observed in Figure 5.9 can

be attributed to process variations. The individual FPGA dies are not exactly identical,

leading to variations in the inductances of clock paths, which in turn result in differing

fault sensitivities for placement-equivalent physical DFFs.
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Limits to the Intrinsic-Only Fault Model

If we assume that only the intrinsic properties of a physical DFF affect its fault sensi-

tivity, then the mapping of logical DFFs to physical DFFs on a specific FPGA should not

influence the fault sensitivities of these physical DFFs. This is because the clock routing

is independent of the routing of other signals. Since the glitch is propagated solely by the

clock signal, the fault sensitivity, assuming it depends solely on intrinsic properties, would

be specific to each physical DFF.

To test this assumption, we map the same physical DFFs onto the same FPGA in

two different configurations (as depicted in the two mappings of Figures 5.9a and 5.9c)

and then compare their fault sensitivities. This results in varying fault sensitivities. The

clk_glitched signal remains consistent across both mappings since it follows dedicated

clock paths, suggesting that the CSCG should be identical in both experiments and con-

sequently result in the same fault sensitivity for each physical DFF independently from

the mapping. The two mappings differ in how data signals are routed between physical

DFFs, which clearly impacts the fault sensitivity. This observation leads us to hypothesize

that extrinsic properties, such as data signals in this case, may influence CSCG.

5.3.3 Hypothesis 3: Fault Sensitivity Dependency on Extrinsic

Properties

Given that intrinsic properties alone do not account for all variations in fault sensitiv-

ity, we now turn our attention to extrinsic properties. Specifically, we examine two types

of extrinsic influences:

— Activity on data wires, i.e., the paths linking physical DFFs to each other.

— Activity on clock wires, responsible for carrying clock signals to the physical DFFs.

For each wire type, we conduct a separate experiment to isolate and observe its specific

influence.

Impact of Data Wires

The influence of data wires on the clk_glitched energy was previously suggested in

Section 5.3.2. We delve deeper into this aspect with the following experiment. Figures 5.9a

and 5.10a illustrate the fault sensitivities of two different routings. Similar to the approach

in Section 5.3.1, the target logical DFFs are mapped in-order. However, in this case, we
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Slice 1

Slice 2

Slice 3

Slice 4

Slice 5

Slice 6

Slice 7

Slice 8

22 23 23 22 22 23 23 22

22 23 22 22 23 23 23 22

22 23 22 22 22 23 23 22

23 22 23 23 22 23 22 22

22 22 23 23 22 22 22 23

22 22 22 24 22 22 22 23

24 22 23 22 22 22 23 23

22 23 22 23 22 22 22 22

(a) Color-coded fault sensitivities of the first
64 registers on mapping 1 in-order with dif-
ferent data routing on FPGA 1, to be com-
pared to Figure 5.9a.

        

Slice 1

Slice 2

Slice 3

Slice 4

Slice 5

Slice 6

Slice 7

Slice 8

21 21 21 21 21 21 21 21

20 20 20 20 20 20 20 20

20 20 20 20 21 21 21 21

21 21 21 21 21 21 21 21

20 20 20 20 20 20 20 20

20 20 20 20 21 21 21 21

20 20 20 20 20 20 20 20

20 20 20 20 20 20 20 20

(b) Color-coded fault sensitivities of the first
64 registers on mapping 1 in-order with a
forced adjacent path for the clock on FPGA
1, to be compared to Figure 5.9a.

Figure 5.10 – Comparing fault sensitivities between physical DFFs for different routing

alter the routing between two physical DFFs resulting in a change in the data wire con-

nections between them. Consequently, we end up with two DUT having the same logical

DFFs to physical DFFs mapping, and thus identical clock routing, but differing in data

wire routing between physical DFFs.

As a conclusion, the routing of data signals between physical DFFs significantly im-

pacts the energy of the clock signal reaching these physical DFFs, thereby affecting their

fault sensitivities.

Impact of Clock Wires

We further hypothesize that the clk_glitched signal is influenced by the proximity

to the clk_ok signal. Previously, the mapping of the DUT and TRAITOR was carefully

arranged to avoid any crossing or parallel arrangement of the two clock networks. To

assess the impact of clock network interference, we now map some control DFFs on a

slice adjacent to the target DFFs. This setup places both clk_glitched and clk_ok on

parallel physical paths, given that the dedicated clock routes are next to each other and

originate from nearby sources [1].

Figures 5.9a and 5.10b show that the fault sensitivities not only differ but are also

notably lower. In all previous experiments on this FPGA, such as on Figure 5.9a, fault
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sensitivities ranged between 22 and 24. However, in this setup, they range between 20 and

21. It appears that positioning the clk_ok signal adjacent to clk_glitched effectively

‘adds energy’ to the latter, thereby reducing its fault sensitivity.

Interpretation

The observed energy transfers, both data-to-clock and clock-to-clock, are likely the

result of cross-talk between these signals. The fault sensitivity of a physical DFF highly

depends on the energy delivered by the clock’s rising edge, so even a small amount of

energy added or subtracted through cross-talk can have a noticeable impact [24]. These

findings suggest that the fault sensitivity in a DFF is an extremely precise indicator of

the activity in the surrounding circuitry.

5.4 Expanding the ETFM at the Register-Transfer

Level

Using the experiments presented in this chapter and the ETFM, we can theorize a

fault model at the register-transfer level. The ETFM is a physical fault model explaining

the effect of the CSCG on DFFs. At the register-transfer level, the goal is to understand

the fault propagation in a circuit.

Let us consider two chains that are part of the same circuit, one faulted and one un-

faulted, similar to the ones present in our DUT, that we schematized in Figure 5.11 and

Figure 5.12. Each chain is composed of three DFFs in our example (although the number

does not matter). The initial state is the same for both chains, represented at the top of

the figure.

In Figure 5.11, at each clock cycle, their content changes from 0 to 1 or conversely.

The unfaulted chain output after n+9 clock cycles is 010101010. At clock cycle n+1, the

three registers from the faulted chain do not sample incoming data. The fault effect is two-

fold. First, the fault impacts the chain and its operation. The faulted value persists until

the end of the chain: it takes three additional clock cycles for the chain to return to an

unfaulted state. As a consequence, the output contains three faulted values: 010110110.

The second consequence concerns the the thoeritical circuit as a whole. In our example,

the two chains are supposed to work identically and output the same values. Due to the
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initial state for both chains

clock cycle n

0 1 0 1 0

unfaulted chain

clock cycle n+1

1 0 1 0 1

clock cycle n+2

0 1 0 1 0

output after

+9 clock cycles

010101010

faulted chain

clock cycle n+1

1 1 0 1 1

clock cycle n+2

0 1 1 0 1

E E E

output after

+9 clock cycles

010110110

1 fault inside the chain

2 shift between the two chains

Figure 5.11 – Schematized representation of a fault propagation at register-transfer level
with 10101 register transition

initial state for both chains

clock cycle n

1 0 0 1 1

unfaulted chain

clock cycle n+1

1 1 0 0 1

clock cycle n+2

0 1 1 0 0

output after

+9 clock cycles

100110011

faulted chain

clock cycle n+1

1 0 0 1 1

clock cycle n+2

0 1 0 0 1

E E E

output after

+9 clock cycles

100100111

3 fault only visible on changing data

Figure 5.12 – Schematized representation of a fault propagation at register-transfer level
with 10011 register transition
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fault, a shift is created for three cycles between them, with potential repercussions to the

circuit functioning.

In Figure 5.12, the DFFs content change every other clock cycle. The unfaulted chain

output after n+9 clock cycles is 100110011. Although the three registers are faulted and

their sampling is prevented, the fault is only visible when the incoming data differs from

the previously stored data.

The two-chain example is fairly simple and illustrates the three consequences of a fault

at the register-transfer level. Here, a fault disappears at the end of the faulted chain. In

more complex circuits, such as processors, the faulted value may be used in computations,

stored in memory for future use, etc. As such, the fault effect is more difficult to assess.

Chapter Conclusion

In this chapter, we propose a fault model explaining the CSCG impact at the physical

level. The glitch impacts DFFs and prevents them from sampling incoming data. Why a

DFF is affected or not depends on several parameters: the amount of energy the CSCG

brings, process variability of the faulted DFF, or the activity of neighboring wires, for

example. The ETFM has been presented at COSADE24 [32]. From these observations

and the subsequent physical fault model, we theorize the glitch’s impact at the register-

transfer level.

To complete the CSCG characterization, we must now turn our attention to the mi-

croarchitectural level. In [9], Claudepierre et al. investigate the CSCG by faulting a com-

mercial processor. We believe that the fault models they observe are not all there is to

see. To confirm our says as well as gather other clues on the CSCG impact, we decided

to fault the same target.
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Chapter 6

EXPLAINING THE SYNCHRONOUS CLOCK

GLITCH - PART 2:

MICROARCHITECTURAL LEVEL

This chapter is a direct continuation of the previous chapter. Using the results from

Chapter 4 as well as state-of-the-art observations on the SCG, a preliminary microarchi-

tectural fault model is given. This model being theoretical, it is essential to compare it to

the results of experiments done on an ASIC-implemented processor. The gathered clues

from the experiments give information on the observed ISA-related fault models, the pa-

rameters that condition the fault effect, and the vulnerable part of the microarchitecture.

6.1 Theorized Microarchitectural Effects of the CSCG

In [9], Claudepierre et al. define the CSCG microarchitectural fault model as "skip-by-

repeat" (the target instruction is repeated but does not have an additional effect on the

circuit other than skipping the following instruction) or sometimes "true skip," depending

on the faulted instructions. In the authors’ previous paper [8] that looks into the effect of

EMFI on the PLL, the fault model is defined as a "virtual NOP" caused by the modification

of the instruction faulted into another instruction which hasn’t any visible effect on the

circuit. From these observations, we deduce that the pipeline or the cache instruction

transfer is impacted. By considering the ETFM and its extension to RTL, we make the

following assumptions.

We suppose that the faulted clock is distributed to the entire circuit. The different

fault effects on the instructions are schematized in Figure 6.1. From amplitude 0 to a

given amplitude X, no effect will be seen: a clock cycle is missing, but it is missing for

the entire circuit. To reuse terminology from Section 5.1, all the registers are in an always

faulted state. From an amplitude Y higher than X, all the registers will be in an always

65



Explaining the Synchronous Clock Glitch - Part 2: Microarchitectural Level

amplitude

clk

register

state

impact on

instructions

0

E E E

E E E

E E E

E

E

E

E

no visible

effect

ins. skip, repeat

and modification

no visible

effect

YX

Figure 6.1 – Fault impact on instructions depending on the amplitude

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0 0 1 rn 0 imm rd imm

Figure 6.2 – Binary encoding of adds.w rd, rn, imm with rn the source register and rd

the destination register

unfaulted state. And from amplitude X to Y, the registers’ behaviour will differ depending

on extrinsic and intrinsic properties. Some registers are going to be in a sometimes un-

faulted state, while others, for the same amplitude, are going to be either always faulted

or always unfaulted. Supposedly, the coexistence of the three states brings out the faulted

behaviour observed by Claudepierre et al. in [9]. Then, the skip and repeat and true skip

fault models might be too restrictive. It would require a specific number of DFFs to be

faulted simultaneously. While this is possible at a given amplitude, other fault models

(such as instruction modification) are likely to be present.

As mentioned in Section 5.4, the fault effect on a DFF is only visible if the incoming

data to be sampled differs from the previously sampled one. At the microarchitecture level,

instructions are represented by their binary encoding (opcodes). When an instruction is

fetched from a cache and goes into the pipeline, each encoding bit goes through DFFs

at each data transfer. Figure 6.3 represents a theoretical instruction transfer, with the

destination DFFs vulnerable to faults. At clock cycle 0, the vulnerable DFFs hold the

binary encoding for adds.w r7, r7, 1. At clock cycle 1, when a fault is injected, the

vulnerable DFFs should sample the binary encoding for adds.w r8, r8, 1. Since the
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Figure 6.3 – Fault impact on instruction binary encoding DFFs
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effect is only visible when the incoming bits are different from the ones previously sampled,

the encoding for the immediate and the adds.w identification are not visibly impacted.

When the difference exists, as for the encodings of source and destination registers, the

fault impact can affect either the entirety (the previous encoding is repeated) or parts

(the previous encoding is modified) of the bits.

Preliminary microarchitectural fault model

→ the cache instruction transfers or the pipeline are affected (among possibly

other parts of the microarchitecture)

→ different amplitudes cause different ISA-level effects (instruction repeat, skip

or modification)

→ the fault impact is only visible when the incoming data to be sampled by a

DFF is different from the previously sampled data

The theoretical fault effects we mention here need to be verified through experiments.

6.2 Experimental Setup

As in Chapter 5, TRAITOR is used to inject the CSCG. Since we are interested in

microarchitectural sources of fault and compare it with previous research, we picked the

same target as in [9, 8], described below.

6.2.1 Target Description

The target processor is a Cortex-M3 embedded on a STM32F100RB. This microcon-

troller has a removable crystal oscillator, allowing to easily plug TRAITOR’s clock in-

stead. The Cortex-M3 [12] supports the ARMv7-M architecture profile [4]. Notably, both

16- and 32-bit long instructions are available. The processor, as schematized in Figure 6.4,

implements a 3-stage pipeline, the stages being instruction fetch, instruction decode, and

execute/write back. The Cortex-M3 does not have cache memory strictly speaking, but a

prefetch buffer. According to the documentation, the buffer can contain up to three 32-bit

or six 16-bit instructions. The instructions are prefetched from the main memory via a

32-bit bus (consequently, the bus can carry either one 32-bit or two 16-bit instructions).

In [4], the number of cycles an instruction takes to execute when pipelined is given. For

example, adds instructions take one cycle. Although the documentation does not give
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IF

Flash

memory
prefetch bus

32 bits

instruction 1

instruction 2

instruction 3

ID EXE/WB

Figure 6.4 – Schematic view of the Cortex-M3

precise information about this, if we consider only 32-bit instructions executed in one

cycle, the prefetch should happen every cycle.

Some details are still vague. First, it is important to note that the documentation

concerns Cortex-M3 in general and that some parameters can be customized depending

on their application, such as the size of the prefetch buffer. Inside the prefetched buffer, the

instructions’ position and whether there are transfers in between lines are unknown. How

the instructions are fetched into the pipeline is also not detailed in the documentation.

Finally, no information is given on the prefetching behaviour in cases of branches.

6.2.2 Fault Injection Setup

Our control over the target is limited because we do not have extensive information

on its implementation. In the previous chapter, we could target isolated DFFs. With the

Cortex-M3, TRAITOR’s glitched clock is distributed all over to clocked elements of which

we ignore the placement and interconnections. Although our lack of knowledge may hinder

our comprehension, the application the processor runs can still provide clues about the

fault’s impact on the microarchitecture. The experiments consist in faulting variations of

Listing 6.5 and Listing 6.6. The target instructions can be either aligned (the instruction

address is a multiple of its size, 32 bits in our case) or unaligned.

For each listing and their variations, the same fault injection parameters are used: the

amplitude ranges from 370 to 430, and the delay from 30 to 50, with only one glitched

69



Explaining the Synchronous Clock Glitch - Part 2: Microarchitectural Level

1 *trigger rise*

2 movw r2, 0x6c59

3 movw r3, 0x44a3

4 movw r4, 0xd0ea

5 movw r5, 0x2624

6 movw r6, 0x2e7c

7 movw r7, 0x1248

8 movw r8, 0x3330

9 movw r9, 0xed12

10 mov.w sl, 0

11 mov.w fp, 0

12 mov.w ip, 0

13 mov.w r0, 0

14 nop.w

15 nop.w

16 ...

17 nop.w

18 nop.w

19 nop.w

20 nop.w

21 adds.w r2, r2, 1

22 adds.w r3, r3, 1

23 adds.w r4, r4, 1

24 adds.w r5, r5, 1

25 adds.w r6, r6, 1

26 adds.w r7, r7, 1

27 adds.w r8, r8, 1

28 adds.w r9, r9, 1

29 nop.w

30 nop.w

31 nop.w

32 ...

33 nop.w

34 nop.w

35 nop.w

36 *trigger fall*

initialize our target registers with random values

initialize other registers at 0

X nops

Figure 6.5 – Listing with variable registers and invariable immediate
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1 *trigger rise*

2 movw r2, 0x6c59

3 movw r3, 0x44a3

4 movw r4, 0xd0ea

5 movw r5, 0x2624

6 movw r6, 0x2e7c

7 movw r7, 0x1248

8 movw r8, 0x3330

9 movw r9, 0xed12

10 mov.w sl, 0

11 mov.w fp, 0

12 mov.w ip, 0

13 mov.w r0, 0

14 nop.w

15 nop.w

16 ...

17 nop.w

18 nop.w

19 nop.w

20 nop.w

21 adds.w r7, r7, 4

22 adds.w r7, r7, 11

23 adds.w r7, r7, 5

24 adds.w r7, r7, 13

25 adds.w r7, r7, 1

26 adds.w r7, r7, 17

27 adds.w r7, r7, 19

28 adds.w r7, r7, 23

29 nop.w

30 nop.w

31 nop.w

32 ...

33 nop.w

34 nop.w

35 nop.w

36 *trigger fall*

initialize our target registers with random values

initialize other registers at 0

X nops

Figure 6.6 – Listing with invariable registers and variable immediate

71



Explaining the Synchronous Clock Glitch - Part 2: Microarchitectural Level

clock cycle. For each pair (amplitude, delay), the target is reset before a fault injection

attempt is done. The execution stops at the end of the second nop.w set of instructions

thanks to a previously set breakpoint, allowing to retrieve via JTAG the value of several

registers: r0-r12, sp, lr, pc, xPSR, msp, psp, primask, basepri, faultmask, control.

Sometimes, the execution does not go smoothly and goes into an interrupt, and escalates

to HardFault. Before rebooting the processor, we retrieve information about the interrupt:

xPSR (the type of interrupt), pc, lr, several register values. This, among other things, al-

lows us to get a sense of the temporality of the fault on our code.

After the injections are done, we look for the most present fault model(s) (at least 40

occurrences out of the 50 tries) for each couple (amplitude, delay). We then represent the

fault models distribution on a bar graph. Each model is numbered, and represented by a

color and a pattern.

Two STM32F100RB are used for the experiments. We quickly notice that the model

distributions are the same, with slight variations in amplitudes. For the remaining of this

Chapter, we present the results obtained for only one target.

When performing fault injections, we notice that for a given delay, an instruction al-

ways seems to be "skipped", i.e. the associated register is not updated. To make the anal-

ysis and subsequent explanations clearer, we use the following terminology: the "skipped"

instruction is referred to as ins. n; the following instruction is then ins. n+1, etc. In

addition, each instruction is also associated with a number: in all listings, instruction line

21 is ins. 21, etc.

6.3 Dominant Fault Models

In our journey to characterize the impact of the CSCG on the microarchitecture, the

first step is to conduct experiments to gather clues about the ISA-level fault models.

By taking into consideration our preliminary microarchitectural model, the fault effect

should be limited to changing data from one instruction to another. To simplify the task,

we limit the amount of changing bits in the instruction opcode. In Experiment 6.7, only

the registers change, while in Experiment 6.8, only the immediates change.
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→ Initial register value:
r2 r3 r4 r5 r6 r7 r8 r9

0x6c59 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

→ Listing 6.5, no variation
→ Number of nop.w instructions: 8
→ Eight aligned in-order 32-bit adds.w instructions

r2 → r3 → r4 → r5 → r6 → r7 → r8 → r9

(a) Parameters

0

370

380

390

400

410

420

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

FM 1: ins. n is skipped

FM 2: ins. n is skipped
ins. n-1 is repeated

FM 3: ins. n is skipped
ins. n-2 is repeated

FM 4: ins. n is skipped
ins. n+4 is repeated

FM 5: ins. n is skipped
ins. n-4 is repeated

FM 6: ins. 28 is repeated

FM 7: ins. 27 is repeated

(b) Fault models

Experiment 6.7 – Finding fault models (register)
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→ Initial register value:
r2 r3 r4 r5 r6 r7 r8 r9

0x6c59 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

→ Listing 6.6, no variation
→ Number of nop.w instructions: 8
→ Eight aligned in-order 32-bit adds.w instructions

(a) Parameters

0

370

380

390

400

410

420

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

FM 1: ins. n is skipped

FM 2: ins. n is skipped
ins. n-1 is repeated

FM 3: ins. n is skipped
ins. n-2 is repeated

FM 4: ins. n is skipped
ins. n+4 is repeated

FM 5: ins. n is skipped
ins. n-4 is repeated

FM 6: ins. 28 is repeated

FM 7: ins. 27 is repeated

(b) Fault models

Experiment 6.8 – Finding fault models (immediate)

74



Explaining the Synchronous Clock Glitch - Part 2: Microarchitectural Level

To give a sense of the temporality of the fault, at delay 34, adds.w r2, r2, 1 is

skipped for Experiment 6.7 and adds.w r7, r7, 4 is skipped for Experiment 6.8. Us-

ing our terminology, ins. n for this delay is ins. 21 (for both experiments). The fault

models span over ten to twelve clock cycles. First, it is important to notice that, using

our terminology, we observe the same exact fault models for both experiments, except the

fault model present at delay 45 for Experiment 6.8. The main difference comes from the

amplitudes: the fault models in Experiment 6.8 are present for lower amplitudes than for

Experiment 6.7.

Although present in both experiments, the "true skip" and "skip-by-repeat" models

are insufficient to explain the variety of effects we noticed. More precisely, the "skip-by-

repeat" model usually concerns adjacent instructions: a first instruction is repeated, which

has for consequence to skip the next one. In both experiments, for four of the observed

fault models, the repeated instruction can be two to four instructions apart, before or

even after the skipped instruction. The fault model 6 observed for delay 42 and 43 is

similar to the fault models 2 and 3. We theorize that ins. 28 is repeated while one of

the two following nop.w instructions is skipped, depending on the delay. We notice, in

adequation with our hypothesis, that only either the source and destination register for

Experiment 6.7 or the immediate value for Experiment 6.8 are impacted, which are the

only variable opcodes for the instructions.

From these observations, we propose an alternative explanation of the fault effect.

The fault prevents an instruction transfer, which has the consequence of either repeat-

ing the previous instruction (for lower amplitudes) or executing a modified instruction

(for higher amplitudes) and skipping the faulted one. This being said, the modification

is not what we expected. For example, let us look at the fault models present at delay

37 in Experiment 6.7. The skipped instruction is adds.w r5, r5, 1. Although we have

no certainty over this, we guess the transition between adds.w r4, r4, 1 and adds.w

r5, r5, 1 is faulted. In binary, r4 is 0100 and r5 is 0101, meaning there is only one

bit of difference. This entails that there are three possible modified instructions: adds.w

r4, r4, 1, adds.w r4, r5, 1 and adds.w r5, r4, 1. While FM 2 matches, the other

three fault models do not. Additionally, both the source and the destination registers are

modified, in a equal manner. Finally, we observe that the number of fault models differs

depending on the delay. On every other delay, the fault models are unique, while they can
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be plural otherwise.

Summary - finding fault models

Experiments revealed that the CSCG impact on instructions can not only be char-

acterized as "skip by repeat" or "true skip". Supposedly, the CSCG prevents an

instruction transfer somewhere in the microarchitecture, with the consequence of

either repeating the previous instruction or executing a modified instruction, de-

pending on the amplitude, as well as skipping the faulted instruction. We also

observe that the number of fault models differs depending on the delay.

6.4 Fault Influence

Experiment 6.9 consists in shifting the target adds.w instructions by one clock cycle by

inserting an additional nop.w instruction beforehand. Additionally, in Experiment 6.10,

the target instructions are out-of-order. In this section, we explore the influences on the

fault models. If the fault models are only tied to the instructions, then they should also

be shifted by one clock cycle in the first experiment, and their order of appearance should

be different in the second one.

In Experiment 6.9, since the target code has been shifted by one clock cycle, the in-

struction adds.w r2, r2, 1 is skipped at delay 35. We observe that the fault models are

not shifted by a clock cycle. Their number per delay stays the same as in Experiments 6.7

and 6.8. Additionally, the same global effects are seen: for example, at delay 41, fault

model 5 is observed again, with ins. n being ins. 27 instead of ins. 28.

In Experiment 6.10, the same terminology applies, following the order of the instruc-

tion: at delay 34, ins. n is ins. 28, ins. n+1 is ins. 22, etc. Again, the same global

effects are seen only with different registers.
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→ Initial register value:
r2 r3 r4 r5 r6 r7 r8 r9

0x6c59 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

→ Listing 6.5, variation in the number of nop.w instructions
→ Number of nop.w instructions: 9
→ Eight aligned in-order 32-bit adds.w instructions

(a) Parameters

0

370

380

390

400

410

420

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

FM 1: ins. n is skipped

FM 2: ins. n is skipped
ins. n-1 is repeated

FM 3: ins. n is skipped
ins. n-2 is repeated

FM 4: ins. n is skipped
ins. n+4 is repeated

FM 5: ins. n is skipped
ins. n-4 is repeated

FM 6: ins. 28 is repeated

FM 7: ins. 27 is repeated

(b) Fault models

Experiment 6.9 – Shifting by one cycle
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→ Initial register value:
r2 r3 r4 r5 r6 r7 r8 r9

0x6c59 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

→ Listing 6.5, variation in instruction order
→ Number of nop.w instructions: 8
→ Eight aligned in-order 32-bit adds.w instructions:

ins. 28 → ins. 22 → ins. 21 → ins. 25

→ ins. 26 → ins. 24 → ins. 23 → ins. 27

(a) Parameters

0

370

380

390

400

410

420

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

FM 1: ins. n is skipped

FM 2: ins. n is skipped
ins. n-1 is repeated

FM 3: ins. n is skipped
ins. n-2 is repeated

FM 4: ins. n is skipped
ins. n+4 is repeated

FM 5: ins. n is skipped
ins. n-4 is repeated

FM 6: ins. 28 is repeated

FM 7: ins. 27 is repeated

(b) Fault models

Experiment 6.10 – Out-of-order instructions
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Experiments 6.9 and 6.10 contradict the assumptions made earlier: the fault models

are not tied to the instructions but more to the delay and amplitude. These observations

supplement our microarchitectural fault model draft. In addition to the missing transfer

(either from caches or the pipeline), some other vulnerable microarchitectural mechanism

that appears every two cycles is faulted. In this context, finding out which other parts

of the microarchitecture are impacted is difficult. It would require extensive knowledge

of the processor and its implementation, which we cannot access due to the proprietary

nature of our target.

Summary - fault influence

The fault models are not only related to the instructions, but also strongly to the

delays and amplitudes. We suppose that the CSCG may impact other parts of the

microarchitecture in addition to instruction transfers.

6.5 Vulnerable Processor Part

Since the fault models are partly tied to the instructions, either the prefetch mechanism

or the pipeline stages are most likely vulnerable. As mentioned in the previous section,

another processor part is likely affected by the CSCG, but given the lack of knowledge

and control we have over the target, we can not pursue investigations.

We fault unaligned instructions in Experiment 6.11 to gather clues. More precisely, we

aim to discriminate between the pipeline and the prefetch transfers. If the fault affects

the pipeline stage, then the fault models should be the same since the IF stage fetches

complete 32-bit instructions. On the other hand, if the prefetch is vulnerable (either the

transfer between the main memory and the buffer or inner movements in the buffer), then

the fault impact will be different with unaligned instructions since the fault will impact

two 16-bit halves of instructions instead of a complete 32-bit one.
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→ Initial register value:
r2 r3 r4 r5 r6 r7 r8 r9

0x6c59 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

→ Listing 6.5, variation in instruction alignment
→ Number of nop.w instructions: 8
→ Eight unaligned out-of-order 32-bit adds.w instructions

(a) Parameters

0

380

390

400

410

420

430

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

FM 1: ins. n is skipped
rn-1 = rn+1

rn+1 = rn+1

FM 2: ins. n is skipped
rn+1 = rn-1+1

rn-2 = rn+1

FM 3: ins. n is skipped
rn+1 = rn-3+1

FM 4: ins. n is skipped
rn-4 = rn+1

FM 5: HardFault

(b) Fault models

Experiment 6.11 – Unaligned instructions

The terminology for this experiment differs from the one used previously. Instead of

defining the fault models solely through the instructions, we also characterize the modifi-

cation to the register. The "skipped" instruction is still referred to as ins. n; the following

instruction is then ins. n+1, etc. The associated register to the "skipped" instruction is

referred to as rn, the following rn+1, etc.

In our experiments, the CSCG is always one cycle long; however, we observe that for

some fault models, three registers are impacted. We retrieve the registers’ values at each
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instruction FM r2 r3 r4 r5 r6 r7 r8 r9

nop.w

FM1 0x6c59 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM2 0x6c59 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM3 0x6c59 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

r2

FM1 0x6c5a 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM2 0x6c5a 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM3 0x6c5a 0x44a3 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

r3

FM1 0x6c5a 0x44a4 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM2 0x6c5a 0x44a4 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM3 0x6c5a 0x44a4 0xd0ea 0x2624 0x2e7c 0x1248 0x3330 0xed12

r4

FM1 0x6c5a 0x44a4 0xd0eb 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM2 0x6c5a 0x44a4 0xd0eb 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM3 0x6c5a 0x44a4 0xd0eb 0x2624 0x2e7c 0x1248 0x3330 0xed12

r5

FM1 0x6c5a 0x44a4 0x2625 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM2 0x6c5a 0x2625 0xd0eb 0x2624 0x2e7c 0x1248 0x3330 0xed12

FM3 0x6c5a 0x44a4 0xd0eb 0x2624 0x2e7c 0x1248 0x3330 0xed12

r6

FM1 0x6c5a 0x44a4 0x2625 0x2624 0x2625 0x1248 0x3330 0xed12

FM2 0x6c5a 0x2625 0xd0eb 0x2624 0xd0ec 0x1248 0x3330 0xed12

FM3 0x6c5a 0x44a4 0xd0eb 0x2624 0x6c5b 0x1248 0x3330 0xed12

r7

FM1 0x6c5a 0x44a4 0x2625 0x2624 0x2625 0x1249 0x3330 0xed12

FM2 0x6c5a 0x2625 0xd0eb 0x2624 0xd0ec 0x1249 0x3330 0xed12

FM3 0x6c5a 0x44a4 0xd0eb 0x2624 0x6c5b 0x1249 0x3330 0xed12

Figure 6.12 – Cycle by cycle analysis, with delay of fault equal to 37

cycle to gather more information and report them in Figure 6.12. The cells colored in blue

correspond to the actualization of the register, in purple to a missing actualization, and

in red to an unplanned modification of a register.

We observe that the impact is limited to two cycles. At the cycle corresponding to the

completion of instruction adds.w r5, r5, 1, r5 is not updated: for FM1 and FM2, the

instruction was not performed and replaced by a near identical instruction, except the

destination register is different; for FM3, the instruction was skipped without visible side

effect. Next cycle, instead of witnessing the execution of adds.w r6, r6, 1, we see that,

again, a near identical instruction was executed but with the wrong source register.

The binary encoding for the adds.w instruction we target is depicted in Figure 6.13.

For the sake of clarity, the instruction is divided into two 16-bit segments: the left seg-

ment, in blue, contains information for rn (the source register) and the right segment, in

green, contains information for rd (the destination register) and the added immediate.

When this instruction is stored unaligned in the prefetch buffer, each half will be on a

adds.w rd, rn, 1

31 30 29 28 27 ... 19 18 17 16 ... 11 10 9 8 ... 3 2 1 0

1 1 1 1 0 ... rn ... rd ... 0 0 0 1

Figure 6.13 – Binary representation of adds.w rd, rn, 1

different buffer line, as schematized in Figure 6.14.
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Vulnerable prefetch buffer part

at clock cycle 0

r3, ..., 1 ..., r4, ...

r4, ..., 1 ..., r5, ...

r5, ..., 1 ..., r6, ...

Vulnerable prefetch buffer part

at clock cycle 1

r4, ..., 1 ..., r5, ...

r4, ..., 1 ..., r5, ...

r6, ..., 1 ..., r7, ...

Figure 6.14 – Schematize fault effect on the prefetch buffer

The fault mechanism is the same as previously described, only affecting two instruc-

tions instead of one. When the fault occurs, this vulnerable buffer line is not updated.

When the instructions are fetched into the pipeline, two successive instructions are mod-

ified, composed of information from two different instructions. The modified output is

represented in Figure 6.15. It matches FM1, observed in Experiment 6.11.

Unfaulted instruction output:
...

adds.w r3, r3, 1

adds.w r4, r4, 1

adds.w r5, r5, 1

adds.w r6, r6, 1

adds.w r7, r7, 1

...

Faulted instruction output:
...

adds.w r3, r3, 1

adds.w r4, r4, 1

adds.w r4, r5, 1

adds.w r6, r5, 1

adds.w r7, r7, 1

...

Figure 6.15 – Unfaulted and faulted instruction outputs

Contrary to previous experiments, the CSCG causes interrupt that escalate into a

Hardfault (FM 5). More precisely, it is a IBUSERR type of interrupt, which is, from the

informations given in [4], a bus error during the instruction fetch that triggers only when

the processor attempts to execute the instruction. We can make an educated guess to

explain this effect (although we have no way to prove it). The fault might come from

the same phenomenon previously described: two half instructions are repeated during

prefetch, which causes two modified instructions to be executed. However, in this case,

the two half instructions are not two adds.w instructions but one adds.w and one nop.w

instructions. As a result, the processor might be unable to execute the two modified

instructions, since they are not legitimate instructions.
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Summary - vulnerable processor part

Although we can not identify entirely which processor parts are vulnerable to fault,

we have convincing clues from previous sections that either the prefetch transfers

or the pipeline are affected. By faulting unaligned instructions and analyzing the

fault effects, we deduce that a single prefetch transfer is affected, although we do

not know precisely which one.

Chapter Conclusion

The clues gathered in this chapter do not allow us to theorize a complete microarchi-

tectural extension to the ETFM. The hypotheses presented in our preliminary model are

globally verified, but when we examine the details, we notice several unexplained phenom-

ena. Although we identify the prefetch mechanism as vulnerable to faults, we observe other

fault effects that are probably tied to another identified part of the microarchitecture. Fur-

thermore, some of the fault effects on instructions are not precisely what we theorized it

would be. We still demonstrate that state-of-the-art fault models are incomplete and add

significant knowledge to the characterization of the CSCG.
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Chapter 7

CONCLUSION AND PERSPECTIVES

This thesis focuses on characterizing a particular impact of electromagnetic fault in-

jection (EMFI) on the phase-locked loop (PLL): the synchronous clock glitch (SCG).

Understanding this glitch is crucial to designing efficient countermeasures, especially as

it can be used successfully in many-fault injection attacks. In addition, EMFI provokes

numerous and complex effects on an integrated circuit (IC), and studying the SCG en-

hances the general knowledge about the fault mechanisms. The glitch characterization is

done at several levels.

In Chapter 2, we presented an overview of the security challenges electronic devices are

concerned with. Three levels of vulnerabilities and their associated exploitation methods

have been addressed. Among the different attack means, we took an interest in fault in-

jection, which is presented at length in Chapter 3. A fault can affect many elements in an

integrated circuit from the transistor to the caches. Extensive knowledge of the possible

targets is necessary to accurately characterize a fault effect. Chapter 4 considers three

fault injection means (electromagnetic fault injection, voltage, and clock glitch). These

methods share some similarities in their impact. The associated fault models are divided

into three levels, depending on the fault interpretation level. One impact particularly in-

terests us: the controlled synchronous clock glitch (CSCG). The main objective of this

thesis is to characterize this glitch with precision.

First, since none of the state-of-the-art physical fault models applied to the syn-

chronous clock glitch (SCG), an in-depth analysis of the fault impact on electronic com-

ponents was conducted in Chapter 5. Using physical experimentations performed on an

FPGA as well as simulations, we theorized several hypotheses. Since the glitch is car-

ried out by the clock, DFFs are identified as vulnerable. The main fault mechanism

concerns the DFF sampling. The glitch prevents some of the clock energy from reach-

ing the vulnerable elements; thus, they might or might not sample incoming data. This
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phenomenon is influenced by intrinsic parameters such as process variability. Two DFFs

might not be entirely identical, thus requiring different clock energy to perform sampling.

Additionally, due to a phenomenon called cross-talk, neighboring wires (clock or data)

modify the amount of energy carried out in clock wires, leading to the vulnerable DFFs.

We summarize these hypotheses in our first contribution, the Energy Threshold Fault

Model (ETFM), published at COSADE24 [32].

From this model, we made assumptions about the RTL interpretation of the CSCG.

Although no experimental evidence supports it, we believe that the glitch has several

consequences on a simple circuit. First, a fault will only be noticed if a DFF samples

different data than the previously stored data. Secondly, when a faulted DFF is part of

a chain, the missing sampling will be propagated throughout the chain and in potential

calculations. Finally, the missing sampling creates a shift with parallel circuit activities.

Finally, we aimed to gather clues on the SCG impact at the microarchitectural level.

Using our assumptions at RTL, we theorized in Chapter 6 a coarse fault model to be

verified. To do so, we performed experiments on a Cortex-M3 processor, over which we

have limited knowledge and control. These experiments revealed that some fault effects

remain unexplained while our coarse model is globally correct. The prefetch mechanism

is faulted alongside another (or several) unidentified microarchitectural mechanisms. We

also assumed that only changing data during a transfer from one instruction to another

is faulted. For example, if two adds.w instructions only differ in their source register, so

the fault does not impact the immediate. While this effect is globally observed but not as

we theorized in our coarse model. Although our extension to the Energy Threshold Fault

Model (ETFM) is incomplete, we still add significant knowledge to the microarchitectural

effect of the SCG.

7.1 Perspectives

We built our microarchitectural extension of the ETFM by faulting a commercial

processor on which we have little knowledge and control. To enhance the CSCG charac-

terization, we believe a change of the target is necessary (while still being a processor).

First, there is no guarantee that the CSCG has the same impact on a different processor.

Published works so far only featured a Cortex-M3. Perhaps, more importantly, we need
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a transparent, adjustable processor. This way, we can target specific parts to be faulted:

instruction or data transfers, pipeline stage, optimization mechanisms, etc. Additionally,

it is easier to retrieve information, possibly at any given time. The best way to achieve

this is to implement a softcore on an FPGA or to rely on an ASIC on which we have

complete knowledge.

Our study of the SCG uses faults injected with TRAITOR. The tool injects clock

glitches, referred to as CSCG. The equivalence between the two kinds of glitches is not

demonstrated.

To refine our model, it would be necessary to recreate the SCG using EMFI and

study its effect. This being said, when injected using EMFI, the SCG exists among many

other effects, and some are characterized in state-of-the-art works, some possibly not. To

this day, a complete characterization, considering all effects, has not yet been theorized.

Isolating, or at least recognizing, the SCG from the other effects is necessary to study. To

do so, an in-depth study of the physical fault models is necessary, as done in Chapter 4

for state-of-the-art models and Chapter 5 for the ETFM. When looking into the details,

the different effects happen at different timings, for different polarity injections, impact

different signals, etc. By using these discriminatory elements, it may be theoretically

possible to propose an advanced EMFI characterization encompassing every previously

observed fault effect, as well as potential other effects.
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Titre : Effets des perturbations synchrones de l’horloge sur la sécurité des circuits intégrés

Mot clés : Injection de fautes électromagnétiques, modèle de faute, clock glitch, sécurité ma-

térielle

Résumé : Lors de la conception d’un ob-
jet électronique, la sécurité est à prendre en
considération. En effet, les sources de vulné-
rabilité peuvent être multiples, ainsi que les
moyens de les exploiter. En particulier, nous
nous intéressons à l’injection de fautes. Ces
attaques consistent à perturber certains si-
gnaux d’un circuit (comme l’alimentation) afin
de modifier son comportement. Que ce soit
pour développer des contremesures ou des
attaques efficaces, il est nécessaire de com-
prendre l’impact global des fautes sur un cir-
cuit intégré. L’injection de fautes électroma-
gnétiques impacte plusieurs signaux à la fois,
et donc son étude peut se révéler complexe.
Cette thèse vise à étudier un effet en parti-
culier des fautes électromagnétiques, les per-
turbations synchrones de l’horloge. Ce type

de perturbation a été utilisé avec succès pour
contourner des mesures de sécurité. Pour-
tant, une analyse de bout en bout n’a jamais
été explorée. Dans un premier temps, nous
explorons leur effet sur les bascules et leur
échantillonnage, ce qui nous permet de dé-
duire un nouveau modèle de faute. Dans un
second temps, notre intérêt se porte sur l’ef-
fet des perturbations sur la microarchitecture.
Nos buts sont multiples : faire le lien entre
les paramètres d’injection et les différents ef-
fets observés, identifier les parties vulnérables
du processeur, faire le lien avec le modèle de
faute bas niveau. Ces deux contributions per-
mettent d’améliorer la compréhension des ef-
fets de l’injection de fautes, notamment élec-
tromagnétiques, à divers niveaux d’abstrac-
tion.

Title: Effects of synchronous clock glitch on the security of integrated circuits

Keywords: Electromagnetic fault injection, fault model, clock glitch, hardware security

Abstract: When designing an electronic de-
vice, security is a key aspect to consider.
There are numerous vulnerability sources and
exploitation methods. In particular, we are in-
terested in fault injection. These attacks con-
sist of perturbing some of the circuit signals
(such as the power supply) to modify their be-
haviour. Understanding the impact of faults on
an integrated circuit is necessary to design ef-
fective countermeasures or attacks. Electro-
magnetic fault injection impacts several sig-
nals at once, so its study can be complex. This
thesis aims to study one particular effect of
electromagnetic faults: the synchronous clock
glitch. This glitch has been used successfully

to bypass security measures. However, an in-
depth analysis has never been explored. First,
we explore its effect on registers and their
sampling, which allows us to identify a new
fault model. We then focus on the effect of the
glitch on the microarchitecture. Our goals are
multiple: to establish the link between the in-
jection parameters and the various effects ob-
served, to identify the vulnerable parts of the
processor, and to establish the link with the
low-level fault model. These two contributions
will improve our understanding of the effects
of fault injection, particularly electromagnetic
faults, at various levels of abstraction.
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