Effects of synchronous clock glitch on the security of an integrated circuit

Amélie Marotta

PhD Defense 23/06/2025

Examiners: Vincent Beroulle Maria Méndez-Real Jessy Clédière Jean-Max Dutertre <u>PhD Advisors:</u> Olivier Sentieys (director) Ronan Lashermes (co-director) Rachid Dafali Guillaume Bouffard

Introduction

An example

Vulnerabilities and exploitation methods

Fault Injection

Several fault injection (FI) methods exist:

 \rightarrow voltage glitch

 \rightarrow laser FI

- \rightarrow clock glitch
- \rightarrow electromagnetic FI

Fault characterization

Physical level

Impacted elements:

 \rightarrow Possible fault effects: switching logic gates output, preventing DFF sampling, etc.

Amélie Marotta

Physical level: the flip-flop

8 / 59

Register-transfer level

Normal behaviour

Faulted behaviour

 \rightarrow Possible fault effects: bit flip propagation, etc.

Amélie Marotta

 $\rightarrow \text{Possible fault effects: instruction skip/repeat/modification, alteration of data/instruction transfer, etc.}$

 $\rightarrow \text{Possible fault effects: instruction skip/repeat/modification, alteration of data/instruction transfer, etc.}$

A effect in particular: EM impact on the Phase-Locked Loop¹ (PLL)

Normal behaviour

¹ Ludovic Claudepierre and Philippe Besnier, Microcontroller Sensitivity to Fault-Injection Induced by Near-Field Electromagnetic Interference.

Amè	10	NЛ	21	0	-	
			сu	0		

An effect in particular: EM impact on the Phase-Locked Loop (PLL)

 \rightarrow effect at microarchitectural level: instruction skip or repeat

- \rightarrow effect at register-transfer and physical levels?
 - \hookrightarrow explained by state-of-the-art physical fault models?

EM on the PLL: does the Timing Fault Model² apply?

 \to Main fault mechanism: timing violation of $t_{\tt setup}$ by advancing a clock cycle or extending the execution time of D_1

 \rightarrow Does the TFM apply?

 \times no because the SCG does not cause timing variations for either the clock or \mathtt{D}_1

² Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria, <u>Electromagnetic Transient Faults Injection</u> on a Hardware and a Software Implementations of AES.

EM on the PLL: does the Sampling Fault Model³ apply?

 \rightarrow Main fault mechanism: race condition between the clock and D₁ by altering all signals

- \rightarrow Does the SFM apply? \times no because the SCG only affects the clock
- ³ Mathieu Dumont, Mathieu Lisart, and Philippe Maurine, Modeling and Simulating Electromagnetic Fault Injection.

EM on the PLL: does the Nabhan's Fault Model⁴ apply?

 $\rightarrow \underline{\text{Main fault mechanism: timing violation of }}_{\text{setup}} \text{ by shifting a clock cycle or creating additional clock cycles}$

Q١

 \rightarrow Does the NFM apply?

Q١

imes no because the SCG remains synchronous and affects a single clock cycle

⁴ Roukoz Nabhan, Jean-Max Dutertre, Jean-Baptiste Rigaud, Jean-Luc Danger, and Laurent Sauvage, A Tale of Two Models: Discussing the Timing and Sampling EM Fault Injection Models.

Amélie Marotta

PhD Defense

Thesis objective: Understanding the SCG

Contributions during this PhD:

- \rightarrow characterizing and modeling the SCG at physical level (work published at COSADE'24)
- ightarrow extending the model at RTL
- $\rightarrow\,$ gathering clues on the SCG impact at microarchitectural/ISA level and comparing it to the state-of-the art

Overview

- 1. Physical characterization of the SCG
 - $\hookrightarrow \mathsf{TRAITOR}$
 - $\hookrightarrow \mathsf{Experimental} \ \mathsf{set-up}$
 - $\hookrightarrow \mathsf{Hypotheses} \text{ verification}$
- 2. Microarchitectural characterization of the SCG

TRAITOR⁵

Three examples of clock signals generated by TRAITOR illustrating its possibilities.

⁵ Ludovic Claudepierre, Pierre-Yves Péneau, Damien Hardy, and Erven Rohou, TRAITOR: A Low-Cost Evaluation Platform for Multifault Injection.

Amélie Marotta

Device Under Test (DUT)

Floorplan

Floorplan

Floorplan

Logical and physical, in-order and randomized

Hypotheses

Hypothesis 1 (Energy Threshold) For a DFF to correctly sample a clock's rising edge, the clock signal must meet a certain energy threshold, combination of voltage amplitude and width thresholds.

Behaviour of three selected DFF

Transitions phases of three target physical DFFs chosen since they exhibit different characteristics.

|--|

Simulation set-up

- $\rightarrow\,$ SPICE simulation
- \rightarrow 28nm DFF
 - $\,\hookrightarrow\,$ not the exact same as the Artix-7 DFF
 - $\,\hookrightarrow\,$ designed for similar technology so should behave the same way
- $\rightarrow\,$ focus on the state change of the first DFF

Goal: estimate the impact of the voltage and width of the CSCG

Simulation results

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties) The fault sensitivity of a DFF depends on its intrinsic properties, such as <u>clock routing</u> up to the DFF among others.

Only clock routing?

Slice 1 -	23	23	23	23	23	23	23	23
Slice 2 -	23	23	23	23	22	22	22	22
Slice 3 -	23	23	23	23	23	23	23	23
Slice 4 -	23	23	23	23	23	23	23	23
Slice 5 -	22	22	22	22	22	22	22	22
Slice 6 -	22	22	22	22	23	23	23	23
Slice 7 -	23	23	23	23	23	23	23	23
Slice 8 -	23	23	23	23	22	22	22	22
		_	_	_	_	_	_	_

(a) Color coded fault sensitivities of the first 64 registers on mapping 1 *in-order* on FPGA 1.

Slice 1 -	22	22	22	22	21	21	21	21	
Slice 2 -	21	21	21	21	21	21	21	21	
Slice 3 -	22	22	22	22	22	22	22	22	
Slice 4 -	22	22	22	22	21	21	21	21	
Slice 5 -	21	21	21	21	22	22	22	22	
Slice 6 -	22	22	22	22	22	22	22	22	
Slice 7 -	21	21	21	21	21	21	21	21	
Slice 8 -	21	21	21	21	21	21	21	21	
	_	_	_	_	_	_	_		

(b) Color coded fault sensitivities of the first 64 registers on mapping 1 *in-order* on FPGA 2.

 \hookrightarrow Comparing fault sensitivities on two FPGAs.

Hypotheses

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties) The fault sensitivity of a DFF depends on its intrinsic properties, such as process variability and clock routing up to the DFF among others.

Only intrinsic properties?

Slice 1 -	23	23	23	23	23	23	23	23
Slice 2 -	23	23	23	23	22	22	22	22
Slice 3 -	23	23	23	23	23	23	23	23
Slice 4 -	23	23	23	23	23	23	23	23
Slice 5 -	22	22	22	22	22	22	22	22
Slice 6 -	22	22	22	22	23	23	23	23
Slice 7 -	23	23	23	23	23	23	23	23
Slice 8 -	23	23	23	23	22	22	22	22
								-

(a) Color coded fault sensitivities of the first 64 registers on mapping 1 *in-order* on FPGA 1.

Slice 1 ·	22	24	22	23	23	23	23	23
Slice 2 -	23	23	24	22	23	23	22	23
Slice 3 -	23	23	23	22	23	22	22	22
Slice 4 -	23	22	23	22	23	23	22	22
Slice 5 -	22	22	23	23	22	22	22	22
Slice 6 -	24	22	22	22	22	23	22	24
Slice 7 -	22	22	22	24	22	23	24	23
Slice 8 -	23	22	22	22	22	22	22	22
		-		-	-	-	_	-

(b) Color coded fault sensitivities of the first 64 registers on mapping 2 *randomized* on FPGA 1.

 \hookrightarrow Comparing fault sensitivities between physical DFFs for different mappings.

Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties) The fault sensitivity of a DFF may also be affected by extrinsic factors, such as the activity in neighboring wires (including routing between DFFs and the routing of the clock tree).

 \longrightarrow Impact of clock wires

 \hookrightarrow forced adjacent clock paths

Impact of clock wires

Artix-7

Impact of clock wires

Impact of clock wires

Slice 1 -	23	23	23	23	23	23	23	23
Slice 2 -	23	23	23	23	22	22	22	22
Slice 3 -	23	23	23	23	23	23	23	23
Slice 4 -	23	23	23	23	23	23	23	23
Slice 5 -	22	22	22	22	22	22	22	22
Slice 6 -	22	22	22	22	23	23	23	23
Slice 7 -	23	23	23	23	23	23	23	23
Slice 8 -	23	23	23	23	22	22	22	22

21 21 21 21 21 21 21 21 Slice 1 20 20 20 20 20 20 Slice 2 -20 20 20 20 20 20 21 21 21 21 Slice 3 -Slice 4 21 21 21 21 21 21 21 21 20 20 20 20 20 20 Slice 5 -20 20 20 20 20 20 21 21 21 21 Slice 6 -20 20 20 20 20 20 20 20 20 Slice 7 -20 20 20 20 20 20 20 20 Slice 8 -20

(a) Color coded fault sensitivities of the first 64 registers on mapping 1 *in-order* on FPGA 1.

(b) Color-coded fault sensitivities of the first 64 registers on mapping 1 *in-order* with a forced adjacent path for the clock on FPGA 1

 \hookrightarrow Comparing fault sensitivities between physical DFFs for different clock routing.
The Energy Threshold Fault Model

Hypothesis 1 (Energy Threshold) For a DFF to correctly sample a clock's rising edge, the clock signal must meet a certain energy threshold, combination of voltage amplitude and width thresholds.

The Energy Threshold Fault Model

Hypothesis 1 (Energy Threshold) For a DFF to correctly sample a clock's rising edge, the clock signal must meet a certain energy threshold, combination of voltage amplitude and width thresholds.

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties) The fault sensitivity of a DFF depends on its intrinsic properties, such as process variability and clock routing up to the DFF among others.

Hypothesis 1 (Energy Threshold) For a DFF to correctly sample a clock's rising edge, the clock signal must meet a certain energy threshold, combination of voltage amplitude and width thresholds.

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties) The fault sensitivity of a DFF depends on its intrinsic properties, such as process variability and clock routing up to the DFF among others.

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties) The fault sensitivity of a DFF may also be affected by extrinsic factors, such as the activity in neighboring wires (including routing between DFFs and the routing of the clock tree).

Overview

- 1. Physical characterization of the SCG
- 2. Microarchitectural characterization of the SCG
 - $\hookrightarrow \mathsf{Preliminary} \ \mathsf{fault} \ \mathsf{model}$
 - $\hookrightarrow \mathsf{Experimental} \ \mathsf{set-up}$
 - $\hookrightarrow \mathsf{Hypothesis}\ \mathsf{verification}$

⁶ Ludovic Claudepierre, Pierre-Yves Péneau, Damien Hardy, and Erven Rohou, TRAITOR: A Low-Cost Evaluation Platform for Multifault Injection

Amélie Marotta

PhD Defense

37 / 59

25

Amélie Marotta

PhD Defense

38 / 59

From the ETFM and the state of the art

 $\hookrightarrow {\rm preliminary\ microarchitectural\ fault\ model}$

Instructions are affected by the fault

- \hookrightarrow instruction transfers (between caches, inside the pipeline) vulnerable
- $2 \neq \mathsf{amplitudes} \Longrightarrow \neq \mathsf{ISA}$ level effects
 - $\,\hookrightarrow\,$ instruction skip, repeat, modification

Fault impact is only visible on flipping bits

Fault injection setup

Amélie Marotta

PhD Defense

Target description

Target code

-1 Regis	ster initialization
movw r2,	0x6c59
movw r3,	0x44a3
movw r4,	0xd0ea
movw r5,	0x2624
movw r6,	0x2e7c
movw r7,	0x1248
movw r8,	0x3330
movw r9,	0xed12

Nop padding nop.w

...

nop.w

 \rightarrow All instructions are 32-bit long, aligned

ructions-
1
1
1
1
1
1
1
1

 $\underbrace{\overset{\vee}{4}}_{\text{nop padding}}$

• • •

nop.w

Fault models terminology

"instruction adds.w r2, r2, 1" "instruction that modifies r2"

 $\longrightarrow {\sf too} ~{\sf long}~!$

Naming convention of instruction:

adds.w	r2,	r2,	1	\longrightarrow ins. r2
adds.w	r3,	r3,	1	\longrightarrow ins.r3
adds.w	r4,	r4,	1	\longrightarrow ins.r4
adds.w	r5,	r5,	1	\longrightarrow ins.r5
adds.w	r6,	r6,	1	\longrightarrow ins.r6
adds.w	r7,	r7,	1	\longrightarrow ins.r7
adds.w	r8,	r8,	1	\longrightarrow ins. r8
adds.w	r9,	r9,	1	\longrightarrow ins.r9

Fault injection protocol

TRAITOR parameters:

- $\rightarrow\,$ amplitude ranges from 370 to 430
- $\rightarrow\,$ delay ranges from 30 to 50
- ightarrow width is constant at 1 (a single clock cycle is modified)

For each experiment (50 for each different set of parameters):

- $\rightarrow\,$ the target is reset
- \rightarrow the execution stops at the end of the second nop.w set of instructions (breakpoint)
- ightarrow the value of r0-r12, sp, lr, pc, etc., are retrieved

 \rightarrow in case of interrupt that escalates into Hardfault, the type of interrupt (xPSR) as well as pc and lr are retrieved

\Rightarrow Dominant fault impacts on the target code

Amélie Marotta

at delay 37: FM2 adds.w r5, r5, 1 is skipped adds.w r4, r4, 1 is repeated

```
FM3 adds.w r5, r5, 1 is skipped adds.w r3, r3, 1 is executed
```

 \rightarrow instruction modification \checkmark

at delay 37: FM2 adds.w r5, r5, 1 is skipped adds.w r4, r4, 1 is repeated

FM3 adds.w r5, r5, 1 is skipped adds.w r3, r3, 1 is executed

 \rightarrow instruction modification \checkmark

 \dots does not match hypothesis (3) Fault impact is only visible on flipping bits

at delay 37: FM2 adds.w r5, r5, 1 is skipped adds.w r4, r4, 1 is repeated

FM3 adds.w r5, r5, 1 is skipped adds.w r3, r3, 1 is executed

 \rightarrow instruction modification \checkmark

 \dots does not match hypothesis (3) Fault impact is only visible on flipping bits

reg encoding r5 0101 r4 0100

at delay 37: FM2 adds.w r5, r5, 1 is skipped adds.w r4, r4, 1 is repeated

FM3 adds.w r5, r5, 1 is skipped adds.w r3, r3, 1 is executed

 \rightarrow instruction modification \checkmark

 \dots does not match hypothesis (3) Fault impact is only visible on flipping bits

reg encoding r5 0101 r4 0100 × r3 0011

at delay 37: FM2 adds.w r5, r5, 1 is skipped adds.w r4, r4, 1 is repeated

FM3 adds.w r5, r5, 1 is skipped adds.w r3, r3, 1 is executed

 \rightarrow instruction modification \checkmark

 \dots does not match hypothesis (3) Fault impact is only visible on flipping bits

Fault influence: delay?

 \Rightarrow fault effects are tied to the delay of the fault

23/06/2025

adds.w rd, rn, 1

31	30	29	28	27	 19	18	17	16	 11	10	9	8	 3	2	1	0
1	1	1	1	0		r	n			rd			 0	0	0	1

31	30	29	28	27	 19	18	17	16	 11	10	9	8	 3	2	1	0
1	1	1	1	0		r	n			rd			 0	0	0	1

 \hookrightarrow unaligned adds.w instructions

Amélie Marotta

Vulnerable prefetch buffer part at clock cycle 0

_	r3,	, 1	· · · · ,	r4, .	
	r4,	, 1	· · · · ,	r5, .	
	r5,	, 1	· · · · ,	r6, .	<u> </u>

Vulnerable prefetch buffer part at clock cycle 0

r3,	· · · ,	1	· · · ,	r4,	 1
r4,	· · · ,	1	· · · ,	r5,	 К
r5,	,	1	· · · ,	r6,	 -)

Vulnerable prefetch buffer part at clock cycle 1

	r4,	,	1	,	r5,	 1
ſ	r4,	,	1	,	r5,	 K
	r6,	,	1	· · · · ,	r7,	 -)

Vulnerable prefetch buffer part at clock cycle 0

r3,	· · · ,	1	· · · ,	r4,	 1
r4,	· · · ,	1	,	r5,	 K
r5,	,	1	,	r6,	 -)

Vulnerable prefetch buffer part at clock cycle 1

	r4,	,	1	,	r5,	 1
ſ	r4,	,	1	,	r5,	 К
	r6,	,	1	,	r7,	 -)

Faulted instruction output:

. . .

. . .

adds.w	r3,	r3,	1
adds.w	r4,	r4,	1
adds.w	r4,	r5,	1
adds.w	r6,	r5,	1
adds.w	r7,	r7,	1

Enhanced microarchitectural preliminary fault model

1) The dominant fault effects are instruction skip, repeat and modification, happening for different delay and amplitude

- \hookrightarrow the modifications affect identically the destination and source register
- \hookrightarrow at higher amplitudes, the modifications affect non-flipping bits, which contradict the preliminary fault model
-) A transfer in the prefetch mechanism is impacted
- 3 Some effects remain unexplained (instruction modification for example), suggesting that the fault affect unidentified parts of the microarchitecture

2
Conclusion

- \rightarrow **Contribution**: we propose an in-depth characterization of the SCG
- \rightarrow At physical level (ETFM):
 - \hookrightarrow Main fault mechanism: for a DFF to correctly sample a clock's rising edge, the clock signal must meet a certain **energy threshold**
 - \hookrightarrow The required energy quantity is influenced by **intrinsic** properties (process variability, clock routing)...
 - \hookrightarrow ... as well as extrinsic properties (activity in neighboring wires)
- \rightarrow At microarchitectural level:
 - \hookrightarrow The main observed fault effects are instruction skip, repeat, modification, depending on the amplitude of the SCG
 - $\,\hookrightarrow\,$ The prefetch mechanism is vulnerable to fault
 - $\,\hookrightarrow\,$ Other unidentified parts of the microarchitecture are affected

Perspectives

1) The microarchitectural fault model is incomplete

- \hookrightarrow Analyzing the SCG impact on a processor we have more control and knowedge on is necessary, such as a FPGA-implemented softcore
- 2 The equivalence between the SCG and the CSCG is not proven
- $\,\hookrightarrow\,$ Recreating the SCG using EMFI
- $\,\hookrightarrow\,$ Does the ETFM still apply? Does it need adjusments?
- 3 The SCG exists alongside several other EM effects
- $\,\hookrightarrow\,$ Is it possible to offer a full characterization of the EM effects?

Thank you for your attention

Questions?

TRAITOR: generation of the CSCG

Figure: The Controlled Synchronous Clock Glitch (CSCG) is generated using two out-of-phase clocks, clk1 and clk2. The TRAITOR user has the capability to replace the regular clock signal with CSCG at their discretion.

DFFs behaviour amplitude 22

DFFs behaviour amplitude 23

DFFs behaviour amplitude 24

Impact of data wires

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with route variations between two DFFs.

Impact of data wires

Slice 1 -	23	23	23	23	23	23	23	23
Slice 2 -	23	23	23	23	22	22	22	22
Slice 3 -	23	23	23	23	23	23	23	23
Slice 4 -	23	23	23	23	23	23	23	23
Slice 5 -	22	22	22	22	22	22	22	22
Slice 6 -	22	22	22	22	23	23	23	23
Slice 7 -	23	23	23	23	23	23	23	23
Slice 8 -	23	23	23	23	22	22	22	22
								_

Slice 1 -	22	23	23	22	22	23	23	22
Slice 2 -	22	23	22	22	23	23	23	22
Slice 3 -	22	23	22	22	22	23	23	22
Slice 4 -	23	22	23	23	22	23	22	22
Slice 5 -	22	22	23	23	22	22	22	23
Slice 6 -	22	22	22	24	22	22	22	23
Slice 7 -	24	22	23	22	22	22	23	23
Slice 8 -	22	23	22	23	22	22	22	22
				,				

(a) Color coded fault sensitivities of the first 64 registers on mapping 1 *in-order* on FPGA 1.

(b) Color-coded fault sensitivities of the first 64 registers on mapping 1 *in-order* with different data routing on FPGA 1

Figure: Comparing fault sensitivities between physical DFFs for different data routing.

Extension to RTL

initial state for both chains

clock cycle n

Extension to RTL

initial state for both chains

clock cycle n

unfaulted chain

Finding dominant fault models: immediate variations

ightarrow Target code:

 $\hookrightarrow \texttt{listing 2}$

 \hookrightarrow 8 nops.w + in-order, aligned adds.w instructions

Fault influence: instruction order?

 \hookrightarrow 8 nops.w + out-of-order, aligned adds.w instructions

Fault influence: delay?

 \Rightarrow same fault models, indepedantly of the instruction order

A /1*	
Amelie	Warotta

Fault influence: delay?

Vulnerable processor part

Vulnerable processor part

instruction	FM	r2	r3	r4	r5	r6	r7	r8	r9
	FM1	0x6c59	0x44a3	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
nop.w	FM2	0x6c59	0x44a3	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM3	0x6c59	0x44a3	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM1	0x6c5a	0x44a3	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
r2	FM2	0x6c5a	0x44a3	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM3	0x6c5a	0x44a3	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM1	0x6c5a	0x44a4	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
r3	FM2	0x6c5a	0x44a4	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM3	0x6c5a	0x44a4	0xd0ea	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM1	0x6c5a	0x44a4	0xd0eb	0x2624	0x2e7c	0x1248	0x3330	0xed12
r4	FM2	0x6c5a	0x44a4	0xd0eb	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM3	0x6c5a	0x44a4	0xd0eb	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM1	0x6c5a	0x44a4	0x2625	0x2624	0x2e7c	0x1248	0x3330	0xed12
r5	FM2	0x6c5a	0x2625	0xd0eb	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM3	0x6c5a	0x44a4	0xd0eb	0x2624	0x2e7c	0x1248	0x3330	0xed12
	FM1	0x6c5a	0x44a4	0x2625	0x2624	0x2625	0x1248	0x3330	0xed12
r6	FM2	0x6c5a	0x2625	0xd0eb	0x2624	0xd0ec	0x1248	0x3330	0xed12
	FM3	0x6c5a	0x44a4	0xd0eb	0x2624	0x6c5b	0x1248	0x3330	0xed12
	FM1	0x6c5a	0x44a4	0x2625	0x2624	0x2625	0x1249	0x3330	0xed12
r7	FM2	0x6c5a	0x2625	0xd0eb	0x2624	0xd0ec	0x1249	0x3330	0xed12
	FM3	0x6c5a	0x44a4	0xd0eb	0x2624	0x6c5b	0x1249	0x3330	0xed12

Fault adds.w r7, r7, 1

