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Chapter 1

Introduction

This habilitation to supervise research thesis provides an overview of my research activities at the Na-

tional Cybersecurity Agency of France (ANSSI) Expertise department. After earning my Ph.D. in October

2014, which focused on analyzing the security of Java Card Virtual Machine (JCVM) implementations

embedded in hardware Roots of Trust (RoTs) against both software and hardware attacks, I joined the

ANSSI in November 2014. There, I became expert in the ANSSI Research & Development (R&D) labs,

initially in the Hardware Security Lab (LSC) and later in the Hardware and Software Architectures Lab

(LAM).

I have expanded my research to encompass the security of embedded software implementations

deployed in each element of the Chain of Trust (CoT), addressing threats from both software and

hardware attacks. While the litterature mainly focus on the security of cryptographic implementations,

the security of embedded software has been less studied. My research aims to address this gap

and to anticipate the risks targeting each element of a CoT. In particular, we have analyzed several

implementations and discovered vulnerabilities in both their hardware [Tro+21] and software [DB21].

We also proposed several countermeasures to fix them. For example, in the field of hardware RoT,

my contributions have significantly enhanced the robustness of security products [LB15]. This has

encouraged developers to strengthen their solutions, Information Technology Security Evaluation

Facilitys (ITSEFs) to broaden their criteria [DB21; Idr+17] and end-users to benefit from greater security.

1.1 Background

In our daily lives, we frequently perform sensitive operations, such as online banking, secure

communication, or accessing private information. These activities require a secure host to protect

sensitive data against unauthorized access or tampering. This host must provide a trusted environment,

ensuring that information cannot be extracted and security functions remain uncompromised. To

achieve this level of trust, such an element serves as a foundational component known as a RoT. A

RoT acts as the cornerstone for building a secure environment where sensitive functions are executed.

1
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One of the most familiar examples is the Secure Element (SE), commonly seen in smart cards used for

payments or identity verification. Today, RoTs are prevalent, embedded in a wide range of devices such

as computers, vehicles, TVs, video game consoles, and smartphones.

1.1.1 The Root of Trust

The RoT is defined by GlobalPlatform [Glo18b] as a combination of a computing engine, code, and

potentially associated data co-located on the same platform, designed to provide foundational security

services. These components are implicitly trusted as the base of a platform’s security architecture,

meaning their integrity and behavior cannot be verified by any preceding component.

For the purpose of this manuscript, I have intentionally defined the RoT as the minimal component

that is accessible and suitable to meet the needs of ANSSI beneficiaries. This level of granularity ensures

that the research presented here remains relevant and applicable. It is crucial that the elements studied

are representative of components commonly available on the market.

Critical security functions in an information system are built upon the RoT. It serves as the founda-

tion for establishing trust within the system, ensuring that security operations, such as authentication

and integrity verification, are carried out reliably and securely. To guarantee this trust, the RoT must be

inherently trustworthy, which is often verified through a high-level security evaluation performed by

a third party. Such assessments, typically conducted under the Common Criteria security evaluation

scheme [Eur14; Eur22], demonstrate the RoT’s resilience against highly sophisticated attackers. Addi-

tionally, an attestation system [Adv23; Int21] is generally employed to assert the authenticity of the RoT

and validate the platform version.

To ensure comprehensive security, a system must be secure from the hardware layer to the software

layer. RoT is often implemented as a hardware secure module [Ram23]. This module can be a silicon-

based hardware component embedded into a System-on-Chip (SoC) or a discrete component on the

same motherboard as the system’s main Central Processing Unit (CPU).

A hardware RoT supports key use cases [Ope23], such as verifying system integrity, performing

a measured boot as part of a secure boot process, and serving as an extractable second factor for

authentication, as introduced in Figure 1.1. Firstly, verifying system integrity means making sure that

the system’s hardware and software have not been tampered with, thus ensuring the trustworthiness of

the computing environment. In this context, the RoT is known as Platform Integrity Module (PIM), as

illustrated in Figure 1.1a. Secondly, performing a measured boot as part of a secure boot process entails

measuring and recording the state of the system components during the boot sequence, which helps in

detecting and preventing unauthorized modifications. For this use case, the hardware RoT is referred to

as Trusted Platform Module (TPM), as introduced in Figure 1.1b. Lastly, serving as an extractable second

factor for authentication provides an additional layer of security by requiring a physical token or device,

in addition to a password to authenticate users, thereby enhancing protection against unauthorized

access, as shown in Figure 1.1c. Such devices can also be used to securely store secrets like One-Time

Passwords (OTPs), SSH or GPG keys, and even passwords, providing a secure enclave for sensitive data
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and further strengthening the overall security.
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Figure 1.1: Different use cases of hardware RoT, inspired by [Ope23].

To minimize the attack surface, current implementations of hardware RoTs deliberately limit em-

bedded features, often by restricting the device to execute only one application at a time to ensure

secure operations. This approach significantly reduces performance and functionality. Such hardware

RoTs alone are insufficient to meet the demands of modern applications, like streaming Digital Rights

Management (DRM)-protected videos or encrypting data for cloud storage. To effectively balance high

performance with robust security, it is essential to deploy a CoT that integrates multiple layers of RoTs,

allowing for a more flexible and comprehensive security architecture.

1.1.2 The Chain of Trust

A CoT [Glo19] is a sequence of trust relationships that originates from a RoT and extends through

various levels of security elements within a performance-oriented system. Each element in the chain

verifies the next component, insuring the integrity and trustworthiness of the entire system. This

hierarchical approach allows for a scalable and secure architecture, where multiple layers of hardware

and software security can be implemented, each offering different levels of assurance and protection.

The CoT is crucial in complex systems where diverse security requirements must be addressed. Figure 1.2

provides an overview of a modern, high-performance runtime environment tailored for mainstream

consumer applications, based on a multi-stage CoT.
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Figure 1.2: Classic CoT architecture based on hardware RoT. This architecture is generally implemented
as-is in smartphones, laptops and cloud servers.

Each element that composes a CoT is designed to provide specific security features for the entire

system, determined by the level of trust placed in the element and its security assurance level. A CoT

can be divided into the following components:

Hardware RoT The hardware RoT, as introduced in Section 1.1.1, is the cornerstone of the security of

the entire system. With a small attack surface and high security level, hardware RoTs provide

local and platform security functions, such as secure boot [ANS23; App24] and platform key

management [Int15].

Trusted Execution Environment (TEE) TEEs are initially designed to emulate the functionality

of hardware RoTs, focusing on performance and resistance to tampering from software at-

tacks [AF04]. Modern TEEs implementations such as AMD Security Processor [AMD23], Arm

TrustZone [Arm17], and Intel Software Guard eXtensions (SGX) 1 [Int22a] claim to be resistant

to software attacks. However, there are documented cases where vulnerabilities in these TEE

implementations have been exploited through sophisticated software attacks [Cer+20; Sch+24].

Additionally, the TEE protection profile [Glo20b] has evolved to address resistance to some hard-

ware attacks, recognizing the increasing sophistication of threat models [Jac+23; TSS17]. Despite

these developments, no widely deployed TEE implementation have yet demonstrated resistance

to a many of hardware attacks.

TEEs are primarily designed to run business security functions for applications running in the Rich

Execution Environment (REE).

Rich Execution Environment (REE) The REE represents the final layer in the CoT, where high-

performance applications operate. These applications are typically executed on modern operating

systems (OSes) such as Linux or Windows for computers and servers, and Android or iOS for

smartphones.

Modern OSes employ hardware-based security mechanisms, including memory protections and

1. Intel SGX has been deprecated on 11th and 12th generation Intel Core processors since 2021 [Tou22], although its development
continues for Intel Xeon processors targeting cloud and enterprise applications [Rao22].
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control-flow integrity, provided by the system CPU, to safeguard running software. However,

the complexity of the runtime environment often makes comprehensive security assurance chal-

lenging. Applications in the REE generally focus on business logic without security functions, with

security responsibilities commonly offloaded to TEEs or hardware RoTs via the TEE. Nevertheless,

when developers of high-performance applications lack access to TEE or hardware RoT, they are

compelled to implement security mechanisms within the REE itself. This issue is further explored

in Section 1.3.

1.2 Research Context

In late 2014, SEs, such as smart cards, were the most widely used security components for executing

sensitive operations. These components serve as hardware RoTs, ensuring local and platform security

functions.

However, towards the end of the 2010s, there was a significant shift in the landscape of secure

computing. Sensitive operations increasingly started being executed outside of traditional SEs, within

the main system’s CPU, inside TEEs. This shift was driven by the growing complexity and performance

demands of applications. As a result, there was a need to develop new architectures that extended trust

beyond the boundaries of SEs, leading to the adoption of systems based on a CoT.

By the early 2020s, the nature of security threats had evolved. Initially, attacks that were traditionally

targeted at SEs began to be adapted and applied to TEEs [Vas+20; YSW18]. TEEs, designed to provide a

secure and high-performance area within the main processor for executing sensitive tasks, started to

face sophisticated attacks [TSS17] as they became more widely used. As attackers continued to evolve

their methods, these threats also began to target REEs [Bos+16], which are the standard operating

environments where most applications run. The adaptation of these attacks highlighted the need for

comprehensive security strategies that not only protect SEs and TEEs but also ensure the integrity and

security of the entire CoT, including the REE.

Moreover, the general public increasingly relies on digital technologies for daily operations such

as banking, shopping, and communication. This widespread adoption of digital services amplifies the

importance of having a secure CoT. Ensuring that all components of the CoT are robust against security

threats is crucial to protect users’ sensitive data and maintain trust in digital systems.

1.3 Challenges

My research activity focuses on improving the security features introduced in Figure 1.2. These

activities are divided into three main challenges.

Research question 1: How are local and platform security functions, provided by hardware
RoT, developed and used to enhance security? During my Ph.D. thesis [Bou14], I focused on the

security of embedded software implementations within SEs. Following this, my research expanded to
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explore the broader use of hardware RoTs. This involved studying how hardware RoTs are integrated

inside a CoT from both developer and user perspectives. My goal is to anticipate potential risks and

understand the critical role hardware RoTs play in maintaining security, ensuring that they are effectively

utilized to safeguard sensitive operations.

Research question 2: How can high security levels be achieved in TEE, which provide high-
performance environments for business security functions? The advent of TEEs in application

CPUs, such as Arm TrustZone [Arm17], has significantly enhanced security for sensitive applications

requiring performance. In 2015, the ANSSI certified the TEE protection profile [Glo20b], establishing a

framework for evaluating the hardware and software implementations of TEEs. This certification marked

an important step forward, despite the framework not fully covering hardware attacks. Concurrently,

hardware attacks emerged as a notable threat [MBB16; TM17; TSW16; Vas+20] against application

CPUs. These attacks, adapted from those traditionally targeting hardware RoTs, exploit the broader

attack surface of application CPUs, making their protection more challenging.

Research question 3: How can sensitive applications with security features run in the REE, an
environment focused on business logic without specific security functions? Often, third-party

developers lack access to TEEs or hardware RoTs due to the absence of agreements with platform

designers. In the REE, malicious behaviors such as tampering with the environment or unauthorized

access to process memory can occur, making these binaries vulnerable to attacks under a white-box

security model [Cho+02]. Consequently, platform users who install applications from the REE app store

or manually often encounter obfuscated binaries. Such obfuscated binaries are commonly protected

by DRM-based mechanisms, deployed for instance for video games, which provide anti-piracy and

anti-cheating protections [KAS20; Yah23], and for audio and video streaming applications [App16;

Wid17]. It appears also that some payment applications, ideally secured by TEE or hardware RoT, are

deployed in the REE due to contractual limitations, significantly elevating security risks, a concern

acknowledged by the Payment Card Industry [Pay20]. The scientific community actively monitors

these applications to detect vulnerabilities first [Bar+22; Heu24; PSF22]. According to Thomas [Tho22],

the security race between updates and the exploitation of both known and unknown vulnerabilities is

critical. Highlighting the significant risks of employing such environments for sensitive tasks underlines

the significance of my prospective research to evaluate and mitigate these risks. This area is interesting

for assessing the viability of using obfuscated binaries as a RoT in the REE.

1.4 My Contributions

To provide a global overview of my research activities, Figure 1.3 displays my significant publications

along with the supervisions (Ph.D. theses, apprenticeships, and internships) I have participated in.
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Hardware
Root of Trust

Trusted
Execution

Environment

Rich Execution
Environment

BOOK Fault injection effects
characterization from software to
micro-architecture blocks [TBC19;
TBC21; Tro+21].

BOOK Fault injection effects
characterization from logic to
micro-architecture blocks [Mar+24].

BOOK Security analysis of Java Card
mechanisms [DB21; Idr+17; LB15;
LB16].

BOOK Design of a secure-oriented
JCVM [BG18; BGG21].

BOOK Security analysis of TEE
implementations against hardware
attacks [Gon+25].

BOOK Fault injection transposition on
obfuscated binaries [GB23].

BOOK Security Analysis of an in-vehicle
infotainment system [TB25].

SCHOOL Design of a state-of-the-art
JCVM [Gas17; Gir19; Tro17].

MICROSCOPE+SCHOOL Security analysis of ISO/IEC 7816
stack [Mal22; Sim20].

SCHOOL Analysis of a secure software
environment for RoT [Ros21].

SCHOOL Security analysis of an open-source
hardware RoT [Bik24].

User-Graduate Design of an application processor
running a TEE with built-in
countermeasures against hardware
attacks.

SCHOOL Authenticated Disk
Encryption [Bel20].

User-Graduate Applications’ security on
uncontrolled systems [Gir24].

User-Graduate Understanding fault injection
attacks from logic [Mar25].

SCHOOL+User-Graduate Formal analysis of
countermeasures against fault
injection attacks on open-source
CPUs [All27; Sil24].

User-Graduate Security evaluation of COTS
applicative CPUs against hardware
attacks [Tro21].

User-Graduate Analyzing the risk of embedded
power management on application
SoC security [Gon26].

User-Graduate Security in a safety-critical
environment.

Activities covering all
research questions.

Research question 1 Research question 2 Research question 3

Figure 1.3: Overview of my research activities, based on Figure 1.2. This figure shows my publications
(indicated by the BOOK icon) at the top, categorized according to CoT elements, and various supervision
activities at the bottom. Regarding supervisions, internships are represented by SCHOOL, apprenticeships by
MICROSCOPE, and ongoing Ph.D. supervisions by the orange User-Graduate icon. Completed Ph.D. theses are marked by a green
User-Graduate icon. Finally, the red User-Graduate icon represents Ph.D. projects that I plan to initiate as soon as possible.

During my research activities, I address simultaneously studies on each CoT element, engaging in

applied research where I cover each challenge introduced in Section 1.3.

1.4.1 Contributions to Hardware Root of Trust Security

My research was initially focused on the security of software layouts embedded in hardware RoT,

specifically on SE RoT implementations. Building upon the SE foundations laid during my Ph.D. the-

sis [Bou14; Idr+17], I examined the security of Java Card platform implementations, which are extensively

embedded in SE. I pushed further these studies to scrutinize the security of each mechanism interacting

with the Java Card platform, as outlined in the Java Card protection profile [Ora21c]. Particularly, I in-

vestigated the security of the compilation process [DB21] and the application verification process [LB15;
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LB16] employed prior to loading applications. These studies uncovered vulnerabilities and eventually

raised the Java Card platform security. Additionally, I studied the security of the communication

protocol implementation, specifically the ISO-7816 stack, during the work with Simunovic’s apprentice-

ship [Sim20] and Malki’s internship [Mal22]. I also investigated the security of CPU implementations

against fault injection attacks with the supervision of Silva Araújo’s internship [Sil24].

During security evaluations, I observed a trend among developers to favor organizational processes

over technical solutions to mitigate security risks. Advocating for integrating protections directly into

the execution environment, I aimed to achieve security that is less dependent on human factors. In the

absence of an open reference implementation of the Java Card specification, I initiated the development

of a state-of-the-art and modular Java Card platform version. This project was carried out during the

internships of Gaspard [Gas17] and Giraud [Gir19]. Due to licensing constraints the source code is not

public. This implementation includes innovations in security [BG18], memory management, and the

compilation process [BGG21]. During Trouchkine’s internship [Tro17], we implemented a dedicated

hardware execution environment to assess the potential performance and security benefits of running

Java Card applications natively. This involved developing a processor capable of directly executing Java

Card bytecode as assembly, thereby opening new avenues to optimize both the execution efficiency and

security of the Java Card platform.

1.4.2 Contributions to Trusted Execution Environment Security

Next, my research expanded to studying the security of TEE implementations embedded in applica-

tion CPUs, a subject initiated during Trouchkine’s Ph.D. thesis [Tro21]. This work aims to understand

how hardware attacks can extract secrets from the TEE. While the TEE protection profile [Glo20b]

acknowledges the need to address hardware attacks, no commercially deployed TEE implementation

currently integrates countermeasures against them.

In Trouchkine’s Ph.D. thesis [Tro21], we focused on assessing the potential and effects of fault

injection attacks on application CPUs [TBC21; Tro+21]. Since we analyzed fault effects on COTS

components without access to their internal implementations, we characterized these effects from

the CPU’s instruction set down to its micro-architecture blocks [TBC19]. During Marotta’s Ph.D.

thesis [Mar25], we further explored the impact of faults from a hardware logic perspective [Mar+24].

To advance this research, I aim to bridge the gap between the work initiated with Trouchkine and

that conducted Marotta to achieve a comprehensive understanding of fault effects on application CPUs.

This knowledge will be instrumental in developing efficient countermeasures spanning both software

and hardware layers.

In parallel, Alle Monne’s Ph.D. thesis [All27] focuses on evaluating the effectiveness of embedded

countermeasures in hardware RoTs. His work represents a key step in assessing the security of application

processors running a TEE and their resilience to fault injection attacks. In this study, we analyze the

resistance of these implementations directly from their hardware source code, allowing for a deeper

assessment of their robustness and potential vulnerabilities.



1.5. Organization of this Manuscript 9

Additionally, in Gonidec’s Ph.D. thesis [Gon26], we examine the implications of integrated power

management modules on the security of TEEs [Gon+25]. By investigating how these modules can

be manipulated to induce faults or leak sensitive information, we aim to identify vulnerabilities and

propose mitigation strategies. The findings from this research could be extended to all hardware blocks

embedded in application SoCs, including hardware RoTs and REEs, broadening its impact beyond power

management security.

1.4.3 Contributions to Rich Execution Environment Security

Finally, my research has broaden to analyzing sensitive applications running in the REE. These

applications often lack access to hardware RoT or TEE, making them susceptible to white-box attack

models [Cho+02]. In this context, during Giraud’s Ph.D. thesis [Gir24], we explored the security of

software in these environments. Our studies primarily focused on obfuscated applications, investigating

them under the scope of reverse engineering tools where anti-reverse and anti-debug protections

are implemented. Together with Giraud, we analyzed the feasibility and implications of transposing

hardware attacks, mostly studied against hardware RoT, onto an obfuscated binary [GB23].

1.5 Organization of this Manuscript

This manuscript addresses the three challenges introduced in Section 1.3 through the following

research questions. It is organized as follows:

— Chapter 2 describes my research activities related to the software layout embedded in hardware

RoT. Extending the work begun during my Ph.D. thesis [Bou14], this chapter analyzes each

component interacting with the RoT runtime environment, from the compilation process to the

application and external communications of the RoT. It addresses the first research topic: How

are local and platform security functions developed and used to enhance security?

— Chapter 3 discusses my activities about the TEE environment, particularly focusing on application

CPU defenses against hardware attacks. Despite the current TEEs not being designed to be

resistant against such attacks, the TEE protection profile [Glo20b] suggests they should be.

Consequently, this chapter evaluates threats and designs efficient countermeasures that balance

performance and security. It goes deeper into TEE security against advanced attackers as outlined

by the TEE protection profile, aiming to answer the second challenge: How can high security levels

be achieved in high-performance environments for business security functions?

— Chapter 4 examines the challenges of executing sensitive applications within the REE, an envi-

ronment primarily designed for business logic without specific security functions. Due to the lack

of access to TEEs or hardware RoTs, third-party developers must rely on alternative protection

mechanisms, such as software obfuscation, DRM-based solutions, or hardware units provided by

the application CPU. In this chapter, we analyze how sensitive applications can operate securely

within an untrusted execution environment, evaluating the feasibility and effectiveness of various
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protection techniques against potential threats. It addresses the third research topic: How can

sensitive applications with security features run in the REE, an environment focused on business logic

without specific security functions?

— Chapter 5 concludes this manuscript by outlining my future research perspectives.



Chapter 2

Contributions to the Hardware Root
of Trust Security

In Chapter 1, we explored the essential role of hardware RoTs as the foundational element in estab-

lishing a CoT, crucial for securing computing environments against diverse threats. We now introduce

how hardware RoTs ensure secure operations and protect sensitive data integrity and confidentiality

within various systems, thereby enhancing trust in digital platforms.

Building upon these principles, this chapter describes my specific contributions towards advancing

the security of embedded software in hardware RoTs. Given their critical function in initiating and

maintaining a TEE, it is crucial to ensure the security of hardware RoTs and to forsee new attack vectors.

In the field of security technology, SEs are recognized as fulfilling all the requirements of a hardware

RoT. These elements inherently provide a tamper-resistant environment, crucial for secure data storage

and cryptographic operations, thereby establishing their keystone in hardware RoT implementations. As

of 2018, GlobalPlatform estimated the deployment of approximately 55 billion SEs worldwide [Glo18a].

Moreover, both the hardware and software components of SEs undergo rigorous security evaluations

under the Common Criteria scheme [Int22b]; each evaluation taking at least six months to one year

with several experts involved. By 2023, about 200 products had been evaluated under this scheme within

the European Union [Com24]. Given the vast number of deployed units and the stringent security

requirements they satisfy, SEs is an optimal choice for my research, providing a solid foundation for the

widespread application and validation of security principles.

This chapter outlines my contributions to enhancing the security of software embedded in hardware

RoT with a main focus on SE implementations, beginning with an introduction to the hardware and

software architectures of SEs in Section 2.1. This section highlights my advancements in SE security.

The chapter is divided into three main sections: Section 2.2 introduces my contributions to the software

layout, specifically focusing on Java Card technology; extensively deployed in SEs. Following that,

11
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Section 2.3 investigates the security of input/output interfaces, analyzing potential vulnerabilities that

could be exploited to extract information from SEs. Finally, Section 2.5 concludes this chapter by

summarizing the findings and presenting my future directions in the security of hardware RoT.

2.1 Common Secure Element Architecture

A SE is designed to resist to both hardware and software attacks, as outlined in its dedicated

protection profile [Eur14]. In the event of an attack, it can erase non-volatile memory and enter a

permanently disabled state to prevent further access. To achieve this, the SE integrates dedicated

security hardware, including a cryptographic coprocessor, a true random number generator, tamper

detection sensors, and typically a CPU with built-in protections against hardware attacks [Ars+20;

CCH23; Wer+19]. These components are embedded in a low-performance SoC, named a microcontroller,

as illustrated in Figure 2.1, and complemented by a hardened software stack. Most SEs also include

a JCVM, ensuring a secure runtime environment [ZDS23]. The entire hardware and software stack

undergoes rigorous security evaluations to comply with the requirements defined in the SE protection

profile [Eur14].

CPU with
hardware
attacks

protections

True random
number
generator

Crypto-
processors

Light and
tamper

detection
sensors

Internal
memories

Memory
protection unit

Few
input/output
interfaces

Shared bus and resource controller

On-Chip
OS

Secure apps

Analysis of the on-
chip OS layout

Analysis of the
CPU security
against hard-
ware attacks

Analysis of
ISO-7816 stack

Figure 2.1: Overview of the SE hardware and software architecture, adapted from the SE protection
profile [Eur14]. Yellow boxes highlight the software layout, blue boxes represent general-purpose hardware,
and green boxes indicate cryptographic hardware blocks, which are mainly focus of hardware attack
literature [BB23; CX23; Pic+23]. The Internal Memories block, shown as a meta-block, may include SRAM,
Flash, and OTP memory. Dashed boxes and italicized labels highlight my contributions to SE security.

During a security evaluation, an ITSEF conducts assessments under the supervision of a certification

body and according to a public certification scheme, such as Common Criteria, or a private one, like

EMVCo. The certification process evaluates the resilience of security functions deployed to protect

sensitive assets against a defined level of attacker [Eur14; Eur22]. The target of evaluation and the

attacker level are determined by the customer for whom the product under evaluation is developed. In
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cases where several developers are involved in the design of a SE, the security evaluation can be carried

out through composition. This approach involves analyzing one part of the target through an initial

evaluation, while other parts undergo subsequent evaluations conducted by one or more ITSEFs. The

use of composition not only eases a modular approach to security assessments but also permits for the

specialization of security evaluations across different system components such as hardware, OSes, and

applications. This modular method helps breaking down the security problem into small parts, making

it manageable and focused on specific functions or layers within the system.

SEs which successfully pass security evaluations under the Common Criteria scheme, supervised by

a national certification body, can achieve certifications up to the “Formally Verified Design and Tested”

level [Car07]. In France, the national certification body is ANSSI.

Cryptography forms the cornerstone of security within SE, playing a critical role in ensuring the

integrity, confidentiality, and authenticity of sensitive data. Security evaluations of SEs are conducted

with respect to the current state of knowledge, which includes both publicly available scientific publi-

cations and restricted information. In the security analysis of SEs, robustness is primarily assessed in

terms of cryptographic security against flawed practices [Nem+17] and hardware attacks [BB23; CX23;

Pic+23].

However, the security of the software that utilizes these cryptographic implementations has received

comparatively less attention to protect them against hardware attacks. This results in a more limited

state of knowledge in this domain compared to the well-studied field of cryptographic implementations.

This gap is significant, as these software components are responsible for initializing and managing

cryptographic operations. In my research, I have aimed to address this gap by analyzing, understanding,

and improving the software embedded in the SE.

My research on SE security is divided into three main areas: the security of the on-chip OS, as

introduced in Section 2.2, the security of input/output interfaces, described in Section 2.3, and the

analysis of CPU security against hardware attacks, presented in Section 2.4. In each section, I present my

contributions along with associated perspectives.
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2.2 Security of the On-Chip Operating System Layout

Associated contextual elements of this research field

Collaborations: JeanDubreuil (SERMA, Pessac, France), ArnaudDeGrandmaison (Arm, Paris, France),

Said El Hajji (LabMIA, Faculté des Sciences, Rabat, Morocco), Karine Heydemann

(LIP6, Sorbonne University, Paris, France), Noreddine El Janati (LabMIA, Faculté

des Sciences, Rabat, Morocco), Julien Lancia (Thales ITSEF, Toulouse, France), and

Jean-Louis Lanet (INRIA-LHS, Rennes, France).

Publications: [AG21; BG18; BGG21; DB21; Idr+17; LB15; LB16]

Supervisions: Internships of Léo Gaspard [Gas17], Thomas Trouchkine [Tro17], Vincent Gi-

raud [Gir19], and Ever Atilano Rosales [Ros21].

In SE security, having a comprehensive view of hardware and software security threats for complex

applications is a challenging task. For example, most SEs embedded in smartcards have an EMVCo-

compliant [EMV07; EMV08; EMV11a; EMV11b; EMV11c; EMV11d] application. Designing and securing

state-of-the-art EMVCo-compliant applications for SE requires considering both hardware and software

attacks. Developers of such applications must have multidisciplinary skills and expertise in both

hardware and software security. Such a profile is extremely rare and software developers often lack the

expertise to design complex applications.

The Java Card technology addresses this need by offering a standardized and secure on-chip OS that

abstracts hardware security complexities, thereby enabling developers to focus on their application’s

features and to define protection requirements more clearly.

Java Card supports the development of secure applications regardless of specific hardware or OS

models, enabling application developers to work without knowledge of the underlying platform specifics.

This abstraction means that developers can focus solely on functionality and security without adapting

to each target’s characteristics. As a memory-safe language, Java Virtual Machine (JVM) also provides

protections against common memory-related vulnerabilities, such as buffer overflows and invalid

memory access, which enhances application security. For its time, Java Card brought the advantages

of the Java language (security, portability, and simplified development) into a resource-constrained

environment. This approach simplifies the development process, ensures uniform deployment across

various devices, and effectively mitigates security risks associated with diverse hardware environments.

The Java Card technology is employed in the vast majority of evaluated SEs, with nearly 100 Java

Card products evaluated annually under the French Common Criteria scheme. Since 2015, the Java Card

technology has increasingly been targeted towards the automotive and Internet of Things (IoT) security

sectors [Pas22]. According to [Pas22], 6 billion devices equipped with a JCVM are deployed annually.

Java Card specifications, released and licensed by Oracle, have evolved to the current version 3.2.

Throughout my research, I have studied Java Card versions from 2.2.2 to 3.0.5.
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2.2.1 Overview of the Java Card Technology

For software developers, Java Card follows the same development and compilation process as Java

Standard Edition. Developers write applications in Java and compile them into class files using the

javac compiler. As Java class files are not suitable for resource-constrained devices like SE, they must

be converted into smaller CAP files using a Java Card converter. This process is shown on the left side of

Figure 2.2.

Java class files Java Card
CAP files

Installation
module

Installed
app

Java Card
converter

Byte Code
Verifier (BCV)

Application
signature

Export files
corresponding
to the target
JCVM image

Firewall

(C2) Analysis
of the BCV
[LB15; LB16]

(C1) Analysis of the
application converting

process [DB21]

(C3) Design of JCVM memory layout [BGG21]

Converting process Security mechanisms
external to the JCVM

Security mechanisms
embedded in the JCVM

(C4) Design of a state-of-the-art
JCVM implementation [BG18]

Figure 2.2: This figure describes the Java Card architecture, divided into three sections: the conversion
of Java class files for resource-constrained devices like SE, external and embedded security mechanisms
within the JCVM. The color-coded blocks signify: blue for files involved in the compilation process to load
applications into the JCVM, yellow for elements without security features, green for elements with security
features, and red for the installed application in a JCVM. Since this application must access only authorized
resources [Ora21c], the JCVM Firewall, shown as a green rectangle, enforces application segregation within
a specific security context.
The security mechanisms are implemented both externally and internally to the JCVM. Externally, the
BCV ensures that the structure and semantics of the Java Card CAP files comply with Java security rules,
such as prohibiting pointer arithmetic. Internally, an installation module loads the Java Card CAP file
into non-volatile memory, performing few checks close to those conducted externally, along with possibly
additional verifications. Once these checks are complete, the installation module converts the CAP file
into undocumented internal structures used by the JCVM implementation. Additionally, at runtime, the
Firewall dynamically verifies access to resources, ensuring application isolation and adherence to security
policies [Ora21b].
The common security evaluation target [Ora21c] for JCVM implementations is marked in an orange hashed
rectangle ( ). This part was studied during my Ph.D. thesis [Bou14].
Contributions from my post-Ph.D. work are highlighted in italic, with studied JCVM blocks shown in
dashed boxes and started with the label (C1), (C2), (C3), and (C4).

The embedded JCVM implementation security relies on the a specific software validation done by

the Byte Code Verifier (BCV) which checks for type correctness and memory access properties. Few
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checks occur at load time before CAP files are installed on the device. Most Java Card platforms do not

include a BCV due to its high memory consumption, so verification is performed outside the device by

the issuer or a trusted third party, as noted in the middle of Figure 2.2.

In addition to static verification, the Java Card Firewall ensures application isolation at runtime. It

creates separate security contexts for each package, preventing unauthorized access between packages.

This is depicted on the right side of Figure 2.2.

The Java Card architecture, along with the contributions I made after my Ph.D. thesis, are illustrated

in Figure 2.2. During my doctoral research, we analyzed embedded implementations [Bou14; Idr+17].

Subsequently, I extended this work to focus on external security mechanisms for JCVM, as detailed in

Section 2.2.2.

2.2.2 Analysis of the Java Card External Mechanisms

This section explores external mechanisms that protect JCVM implementations from software attacks

and analyzes critical elements of Java Card security, which are often assumed to be trustworthy.

During my Ph.D. thesis [Bou14], we highlighted the BCV as a critical element of JCVM security. The

BCV performs crucial security checks to ensure each embedded application complies with Java security

rules. It targets the CAP file with two main checks: type correctness, which prevents prohibited type

conversions through abstract interpretation, and structure verification, ensuring compliance with Java

Card specifications [Ora21b]. Even a minor unchecked element in the CAP file can introduce significant

security vulnerabilities into SE, as demonstrated in [FV10].

2.2.2.1 Security Analysis of the Byte Code Verifier

Related publications

BOOK Julien Lancia and Guillaume Bouffard. “Java Card Virtual Machine Compromising from a Bytecode

Verified Applet”, In: CARDIS 2015 Article in PDF [LB15]

BOOK Julien Lancia and Guillaume Bouffard. “Fuzzing and Overflows in Java Card Smart Cards”, In: SSTIC 2016

Article in PDF [LB16]

Testing software thoroughly is complex, as it requires ensuring both test coverage and compliance

of the code with the implemented specification. Efforts have been made to characterize the BCV of Java

Standard Edition from both functional and security perspectives. The JVM dynamically calls the Java

BCV during the loading of class files, verifying compliance and ensuring security before execution. For

example, Sirer [Sir99] used code mutation and a reference JVM with BCV as an oracle for automatic

test case generation. Similarly, Calvagna and Tramontana [CT13] developed a formal JVM model that

includes BCV and used model-based testing to evaluate compliance.

The Java BCV and the Java Card BCV serve different purposes due to the distinct file formats and

security constraints of Java Card compared to Java. Java Card supports a simplified subset of Java, but

the Java Card BCV statically verifies that the application complies with security rules and adapts to the

https://www.bouffard.info/assets/pdf/conf/cardis/LanciaB15.pdf
https://www.bouffard.info/assets/pdf/conf/sstic/LanciaB16.pdf
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targeted JCVM implementation security constraints. In contrast, the Java BCV is more generic, as it

dynamically verifies each loaded class file, it can rely on the execution context to ensure compliance

with security rules.

In the Java Card technology, implementations of both external [Ler02] and embedded [Ber+14;

Cas02] Java Card BCV have been developed from formal specifications. These models are also used to

test some part of the Oracle’s closed-source Java Card BCV [CFT14; SFL13] implementation provides

within the Java Card development kit; however, no comprehensive work has fully targeted the Java Card

BCV.

Faugeron and Valette [FV10] analyzed Oracle’s Java Card BCV version 2.2.2 using non-formal

methods. Their work revealed a flaw in the interpretation of branch instructions, leading to undetected

type confusion. This issue was subsequently patched in version 3.0.3. Their findings raised questions

about the potential existence of other incorrect verifications not detected by the formal models used in

the analysis, highlighting the need for further investigation into such vulnerabilities.

A Missing Check in the Byte Code Verifier To assess the application verification process by the

BCV, we developed a fuzzing approach based on genetic mutation. Starting with a simple, legitimate

application, we introduced mutations by randomly altering a byte in the application’s CAP file for each

test iteration. The BCV then evaluates whether the mutated CAP file remains valid. If it passes, the

cref 1 attempts to execute the application associated to the mutated CAP file. Errors thrown by cref

alert on the presence of a malformed application, which may expose security vulnerabilities. These CAP

files undergo further detailed analysis. Employing this method, we uncovered a significant vulnerability

across versions 2.2.2 to 3.0.5 of the BCV [LB15]. This contribution is labeled by (C2) in Figure 2.2.

During the method resolution process, the runtime environment translates a token into an address,

as detailed in Figure 2.3. Our testing approach revealed a critical missing check in the BCV: if an entry in

the public virtual method table is missing, the BCV fails to raise an error. Some JCVM implementations

may attempt to resolve this missing address by overflowing the public virtual method table, using the

subsequent two bytes for address resolution. As demonstrated in [LB15], an attacker can exploit this

behavior to redirect application control flow to a malicious payload.

This work was extended in [LB16], where techniques for executing polymorphic code were developed

to conceal a payload within an application. This strategy becomes essential for an attacker when a

third party performs comprehensive verifications on the application beyond the standard BCV checks,

including specific requirements dictated by the target platform’s security guidelines. Such an attack

underlines the importance for third parties to conduct expensive verifications before loading applications

onto a Java Card-based SE.

Security Impact of aMissing Check in the Byte Code Verifier The identified vulnerability involved

amissing field check in the CAP file by the BCV, potentially exploitable on various JCVM implementations.

We provide an attack path on a deployed JCVM implementation [LB15]. Due to many SE devices does

1. The cref is a reference Java Card simulator provided in the Java Card Development Kit (JCDK) and serves, in this work, as
our fuzzing oracle.
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Class component

class_0 {
public_virtual_method_table = {
/* 0 */ @M1
/* 1 */ @M2
...
/* 126 */ @M126
/* 127 */ @M128

} } // ...

Method component

void M128 () { ... }

void process (APDU apdu) {
// ...

invokevirtual 0x0008
// ...
}

Constant Pool component

Token Function

⋮ ⋮

8
CONSTANT_VirtualMethodRef
method 127 of class 0x0000

⋮ ⋮

1

2

3

Figure 2.3: This figure illustrates the Java Card method resolution process within a CAP file that en-
compasses Class, Method, and Constant Pool components, each essential to the operation. The Method
component lists bytecode tokens; the Constant Pool provides linkage details for each token, specifying
package, class, and method information. Resolution occurs when the JCVM retrieves the Constant Pool
entry for a token, such as 0x0008, directing to the appropriate method in the public virtual method table
field of the Class component. Red arrows marked as 1 , 2 , and 3 indicate the order of resolution.

not embedding a comprehensive and evaluated BCV, the embedded JCVM relies on external tools to

ensure that applications meet Java Card specifications without doing on itself these checks. Oracle’s

BCV, adhering closely to Java Card standards, is widely used for this purpose.

We initiated a responsible disclosure with Oracle in early 2015. Oracle responded by releasing

JCDK version 3.0.5u1 on August 19, 2015, and informed their customers. Conforming to the Java Card

protection profile [Ora21c], all SE must use the latest BCV version. In compliance with Common Criteria

procedures, certification bodies conducted pre-disclosure verifications on evaluated platforms. After

confirming the mitigation of the vulnerability, we publicly disclosed the details.

2.2.2.2 Security Analysis of the Class to CAP file Converting Process

Related publication

BOOK Jean Dubreuil and Guillaume Bouffard. “PhiAttack - Rewriting the Java Card Class Hierarchy”, In:

CARDIS 2021 Article in PDF [DB21]

To perform the analysis of a CAP file, the BCV requires all export files from the target JCVM that

will be imported by the application under review. However, export files lack integrity and authenticity

assessment, posing security risks when validating potentially corrupted information. We highlighted

these risks in [Bou+13a], noting consequences to counterfeit export files. We subsequently demon-

strated a Man-in-the-Middle attack that exploits malicious export files to extract cryptographic keys.

This involved installing a backdoored Application Programming Interface (API) on a JCVM, enabling it

https://www.bouffard.info/assets/pdf/conf/cardis/DubreuilB21.pdf
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to intercept and record keys generated by legitimate cryptographic APIs. However, this attack is easily

detectable and thus not considered realistic.

Ambiguity in Method Resolution Process In [DB21], we expanded our analysis to explore how the

Java Card converter translates symbols from class files to CAP file. Symbols in class file are encoded

as Unicode strings, while in CAP file, they are represented by 1- or 2-byte token values. We identified an

ambiguity in the method resolution process that can be exploited in several JCVM implementations.

This vulnerability, undetectable by the Java Card BCV, can be leveraged within legitimate uses of the

JCDK. Refer to Figure 2.4. This contribution is named (C1) in Figure 2.2.

Package: library / ID: 0xDEADBEEF01

class Phi {
Object confusion (Object obj){
return obj;

}}

Package: proxy / ID: 0xDEADBEEF03

import library;

class PhiProxy extends Phi {}

Package: library / ID: 0xDEADBEEF02

class Phi {
Object confusion (short s) {
return null;

}}

Package: exploit / ID: 0xDEADBEEF04

import library;
import proxy;

Phi p = new PhiProxy();
Object o = p.confusion(0x1234);

is linked with

is
lin

ke
d
w
it
h

is
lin

ke
d
w
it
h

Figure 2.4: This figure illustrates a potential ambiguity in method resolution within Java Card platforms.
The exploit package imports both the library package (purple, top right) and the proxy package (red,
bottom left). The proxy package, in turn, is linked with a different library package (blue, top left),
highlighting possible confusion during linking. At runtime, due to an implicit cast from the PhiProxy class
to the Phi class, it becomes unclear whether a confusion method call in the exploit package is intended
for the purple library or the blue library. This illustrates a security challenge in ensuring the correct
method linkage.

In Java Card platforms, every package is identified by a unique identifier. Currently, there are no

measures in place to prevent a developer from creating a package that shares a name with an existing

one, as long as the new package’s identifier is not already in use. Both during compilation and at

runtime, this situation is manageable: the BCV can identify and differentiate between the two packages

to ensure their correct usage. The JCVM interprets bytecode based on the content of CAP files, which

import packages using their identifiers.

The code architecture shown in Figure 2.4 is accepted by the BCV. Both the blue and purple library

packages include a confusion method with different signatures; one accepts an Object as parameter,

the other a short. The BCV associates the confusion method in the exploit package with the purple

library based on its export files, unaware that the proxy package links to a different library version.

This misassociation causes the BCV to verify the method’s signature incorrectly. When the confusion

method is invoked, the JCVM dynamically resolves the call to the blue library via the class reference

in the proxy package, leading to an erroneous execution of the blue library’s method. As detailed in
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Figure 2.4, this flaw enable us to craft a pointer from address 0x1234, exploiting the vulnerability.

Security Impact of Ambiguity in Method Resolution Process This section explains how the

missing informations in both CAP files and export files can be exploited to circumvent BCV checks

during method resolution. From the perspective of the Java Card converter, export files lack sufficient

information to explicitly specify which packages are imported in CAP files, preventing the BCV from

verifying correct method usage according to their signatures. The BCV delegates this verification to

JCVM implementations, which in turn assumes that the BCV has already performed these checks.

Such vulnerabilities could allow an attacker to execute malicious code inside a verified application,

undermining the Java Card security model. However, exploiting this vulnerability requires additional

conditions, such as executing specific malicious payloads on targeted devices, as the only presence of

overflow or underflow does not automatically imply the existance of an exploitable attack vector

Oneway tomitigate this issue is to restrict the use of export file format version 2.3, introduced in Java

Card 3.1 revision, released a few months before our publication [DB21]. This updated export file format

includes additional information about, for each class, the imported packages and version, addressing

the issue identified. However, the latest versions of the BCV still accept export files from version 2.2.

Enforcing the BCV to only accept export files from version 2.3 is not currently feasible. Notably, sensitive

export files, such as those from GlobalPlatform [Glo12], are only available in version 2.2, posing a

significant challenge for compliance and security.

The discovery of this vulnerability in export files undermines Java Card security and opens up

new research directions for identify other potentially missing or incomplete checks. In line with our

responsible disclosure policy, all Java Card platform developers potentially impacted by this vulnerability

were informed through the Common Criteria scheme prior to public disclosure.

2.2.3 Synthesis and Perspectives

This section has presented my contributions to the security of on-chip OS embedded in SE, with a

primary focus on the Java Card platform’s security. During security evaluations, a common trend I ob-

served was the preference for organizational processes over technical solutions to mitigate security risks.

To counter this, I advocate for integrating security measures directly into the execution environment to

reduce dependency on human factors.

2.2.3.1 Perspectives in Java Card Platform Security

Related publications

BOOK Guillaume Bouffard and Léo Gaspard. “Hardening a Java Card Virtual Machine Implementation with the

MPU”, In: SSTIC 2018 Article in PDF [BG18]

BOOKGuillaume Bouffard, Vincent Giraud, and Léo Gaspard. “Java Card Virtual Machine Memory Organization:

a Design Proposal”, In: arXiv 2021 Article in PDF [BGG21]

https://www.bouffard.info/assets/pdf/conf/sstic/BouffardG18.pdf
https://www.bouffard.info/assets/pdf/arxiv/BouffardGG21.pdf
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Given the absence of an open reference implementation for the Java Card specification, I started

the development of a state-of-the-art and modular JCVM. This project began during the internships of

Gaspard [Gas17] and Giraud [Gir19]. Two significant results have been achieved.

First, advancements in the security of OS running the JCVM are presented in [BG18], highlighted as

(C4) in Figure 2.2. This work explores how a Memory Protection Unit (MPU) can improve the Java Card

Firewall to ensure applet segregation. We leveraged the MPU to segregate each applet within its own

security context, preventing unauthorized access between applets. Most existing Java Card Firewall

implementations do not rely on hardware mechanisms to enforce segregation. Developing a hardware-

based Java Card Firewall implementation significantly enhances both security and performance.

Second, we proposed a JCVM memory layout [BGG21], labeled as (C3) in Figure 2.2. The JCVM

memory layout is excluded from the Java Card specification and is typically implemented differently by

each developer. To design a secure-oriented JCVM, it is necessary to have a reference implementation for

each part of the JCVM to carefully evaluate and improve its robustness. Unfortunately, due to licensing

restrictions associated to the Java Card specifications [Ora21a; Ora21b], the source code cannot be

shared.

Future development of our JCVM implementation will need to enhance tamper resistance against

hardware attacks, providing application developers, often not experts in hardware security, the nec-

essary interfaces to protect their applications. Since Java Card 3.0.5, the introduction of the API

SensitiveArrays and SensitiveResults classes have aimed to associate security properties with

Java Card class variables. However, these classes are primarily implemented at the software level by

the JCVM and lack reliance on underlying hardware security mechanisms. They currently support

only specific Java Card types, which could be expanded through annotations, allowing developers to

specify more precisely the expected security properties of their programs. These APIs currently offer

only integrity protection, the inclusion of confidentiality is also crucial and should be considered in

future revisions.

During Trouchkine’s internship [Tro17], we explored the feasibility of running Java Card applications

directly in a dedicated hardware environment. We modified an open-source Java processor [Sch05],

capable of natively running Java bytecode, to execute Java Card bytecode while respecting its specific

constraints. This approach improved performance and security by incorporating hardware security

features directly into the Java Card runtime. This design enables the integration of hardware-based

security with a strong execution platform, greatly enhancing overall security. Notably, commercial

processors running Java bytecode as assembly language exist, such as Sun’s Java Processor [Tur96],

JStik by aJile Systems [Bin+08], and Arm microcontrollers with the Jazelle extension [Arm12]. Direct

native execution of Java Card bytecode is not documented in the literature, highlighting the need for

further research and development to maximize its potential.
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2.2.3.2 Perspectives in Hardware RoT Security

While SEs represent robust implementations of hardware RoT, there exist less secure implementations

evaluated only for their hardware layer [Alb21]. A SE is a hardware RoT where both the hardware and

software components have undergone a security evaluation. In contrast, a secure-oriented microcontroller

is a hardware RoT where only the hardware has been evaluated. Secure-oriented microcontroller is

commonly used in secure boot processes (see Figure 1.1a and Figure 1.1b) as the Google’s Titan [BV21].

Emerging initiatives like the TrustedFirmware project [Leg23] aim to provide open-source software-

oriented security to establish a CoT for COTS components. This project includes a bootloader based on

MCUBoot, which offers firmware updates with signature verification and robust protections against

hardware attacks for secure-oriented microcontrollers.

During Rosales’s internship [Ros21], we conducted an analysis of MCUBoot under potential fault

injection attacks, specifically focusing on how compilation parameters can influence the effectiveness of

security countermeasures. The results of this work, presented by Arm [AG21] underlined the critical

role of the compilation process in fortifying software against hardware attacks. It also emphasized

the ongoing need for research to develop a secure RoT that substantially enhances the overall security

framework of the CoT.

2.3 Security Analysis of the Input/Output Interfaces

Associated contextual elements of this research field

Supervisions: Boris Simunovic’s apprenticeship [Sim20] and Louisa Malki’s internship [Mal22].

The study of the security of embedded software implementations extends beyond the software layer;

it is also important to analyze the protocols at the input/output interfaces. These protocols, which are

exposed by a hardware RoT, can be exploited by a malicious user.

A SE generally embeds the ISO/IEC 7816 communication protocol [Che00]. ISO/IEC 7816 [Int15] is

a client-server type protocol used to communicate with smartcards, and more recently, with contactless

devices [Wik24b]. In this protocol, the host functions as the client, sending requests, and the guest

acts as the server, responding to these requests. Within this protocol, applications communicate via an

Application Protocol Data Unit (APDU) command [Int13].

To be transmitted, an APDU command is encapsulated over transmission layers named T=0, T=1,

or T=CL. T=0 and T=1 are layers of the ISO/IEC 7816 protocol stack [Int06] and are transmitted over a

USART-like physical connection. An ISO/IEC 7816 host-guest architecture with T=0 and T=1 layers is

depicted in Figure 2.5. T=CL corresponds to a full protocol stack associated with ISO/IEC 14443 [Int18]

for transmission using an NFC modem.

T=0 is a character-level transmission protocol where each byte of the APDU command is sent as-is.

T=1 is a block-level transmission protocol, where the APDU command is encapsulated within a more

complex block that includes an integrity checksum. Unlike T=0, the T=1 layer uses several complex
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Host Guest

Device under test

APDU command

T=0 T=1

USART-like layer

APDU command
parsing

T=0 T=1

USART-like layerTransmission
line

Figure 2.5: ISO/IEC 7816 protocol layers. Arrows illustrate the transmission of an APDU from the host
sending the command to the guest parsing the received command. The APDU can be transmitted via either
the T=0 or T=1 layers. The blue boxes are analyzed under our work.

packet types to manage communication. Due to the complexity of the protocol, understanding and

implementing it can lead to potential errors.

2.3.1 Security analysis of Embedded ISO/IEC 7816 implementations

In 2015, Vinet [Vin15] presented an attack on an implementation of the ISO/IEC 7816 protocol within

a SE, even though this protocol stack is typically verified during security evaluations. Following the

publication by Vinet, it raised concerns about potential vulnerabilities in other deployed and certified

implementations. In the state of the art, the focus is on the proper implementation of application

protocols [AF18; Lan+18], such as EMV [AVR14; Lan11a] and HTTP [Bar+11]. In 2016, a French ITSEF

demonstrated the possibility of exploiting JCVM implementations through flaws in an improperly

implemented ISO/IEC 7816 stack; however, the details of this work have not been made public.

In this context, Simunovic began his apprenticeship [Sim20], focusing on studying the compliance

of ISO/IEC 7816 stack implementations embedded in SE. This work involves examining various aspects

of the ISO/IEC 7816 protocol implementation, as presented in Figure 2.6.

During Simunovic’s apprenticeship, we evaluated the security of T=1 implementations embedded

in a SE, as indicated by the areas in blue in Figure 2.5. Given the greater complexity of this protocol

compared to T=0, we hypothesized that errors might be present in its implementations.

As a first step towards understanding how this protocol works, we implemented the host version

of the ISO/IEC 7816 protocol. This implementation is open-source and available on ANSSI-FR/Open-

ISO7816-Stack’s GitHub repository.

A second step, to evaluate the security of ISO/IEC 7816 T=1 implementations embedded in SE, we
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Hardware layer

Operating system

Java Card Virtual Machine

Applet 1 Applet 2 Platform
Manager

ISO/IEC 7816 stack
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Software driver

Application support

ISO/IEC 7816 API

Figure 2.6: Overview of ISO/IEC 7816 stack architecture, embedded in a SE, upon each software level.
Generally, this kind of implementation is divided into four levels: 1) a PHY module implementating physical
layer of ISO/IEC 7816 stack, 2) a software driver allowing the OS to use the PHY hardware module, 3) an
application support exposed by the OS to the userland applications and implementing the ISO/IEC 7816
protocol, 4) and a Java Card API enabling the applications to use the ISO/IEC 7816 support.

employed a fuzzing approach based on model mutation.

Operating with a black box approach, we were unable to instrument specific parts of the protocol

within the device under test. Therefore, to test the T=1 protocol as shown in Figure 2.5, we used all

parts of the protocol, from the physical layer to the APDU layer. Additionally, our method required an

application that uses APDU to ease exchanges with the fuzzer. This necessitated having the target in

development mode, where we could load our application. Ultimately, our goal was to test the entire

ISO/IEC 7816 protocol stack on SE without the ability to load applications.

During Simunovic’s apprenticeship [Sim20], we modeled the T=1 protocol of ISO/IEC 7816 [Int06]

and adapted the fuzzer Boofuzz 2. To evaluate the guest system’s behavior under test, we used a

bridge based on an STM32 board, which converts the data generated by Boofuzz into valid or invalid

ISO/IEC 7816 commands. This bridge embeds a state machine specifically designed to allow Boofuzz

to comprehensively test each part of the ISO/IEC 7816 protocol, providing direct access for Boofuzz to

each protocol step. We made necessary adaptations to Boofuzz to integrate it seamlessly with our state

machine architecture. The code for the bridge is available on ANSSI-FR/cardstalker’s GitHub. The

setup’s architecture is depicted in Figure 2.7.

We used our fuzzing architecture on several smartcards from various manufacturers. The tested

smartcards were purchased from public stores. We did not discover any vulnerabilities. However, we did

identify behaviors that allowed us to distinguish different implementations through fingerprinting. The

ability to use fingerprinting to potentially identify the developer of a specific implementation provides

us with ideas for future research directions. These ideas are described in Section 2.3.2.

2. Boofuzz is an open and free fuzzer available on jtpereyda/boofuzz’s GitHub.
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Figure 2.7: Fuzzing architecture of ISO/IEC 7816 protocol.

2.3.2 Synthesis and Perspectives

During Simunovic’s apprenticeship [Sim20], we developed a fuzzer to asses the robustness of

ISO/IEC 7816 implementations at the T=0 and T=1 layers. Our focus during Simunovic’s apprentice-

ship [Sim20] was particularly on the T=1 layer. Nevertheless, we did not discover any vulnerabilities in

the targeted implementations.

While analyzing the fuzzing results, we discovered that targeted SE devices, whether from differ-

ent manufacturers or different models from the same manufacturer, responded differently to specific

ISO/IEC 7816 T=1 commands. This variability in responses can be used to fingerprint devices, potentially

revealing information about the developers of the JCVM platform and the installed applets. Further-

more, SE devices with identified vulnerabilities [Nem+17; Roc+21] can be fingerprinted and potentially

exploited in environments where the SE is anonymized.

Traditionally, fingerprinting has been a concern primarily for web browsers [Lap+20] andOS [SCW19].

This approach has recently been extended to fingerprint cryptographic implementations embedded in

SE, as demonstrated by a study focused on Java Card applets [Sve+22]. Such research typically requires

the ability to load applications onto the SE to identify specific implementations. The capacity to load

applications often provides comprehensive information about the platform. Moreover, the capability

to fingerprint the ISO/IEC 7816 protocol enhances the potential to gather detailed information from a

target SE even without specific applications installed.

This topic was central toMalki’s internship [Mal22], wherewe analyzed the differences in ISO/IEC 7816

responses to categorize target implementations by developer and version. This work is ongoing, and

further analysis is needed to systematically organize and interpret the fingerprinting results obtained.
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2.4 Analysis of CPU Security Against Hardware Attacks

Associated contextual elements of this research field

Collaborations: Luc Bonnafoux (ANSSI), Damien Couroussé (CEA/List, Grenoble, France), Mathieu

Jan (CEA/List, Saclay, France), and Simon Tollec (CEA/List, Saclay, France).

Supervisions: The internships of Mário da Silva Araújo [Sil24] and Angie-Sofia Bikou’s intern-

ship [Bik24] and Jonah Alle Monne’s Ph.D. thesis [All27].

CPUs in SE are designed to be resilient to both hardware and software attacks, including fault

injection attacks, which pose a significant threat to the integrity and confidentiality of sensitive data

in embedded systems [Bar+06]. These CPUs typically include built-in protections against hardware

attacks. However, in my work, I have primarily focused on fault injection attacks, while side-channel

attacks will be a topic of future research. With the advent of RISC-V Instruction Set Architecture (ISA), it

has become possible to conduct a detailed study of the implementation of embedded countermeasures.

Fault injection allows an attacker to force the processor out of its expected functioning bounds,

potentially inducing logical changes at both hardware and software levels. These changes can lead to

unexpected states or execution paths, which can be exploited in attacks to leak secrets or escalate privi-

leges. While traditional fault injection robustness analyses consider abstract models of the processor’s

ISA and fault effects, recent research emphasizes the need to account for fault injection consequences

at the micro-architectural level [Lau+19; Lau+21]. At the hardware level, precise knowledge of the

processor’s micro-architecture is required, as fault effects often stem from hidden sequential elements

like pipeline registers. At the software level, the impact of a fault depends on the execution context,

including the nature of program instructions and the state when the fault occurs. Consequently, a

comprehensive robustness analysis requires considering both hardware and software aspects.

Several open-source projects have emerged, focusing on hardware-based RoT implementations that

enhance the security of embedded systems against fault injection attacks. These projects provide valuable

resources for studying and improving fault-resilient designs. Notable examples include OpenTitan by

LowRISC [Low24], a secure microcontroller designed to provide a robust foundation for hardware-based

security; CV32E40S [Ope24b] powered by OpenHW group, a processor designed with built-in security

features specifically targeting fault injection attacks; and Caliptra developed by ChipAlliance, a secure

microcontroller currently under development and still in its early stages.

2.4.1 CPU Analysis against Fault Attacks

To assess the security of a CPU implementation, effective modeling and analysis methods are

needed to gain a comprehensive understanding of fault effects [YSW18] while considering both hard-

ware [Arr+20; Bur+17; Ric+21] and software [DBP23; HSP20; Pot+14]. These techniques are essential

for uncovering microarchitectural details that can affect the system’s overall security. Achieving this

https://github.com/lowRISC/opentitan
https://github.com/openhwgroup/cv32e40s
https://github.com/chipsalliance/
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requires automatically generated models that integrate hardware, software, and fault effects, and which

can be processed by verification tools to enable automated verification.

To evaluate a CPU implementation, Tollec et al. [Tol+23] introduced �ArchiFI, an open-source tool

designed for the formal modeling and verification of microarchitecture-level fault injections and their

effects on complex hardware/ software systems. This approach allows for the analysis of fault effects

across both hardware and software, offering a deeper understanding of system vulnerabilities.

Their methodology involves modeling faults at the microarchitectural level to accurately evaluate

their impact on hardware and subsequent effects on software. They employ bounded model checking to

reason about the consequences of fault injections and their potential exploitation by attackers. This

technique has been applied to RISC-V use cases using state-of-the-art model-checking tools for hardware

verification. The work was carried out on the CV32E40P processor, which is a processor without security

features against hardware attacks.

2.4.2 Secure-oriented CPU Analysis against Fault Attacks

Building upon this work, during Silva Araújo’s internship [Sil24] in collaboration with CEA/List,

we adapted this tool to assess the security of the CV32E40S implementation. This adaptation enabled

us to evaluate the processor’s resilience against fault injection attacks, taking into account its specific

architectural features and integrated countermeasures.

However, during this internship, several bugs were discovered in the CV32E40S implementation,

which hindered our progress. As a result, we were unable to study the implementation of countermea-

sures based on fault models from the literature. Despite these setbacks, we were able to define and

implement simple test programs, some of which were inspired by public implementations, such as the

VerifyPIN from the FISCC project [Dur+16].

2.4.3 Synthesis and Perspectives

In this section, I present our work on analyzing protections against fault injection attacks in CPUs

embedded in SE. This effort began during Silva Araújo’s internship, where we adapted �ArchiFI to assess

the security of the CV32E40S. To evaluate the processor’s robustness, we used simple test programs,

such as the VerifyPIN from the FISCC project [Dur+16].

This work represents an initial step in studying the security of processors designed to resist fault

injection attacks. It also serves as a foundation for Alle Monne’s Ph.D. thesis [All27], which focuses on

evaluating the effectiveness of embedded countermeasures in the CV32E40S. His work will be a crucial

step toward examining the security of application processors and their resilience to fault injection

attacks.

Additionally, during Bikou’s internship [Bik24], alongside Alle Monne’s work [All27], we conducted

a security analysis of OpenTitan. Its implementation is close to a commercial SE. However, unlike SE

commercial solutions, OpenTitan has not undergone formal security evaluation and does not meet the

industrial standards.

https://github.com/CEA-LIST/uArchiFI
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This analysis has provided valuable insights into the embedded security mechanisms within SE,

which are crucial for securing TEEs.

2.5 Conclusion and Perspectives

This chapter summarizes my contributions to hardware RoT security. Building upon the research

initiated during my Ph.D. thesis [Bou14], I expanded the investigation into the security of the Java

Card platform, primarily embedded in SE. Additionally, we examined the security of communication

interfaces, uncovering behaviors that could potentially fingerprint software implementations embedded

in SE. Furthermore, I analyzed the security of the embedded CPU within SE against hardware attacks,

with a particular focus on fault injection attacks, which are a significant threat to system integrity and

confidentiality.

For future work, I will analyze the countermeasures integrated into hardware RoTs in order to

resist hardware attacks, with the aim of understanding and evaluating their relevance and coverage.

Subsequently, I will explore how to adapt these protections to application processors, securing them

against hardware attacks and enhancing the security of TEEs. This work had begun under the supervision

of Alle Monne’s Ph.D. thesis [All27].



Chapter 3

Contributions to the Trusted
Execution Environment Security

As outlined in Chapter 1, the TEE acts as the second layer of the CoT, offering a secure environment for

high-performance and sensitive applications. In 2015, ANSSI certified the TEE protection profile [Glo20b].

According to this protection profile, evaluated TEE implementations should be protected against software

and hardware attacks. Despite the complex architectures of application CPUs that integrate TEEs,

hardware attacks have become increasingly sophisticated and feasible. This mirrors the evolution of

attacks aimed at hardware RoTs [MBB16; TSW16; Vas+20]. The large attack surface of application CPUs

makes securing TEEs increasingly challenging [TM17; YSW18].

In 2016, an evaluation of OS security within TEEs was initiated in France under the Common

Criteria scheme, supervised by ANSSI and aligned with the TEE protection profile [Glo20b]. Although

comprehensive, the assessment of hardware attacks, such as fault injection, was out of scope due to

insufficient knowledge at the time to fully evaluate the necessary conditions for successful exploitation

by attackers.

It is in this context that my research on TEE security began in early 2017, as evidence of successful

fault injection attacks against TEEs grew [MBB16; TSW16; Vas+17]. These attacks often replicated

those previously applied to SEs without considering the specific characteristics of the application CPUs

running TEEs.

This chapter is organized as follows. First, Section 3.1 presents the common architecture of a

TEE, where segregation between the REE and TEE is based on both hardware and software. Next,

Section 3.2 discusses the hardware architecture of application CPUs running TEEs, often embedded

in a SoC. While these application CPUs coexist with many modules, they are not designed to resist

hardware attacks. Then, Section 3.3 addresses the risks of hardware attacks on application CPUs and

introduces my contributions to characterize resistance to fault injection attacks from both software and

hardware perspectives, with the aim of designing countermeasures to protect TEEs. Section 3.4 follows

29
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by discussing the risks introduced by integrating application CPUs running TEEs into modern SoCs

shared with various modules. These modules, accessible from the REE, can be exploited to compromise

the confidentiality and integrity of TEEs, highlighting the need for high-level countermeasures against

hardware attacks from these modules. Finally, Section 3.5 concludes the chapter and outlines future

perspectives.

3.1 Common Trusted Execution Environment Architecture

A TEE is a software enclave within the main application CPU, designed to provide a secure area.

The most widespread implementation of TEE is that of Arm, which represents 99% of the deployed

mobile CPUs [Kin24]. In Arm’s TEE implementation, named TrustZone, both the REE and TEE run on

the same CPU. The TEE software typically runs on a (generally fixed) core and has access to specific

peripherals used to perform sensitive operations. Upon a hardware scheduling event, the core switches

from the REE to the TEE, isolating the execution of trusted applications from the rest of the system.

Unlike software implementations embedded in SE, most parts of the TEE software architecture are

standardized, with many specifications provided by GlobalPlatform working groups [Glo20a; Glo20b;

Glo21]. Figure 3.1 shows a common TEE software architecture along with these specifications.

Within the TEE, trusted applications run in a protected environment with limited access to the

outside world, operating independently from the REE. Communication between the TEE and external

environments is handled throughwell-defined interfaces, setup by the securemonitor [Glo20b], managed

by the TEE OS. The TEE OS enforces security policies and access controls, ensuring that only authorized

REE applications and processes can interact with the TEE. Additionally, the TEE OS ensures that sensitive

operations are executed in a secure manner. The integrity of the TEE OS is verified by a RoT during the

secure boot process, while the overall security of the TEE runtime environment is maintained by the

TEE OS.

As shown in Figure 3.1, the isolation between the REE and the TEE worlds is enforced by the

underlying hardware architecture. Consequently, the security of the hardware layout is crucial to

maintaining the integrity and security of the TEE environment. Application CPUs, on which TEEs run,

are primarily designed with performance in mind rather than security, and thus often lack inherent

protections against hardware attacks.

In the mid-2010s, several hardware attacks transposed from those initially targeting SEs were success-

fully carried out on application CPUs running TEE [Bal+15; MBB16; TSW16; Vas+17; Yan+15]. Although

these attacks were not specifically adapted to the architecture features of the targets, they demon-

strated that application CPUs are susceptible to hardware attacks and that attackers can exploit this

vulnerability. Towards the end of the 2010s, further research showed that the particular characteristics

of application CPUs could also be leveraged to compromise the security of TEE applications [Koc+19;

Lip+18; Man+18; TSS17].

To understand the consequences of hardware attacks on TEEs, my research focuses on analyzing
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Figure 3.1: Common TEE software architecture. Adapted from [Glo20b].

their effects and potential when targeting application CPUs. Since Arm dominates the embedded

systems market [Kin24], I will focus on this implementation in my study. However, while the following

works specifically target COTS component Arm application processors, the proposed approaches are

agnostic and can be applied to other processor implementations running a TEE.

3.2 Hardware Architecture of Application Processors

Unlike the architecture of SEs, described in Figure 2.1, which features a CPU with built-in fault

detection mechanisms embedded within a minimally functional SoC to maximize security, application

CPUs are integrated into complex SoCs that incorporate numerous modules; such as Graphics Processing

Units (GPUs), Video Processing Units (VPUs) with artificial intelligence engines, and power management

units for optimizing energy efficiency. Figure 3.2 illustrates the hardware and software architecture of

such an application SoC embedding an Arm processor.

To enhance software execution, application SoCs utilize internal memory called cache to store copies

of data from external memory. Caches are organized into a hierarchy of levels, each differing in size,

speed, and proximity to the CPU cores. In multi-core CPUs, each core has its own dedicated Level 1 (L1)

cache, the smallest and fastest, allowing fast access to frequently used data and instructions. Level 2

(L2) caches are larger and may be private to each core or shared among cores, serving as intermediaries

between the L1 caches and external memory. Level 3 (L3) caches are even larger and generally shared



32 CHAPTER 3. Contributions to the Trusted Execution Environment Security

Arm
application
multi-cores

CPU

GPU / VPU Hardware
accelerators

Power
management

Memories

Input/Output
memory

management
unit

Wire
interfaces

(PHY)

Wireless
interfaces
(modem)

Multi-layer AXI/AHB/APB Bus & Cache Coherent Interconnection

Secure monitor

TEE REE Impact analysis of hardware
attacks on TEE

Figure 3.2: Overview of the hardware and software architecture of a modern application SoC embedding an
ArmCPU running a TEE. Arm is themost deployed architecture featuring a TEE, known as TrustZone [Kin24].
This technology provides a hardware-based security mechanism [Arm17], where the TEE and REE run on
the same CPU. Adapted from [BRS17].

among all cores, simplifying efficient data sharing and maintaining coherence across the processor. This

hierarchical cache structure reduces memory access latency and enhances overall system performance

by keeping data closer to the CPU cores.

Application CPUs feature superscalar pipelines for fetching and decoding multiple instructions

in parallel, and often include out-of-order execution stages, which improve performance by allowing

instructions to be executed in an order that maximizes efficiency, rather than strictly following the

original program sequence. However, these performance enhancements add complexity to the CPU

architecture, which can introduce new security challenges and increase the attack surface for hardware

attacks [Koc+19; Lip+18].

These CPUs incorporate a Memory Management Unit (MMU) that translates the virtual addresses

used by software processes into physical addresses. The MMU plays a crucial role in managing memory

protection and access control, ensuring that processes access only the memory regions they are per-

mitted to. Additionally, modern CPUs integrate hardware security mechanisms such as Control Flow

Integrity (CFI) and pointer protection techniques like Pointer Authentication Code (PAC) or Capability

Hardware Enhanced RISC Instructions (CHERI) [Woo+14] to mitigate software attacks by restrict-

ing control flow manipulations and preventing memory safety violations. While these mechanisms

provide strong protections against software attacks, they are not designed to withstand hardware attacks.

While this complexity is essential formeeting the requirements of performance-intensive applications,

it also significantly increases the attack surface, often relegating security to a secondary consideration.

The intricate design and the multitude of integrated modules introduce additional vulnerabilities that

can be exploited by attackers [Cam+18]. Consequently, application processors become more susceptible

to hardware attacks that can compromise the entire system’s security.
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In the rest of this manuscript, I refer to micro-architecture blocks as each individual component

within a CPU’s architecture, such as caches, pipeline stages, branch predictors, and execution units,

which contribute to the overall performance and functionality of the system [Wik24c].

3.3 Impact of Hardware Attacks on High-Perfomance Processors

Associated contextual elements of this research field

Collaborations: Jessy Clédière (CEA/Leti, Grenoble, France), Rachid Dafali (DGA-MI, Bruz, France),

Ronan Lashermes (INRIA/LHS, Rennes, France), and Olivier Sentieys (INRIA/TARAN,

Rennes, France).

Publications: [Mar+24; TBC19; TBC21; Tro+21]

Supervisions: Thomas Trouchkine [Tro21] and Amélie Marotta [Mar25] Ph.D. theses.

Despite the architecture complexity highlighted in Figure 3.2, the practical feasibility of hardware

attacks on application processors has been a topic of debate within the scope of security evaluation

schemes. Hardware attacks can be categorized into two main types: passive attacks (or observation

attacks), known as side-channel attacks, where sensitive information is extracted through physical

observations during execution, and active attacks (or perturbation attacks), referred to as fault injection

attacks, where the attacker deliberately disrupts the system’s behavior to induce computation errors at

runtime, potentially leading to the disclosure of sensitive information or unauthorized access. Attacking

a application CPU typically involves targeting it through the SoC in which it is embedded.

To strengthen the security of high-performance software and hardware implementations, it is essen-

tial to understand the potential risks posed by hardware attacks to develop secure countermeasures

accordingly.

In the context of side-channel attacks, prior research has already explored their feasibility and

impact [Bal+15; Lon+15] on application CPUs. However, when I began this research in 2017, the

exploitability of fault injection attacks on these architectures remained uncertain and was a subject of

ongoing discussion. To address this gap, my research focused on investigating methods to characterize

the effects of such attacks on application CPUs, as summarized in Figure 3.3.

Unlike fault injection attacks on security-oriented microcontrollers, where the system architecture is

relatively straightforward, the intricate nature of application CPUs significantly complicates the analysis

and interpretation of the resulting faults. In scenarios where the target CPU is a COTS component and

its implementation details are not available, the analysis must be conducted from the ISA level [Pro+19].

This approach allows us to observe the behavior of the CPU exclusively through its ISA interface,

enabling the evaluation of fault impact solely based on observed behavior, without direct access to the

underlying hardware design. My contributions to this area are described in Section 3.3.1.

When the design of an application CPU is accessible, it is possible to gain a deeper understanding

of fault effects at the electronic logic level. Such an in-depth analysis can be carried out at various
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Figure 3.3: Fault propagation through digital device abstraction layers, adapted from [YSW18]. Levels
of characterization (hardware or software) are indicated above the perturbed blocks, and the examples
of fault effects are shown below. Dashed boxes and italicized labels, started with the (C5), (C6) and (C7),
indicate my contributions to fault injection at hardware and software level.

abstraction layers by simulation, including the Register Transfer Level (RTL) [Tol+24], the netlist [Ric+21],

and even down to the mask level [Zho+22]. Physical experimentation through prototyping on Field-

Programmable Gate Arrays (FPGAs) [Mar+24] or silicon implementations on Application-Specific

Integrated Circuits (ASICs) [Bar+06] also provides valuable insights. Each of these layers offers a distinct

perspective on how faults propagate within the CPU’s architecture, which helps refine the evaluation of

potential vulnerabilities. My work in this area is detailed in Section 3.3.2.

3.3.1 Fault Effects Characterization from the Software to the Hardware

Related publications

BOOK Thomas Trouchkine, Guillaume Bouffard, and Jessy Clédière. “Fault Injection Characterization on Modern

CPUs”, In: WISTP 2019 Article in PDF [TBC19] (Trophy Best student paper award)

BOOK Thomas Trouchkine, Guillaume Bouffard, and Jessy Clédière. “EM Fault Model Characterization on SoCs:

From Different Architectures to the Same Fault Model”, In: FDTC 2021 Article in PDF [TBC21]

BOOK Thomas Trouchkine, Sébanjila Kevin Bukasa, Mathieu Escouteloup, Ronan Lashermes, and Guillaume

Bouffard. “Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault

models”, In: Journal of Cryptographic Engineering 2021. Article in PDF [Tro+21]

When evaluating the security of software against fault injection attacks on a application COTS

component, it is necessary to understand the impact of such attacks on software execution without

knowledge of the underlying hardware implementation. To conduct an in-depth study of how hardware

perturbations alter software behavior, Proy et al. [Pro+19] proposed analyzing the effects of faults on the

execution of simple programs written in assembly language. By strategically selecting instructions to

execute during fault injections, we can observe how faults propagate within the software. This approach

provides a foundational understanding of how faults affect software behavior, starting from isolated

instructions and extending to more complex program structures. While this method offers valuable

insights, it has certain limitations, particularly the lack of a generalizable approach in designing the

code samples, which may limit its applicability across different architectures.

https://www.bouffard.info/assets/pdf/conf/wistp/TrouchkineBC19.pdf
https://www.bouffard.info/assets/pdf/conf/fdtc/TrouchkineBC21.pdf
https://www.bouffard.info/assets/pdf/journals/jcen/TrouchkineBELB21.pdf
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To address these limitations, we generalized Proy et al.’s method [TBC19] to support different

architectures [TBC21]. This generalization allowed us to better understand and characterize the effects

of fault injection attacks across a wider range of application CPUs, enhancing the applicability and

robustness of the analysis.

In our approach, we perform the analysis from the ISA level to determine the fault model for fault

injection attacks. While multiple fault effects can occur due to the complex nature of application CPUs,

it is impractical to characterize all possible micro-architecture blocks individually. We focus on the

observable effects from the instruction set, which provides a practical abstraction of the underlying

hardware complexities. This contribution is labeled (C6) in Figure 3.3.

3.3.1.1 Fault Effects Characterization: From ISA to Micro-Architecture Blocks

During a fault injection, one or more CPU micro-architecture blocks may be perturbed. While

characterizing the effects across all possible blocks is complex, prior works on microcontrollers have

shown that faults typically impact a single micro-architecture component [KH14; Riv+15]. We confirmed

this behavior from the ISA point of view on in-order application CPUs [TBC19], thereby simplifying the

problem to identify which micro-architecture block is affected and how [TBC19]. Our approach follows

a top-down structure: starting by identifying whether the fault targets the data or the instructions, then

narrowing down to specific blocks, as summarized in Figure 3.4.

Observed effects (ISA)

Underlying causes

(�Arch)

Faulted program

Faulted instruction

Pipeline

Decode Execute
Register
writeback

Memory
access

Faulted data

Memory RegistersFetch

Figure 3.4: Top-down approach to characterize fault effects on in-order application processors micro-
architecture blocks.

To isolate the faulted micro-architecture block, we repeatedly execute carefully chosen instructions

on a known-state CPU that (1) do not alter the processor state (any modification indicates a fault)

and (2) do not involve memory access, thus minimizing the analysis scope. In [TBC19], we proposed a

formal approach to define these instructions, enabling us to determine which micro-architecture block

is perturbed during a fault injection.

By analyzing the distribution of faulted values, we determine whether the error originates in the

data or the instructions. Depending on the classification depicted in Figure 3.2 and using the fault model
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obtained from the faulted program, we can trace the fault to specific blocks. For example, a register

corruption points directly to faulted data, while incorrect instruction fetching may indicate issues in

memory access, either in the cache or external memory.

Building upon this approach, we extended our methodology to COTS components from different

architectures, specifically in-order Arm and Intel processors. In our study [TBC21], we demonstrated

that fault injections on these diverse architectures result in similar fault models from ISA point of view,

validating the generality of our method. This cross-architecture applicability confirms that our approach

is portable and can be utilized for security evaluations on a wide range of application CPUs.

Moreover, in collaborative work with Inria, we analyzed how fault injections can affect memory

management and cache systems on in-order application SoCs [Tro+21]. This work shows how the

MMU and cache mechanisms, both critical components responsible for virtual memory handling, access

control, and efficient data access, can be compromised. We investigated how fault attacks can disrupt

memory access operations, potentially leading to incorrect virtual-to-physical address translations and

allowing unauthorized accesses to protected memory regions. Additionally, we studied the effects of

faults on cache systems, revealing how perturbations can corrupt cached data or instructions, leading to

persistent inconsistent system states. Understanding these fault effects is essential for developing more

effective software-level countermeasures that ensure system security even when hardware faults occur.

3.3.1.2 Synthesis and Perspectives

During Trouchkine’s Ph.D. thesis [Tro21], we further improved and generalized the approach pro-

posed by Proy et al. [Pro+19] by formalizing it [TBC19]. This formalization enabled its application across

different architectures [TBC21] and extended it down to the micro-architecture blocks [Tro+21], provid-

ing finer-grained insights into which specific micro-architecture blocks are affected by faults, as observed

from the ISA point of view. This refined methodology can help in developing more efficient software-level

countermeasures tailored to address fault effects in specific COTS components. All the experiments

conducted during Trouchkine’s Ph.D. thesis are available on ANSSI-FR/Faults_experiments’s GitHub,

and the tool to analyze them is available at ANSSI-FR/Faults_analyzer’s GitHub. However, this

approach represents only an initial step towards fully characterizing fault effects from the ISA point

of view. The proposed approach currently covers only a subset of the entire ISA, focusing on memory

accesses and register manipulations, and should be extended to comprehensively characterize all fault

effects from the ISA point of view.

The fault characterization approach at the ISA level [TBC19] targets simple programs where the

CPU state is easily known. However, application CPUs mainly run complex software targeted by fault

attacks [TSW16], where the CPU state is very hard to determine. To detect potential fault on complex

software applications from perturbation attacks, the approach introduced during Trouchkine’s Ph.D.

thesis [Tro21] needs to be scaled.

In [Gai+20], Gaine et al. studied a complex binary application but modified the target code by

inserting a trigger to ease fault injection at the correct time. In real-world scenarios, if an attacker
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is able to modify the binary applications running on the target, they can perform software attacks

directly, making hardware attacks unnecessary. In my research, hardware attacks are considered when

the software layout cannot be instrumented or modified by an attacker. My goal is to extend our fault

model to complex software without modifying the target application.

Fanjas et al. [Fan+22] improved upon the work of Gaine et al. [Gai+20] by combining side-channel

attacks to detect the optimal moment to inject the fault. While this work is interesting, they only

reproduced the fault found in [Gai+20]. Their approach is more of a bottom-up strategy, asking, “We

have a sensitive fragment of code, how do we break it?”. In contrast, the top-down approach I wish to adopt

is: “Given how our hardware target is sensitive to fault attacks, which application paths can be corrupted to

obtain sensitive assets?”.

In [ITB23], we presented our approach to extend a fault model from the ISA level to complex software

applications. This contribution is labeled (C7) in Figure 3.3.

To address this problem, we studied complex programs such as sudo 1, which dynamically load

several shared libraries to provide the appropriate authentication methods.

To successfully perform a perturbation attack on such complex software, it is first necessary to deter-

mine the fault models using an open sample of the same component model that provides development

access. Then, by performing static code analysis on the target binary application, using a fault injection

simulator like Rainbow 2, we can identify the sensitive execution paths that are critical for security. This

is feasible because firmware binaries are generally available on the Internet or can be extracted by

dumping the target’s memory.

Finally, the exploitation phase involves applying the obtained fault model at the precise moment

during execution. This work is ongoing. We have obtained some promising initial results, but further

research is needed to better understand the challenges posed by complex software environments.

3.3.2 Fault Effects Characterization from the Hardware to the Software

Related publication

BOOK Amélie Marotta, Ronan Lashermes, Guillaume Bouffard, Olivier Sentieys, and Rachid Dafali. “Character-

izing and Modeling Synchronous Clock-Glitch Fault Injection”, In: COSADE 2024 Article in PDF [Mar+24]

Section 3.3.1 introduces my study on understanding the effects of perturbation attacks at the ISA level,

focusing on how faults manifest in software execution without detailed knowledge of the underlying

hardware implementation. However, when we have access to the hardware implementation details,

we can go deeper into how the hardware itself resists to perturbation attacks. This allows for a more

1. sudo (short for “superuser do”) is a command-line utility in Unix and Linux-based OS that allows a permitted user to execute
commands with the privileges of another user, typically the superuser (root). It enables administrative tasks to be performed
securely without granting full root access to users.

2. Rainbow is an open-source fault injection simulator developed by Ledger Donjon, based on Unicorn-Engine (QEMU).
Rainbow is available on Rainbow’s GitHub

https://www.bouffard.info/assets/pdf/conf/cosade/MarottaLBSD24.pdf
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comprehensive analysis of the system’s fault tolerance and the identification of vulnerabilities at the

hardware level.

To understand fault injection attacks on hardware where the implementation details are known,

we can perform simulations from the RTL level to the mask level. Deploying the implementation on

FPGAs or ASICs enables practical experimentation, complements the results obtained in simulation,

and validates the implementation’s resistance to fault injection attacks. Studying the security of the

implementation in its final form, whether as an FPGA or an ASIC, is particularly pertinent because it

reflects the actual hardware configuration that will be deployed, including any physical characteristics

that may influence fault susceptibility. However, due to the complexity of an application CPU, analyzing

it in its entirety is a challenging task. It is difficult to understand how a signal perturbation at the logic

level can translate into erroneous behavior at the micro-architecture level, as depicted in the left part of

Figure 3.3.

To address this challenge, we began by measuring the effects of fault injection attacks on component

logic. During Marotta’s Ph.D. thesis [Mar25], we focused on flip-flops, which are crucial components in

computer electronics. Flip-flops function as memory elements that store state information. They ensure

clock synchronization, support digital counting, and contribute to control logic. Understanding how

flip-flops behave under fault injection is essential because their disruption can significantly affect the

overall operation of the CPU. This contribution is labeled (C5) in Figure 3.3.

3.3.2.1 Fault Effects Characterization: Fault Effects on Logic

Measuring the behavior of flip-flops under fault injection is crucial, as they play a key role in

maintaining state information in digital circuits. In [Mar+24], we focused on the impact of clock glitches

on flip-flops, given that the clock signal is their most sensitive input. At each clock edge, the flip-flop

evaluates its inputs and updates its output, making any disruption to the clock signal particularly

impactful on its proper functioning. Clock glitches can be induced either by Electromagnetic Fault

Injection (EMFI) [CB19] or by an attacker directly manipulating the clock signal.

To evaluate how flip-flops react when the clock signal is altered, we used TRAITOR [Cla+21] to

generate controlled clock modifications. TRAITOR can precisely adjust the amplitude parameter, which

defines the energy level of the synchronous clock glitch. This capability enables a more accurate control

of the glitch, referred to as the controlled synchronous clock glitch. In our setup, a set of flip-flops was

located on an FPGA board where the clock was managed by TRAITOR.

Our experiments revealed that when the energy of the clock signal falls below a critical threshold, flip-

flops fail to sample the input correctly, leading to faults. Existing fault models (such as the timing fault

model [Ago+10; SGD08], the sampling fault model [DLM21], and the charge-based fault model [LG19])

attempt to explain these effects, but none fully capture the behavior we observed. To address this

gap, we proposed a new fault model: the Energy-Threshold Fault Model, where the energy delivered by

the clock’s rising edge determines the fault occurrence. This fault model is defined by three distinct

behaviors. In the Always faulted case, the clock signal’s energy is too low, leading to consistent faults.

In the Sometimes faulted case, the clock energy hovers around the threshold, resulting in metastable
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states. Finally, in the Never faulted case, the clock signal’s energy exceeds the threshold, allowing normal

operation.

To further comprehend the observed fault model, we conducted simulations by varying both the clock

pulse width and voltage amplitude independently. The results demonstrated that voltage amplitude

plays a more significant role than the width of the glitch in determining whether the flip-flop samples

correctly. Specifically, a higher voltage amplitude with a short pulse width is sufficient for proper

sampling, while a lower voltage, regardless of width, fails to do so.

Additionally, we explored why different flip-flops exhibit varying fault sensitivities. Our hypothesis

suggested that intrinsic factors, such as manufacturing variability and clock routing, could influence the

fault sensitivity of individual flip-flops. However, further investigation revealed that extrinsic factors,

particularly the activity on neighboring data and clock lines, could also impact fault sensitivity due to

signal cross-talk. For example, placing a control clock signal adjacent to the glitched clock signal on the

same FPGA slice reduced the fault sensitivity by increasing the energy of the glitched clock through

cross-talk.

Combining findings from both physical experiments and transistor-level simulations, we concluded

that fault sensitivity is influenced by both intrinsic properties of the flip-flops and extrinsic factors

from their surrounding circuitry. This characterization of fault behavior in flip-flops under synchronous

clock glitch conditions provides a deeper understanding of fault injection vulnerabilities in synchronous

digital circuits and supports the development of more resilient countermeasures.

3.3.2.2 Synthesis and Perspectives

In this section, as presented in Marotta’s Ph.D. thesis [Mar25], we studied the effects of perturbation

attacks on the logic of a component whose implementation details are known. Moving forward, it

is necessary to bridge the gap between observations made at the logic level and those at the ISA

level introduced in Section 3.3.1, thereby understanding the consequences on the implementation of

micro-architecture blocks.

While approaches exist that allow security analysis at the RTL level, such as �ArchiFI [Tol+23], there

are multiple steps between the RTL and the mask used to fabricate an ASIC or the bitstream for a FPGA.

To protect the security of the software execution environment against hardware attacks, it is essential

to understand the different design steps and how security properties are preserved between RTL design

and synthesis. How are security properties preserved at each of these stages? How can we ensure that

security is maintained throughout the design flow?

https://github.com/CEA-LIST/uArchiFI
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3.4 Impact of Environment on Application Processors Security

Associated contextual elements of this research field

Collaboration: Maria Méndez Real (Université de Bretagne Sud, Lab-STICC, Lorient, France) and

Jean-Christophe Prévotet (IETR & INSA, Rennes, France).

Publication: [Gon+25]

Supervision: Gwenn Le Gonidec’s Ph.D. thesis [Gon26].

Related publication

BOOK Gwenn Le Gonidec, Guillaume Bouffard, Jean-Christophe Prévotet, and Maria Méndez Real. “Do Not

Trust Power Management: A Survey on Internal Energy-based Attacks Circumventing Trusted Execution

Environments Security Properties”, In: ACM Transactions on Embedded Computing Systems 2025 Article in

PDF [Gon+25]

When a SE is embedded in the same SoC as an application CPU, it must comply with a specific pro-

tection profile [Eur22] that takes into account the particularities of the hardware runtime environment.

In such environments, numerous integrated modules could potentially be exploited maliciously, even if

they were not originally designed with malicious intent, to compromise the embedded SE. As shown in

Figure 3.2, modern SoCs integrate many modules, some of which can be exploited, from a compromised

REE, to undermine the security of TEE applications [Cam+18; TSS17].

State-of-the-art attacks have demonstrated that certain SoC modules can be leveraged to corrupt

or extract sensitive data used by TEEs. For example, wireless modems have been used to extract

secret keys [Cam+18]. Another frequently targeted module is the Power Management Unit (PMU).

Modern SoCs architectures integrate PMUs to optimize energy efficiency and extend battery life. While

PMUs are crucial for controlling voltage and frequency scaling, they can also serve as vectors for

hardware attacks [Gon+25]. Unlike traditional hardware attacks that require physical access to the

device, adversaries can potentially exploit PMUs remotely, to perform malicious activities [TSS17], such

as voltage glitching, which can compromise both TEEs and the entire system. This remote exploit

significantly heightens the threat level, as attacks can be conducted without any physical interaction

with the target device.

As part of Gonidec’s Ph.D. thesis, which began in late 2023 [Gon26], we are examining the implica-

tions of integrated PMUs on the security of TEEs. By studying how these modules can be manipulated

to induce faults or leak sensitive information, we aim to identify vulnerabilities and propose mitigation

strategies. As a first step, we analyzed the state of the art [Gon+25] to highlight how PMUs pose a

significant risk to TEE security. We found that the proposed countermeasures are not well adapted to

protect the TEE environment, mainly because they follow a bottom-up approach that focuses mainly on

published attacks and often introduces significant runtime overhead, which reduces the feasibility of

executing sensitive operations in application environments.

For the next phase of Gonidec’s Ph.D. thesis [Gon26], we will focus on characterizing the effects of

https://www.bouffard.info/assets/pdf/journals/acm/TECS/LeGonidecMBP24.pdf
https://www.bouffard.info/assets/pdf/journals/acm/TECS/LeGonidecMBP24.pdf
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fault injection attacks originating from the PMU and how this hardware module can compromise the TEE

environment. This ongoing work aims to understand the capabilities of an attacker exploiting the PMU

to perform hardware attacks. Based on this understanding, we will explore high-level countermeasures

to protect the TEE from fault injection attacks facilitated by the PMU.

Although this research initially targets the assessment of the consequences, feasibility, and mitiga-

tions of hardware attacks via power management modules against TEEs, the proposed approach can be

extended to all hardware blocks embedded in an application SoC. This includes hardware RoTs, REE,

and cryptographic accelerators, which may also be vulnerable to similar attack vectors.

3.5 Conclusion and Perspectives

This chapter explores the security challenges faced by TEEs when subjected to hardware attacks,

particularly fault injection attacks targeting application CPUs. Through our investigations at both

the ISA level and the electronic logic level, we aimed to understand the effects of fault injections and

how they propagate through the system. However, a disconnection exists between the fault effects

characterization at the ISA level and one at the electronic logic level. By linking these observations at

different levels of abstraction, I aim to understand how fault injection attacks affectingmicro-architecture

blocks can corrupt software execution. This understanding is needed to design effective countermeasures

to protect TEEs against such attacks.

The integration of application CPUs running TEE into modern SoCs, which are shared with numerous

modules, introduces new risks. These modules, accessible from the REE, can be exploited to breach the

confidentiality and integrity of sensitive data in TEEs applications. For example, integrated modules like

PMUs present potential attack vectors that adversaries can leverage to compromise the TEE environment.

Remote manipulation of these modules from a compromised REE, such as inducing faults via voltage

glitches, poses a significant security challenge. Understanding these risks enables us to develop high-level

countermeasures tailored to this environment.

While my contributions have predominantly focused on fault injection attacks, it is imperative to also

consider side-channel attacks to comprehensively secure TEEs. Side-channel attacks exploit information

leakage through physical phenomena such as power consumption, electromagnetic emanations, or

timing variations. By broadening the scope to include both fault injection and side-channel attacks, I aim

to develop a more robust security framework for TEEs in high-performance computing environments.
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Chapter 4

Contributions to Execute Sensitive
Applications in the Rich Execution
Environment

As introduced in Chapter 1, the REE is the last layer of the CoT, providing a rich and flexible execution

environment for applications requiring high performance. This layer is designed to execute application

business logic without built-in security mechanisms, whereas the TEE, as illustrated in Figure 1.2, is

specifically designed to execute business security functions.

To offer complementary applications addressing user needs, such as gaming, video streaming, or

online shopping, third-party developers primarily target high-performance devices, such as personal

computers, tablets or smartphones. These applications are designed to run on devices owned and

controlled by end users, leveraging the performance and flexibility of COTS component. In this context,

the REE represents an execution environment under the user’s control, which is therefore considered

potentially untrusted from a security standpoint. Third-party applications are generally developed

without prior knowledge of the embedded features available within the REE.

As discussed in Chapters 1 and 3, the use of the TEE is recommended to improve the security of

applications running in the REE. However, their usage remains at the discretion of the platform owner,

as access to TEE is exclusively governed by device manufacturers and requires specific agreements.

Given the wide variety of manufacturers, establishing such agreements is complex, further complicating

the integration of security mechanisms for third-party applications.

Moreover, the presence and availability of such security features are not directly accessible to ap-

plications. It is the REE OS that advertises the available security features of the platform, such as the

presence of a TEE or a hardware RoT. This implies that applications running in the REE rely on the OS

to obtain information about the underlying security capabilities.
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This chapter will present my research activities related to the execution of sensitive applications in an

untrusted execution environment. Although relying on the TEE is generally considered a recommended

approach to secure such applications, the lack of agreements makes it difficult to obtain access across all

target devices. Furthermore, as discussed in Figure 3.1, all communications between REE applications

and the TEE transit through the REE OS, which is considered untrusted by the TEE security model. This

raises concerns about the possibility of an OS that could mislead applications by eavesdropping on

interactions or lying about the actual capabilities supported.

The remainder of this chapter is organized as follows. Section 4.1 introduces the architecture and

operating principles of a REE, highlighting its interactions with the TEE and the hardware RoT. Section 4.2

then presents my research activities related to the design of an obfuscated application intended to

execute within a REE. In this work, we considered an attacker in a white-box model [Cho+02], capable

of instrumenting the application in order to extract its secrets. To model this threat, we envisioned an

adversary able to transpose hardware attacks onto the application. Finally, Section 4.4 concludes this

chapter by discussing some perspectives.

4.1 Common Rich Execution Environment Architecture

A REE represents the runtime environment in which application software is executed on consumer

devices, such as smartphones, tablets, and personal computers. It provides a rich set of functionalities,

including support for graphical user interfaces, network communications, and access to various hardware

peripherals, enabling the execution of performance-demanding applications. Unlike the execution

environments of the TEE and the hardware RoT, which are designed for isolated and trusted operations,

the REE is a multi-application environment where a user, granted a specific set of privileges, can install

and run applications coded by different developpers. These applications may be installed from sources

with varying levels of trust, such as official application stores or unverified website from the Internet. To

manage interactions between these applications and ensure the separation of user data and processes,

the system enforces access control policies.

However, this flexibility comes with a lower security assurance compared to environments like

the TEE, mainly due to the larger attack surface exposed by the complexity and openness of the REE.

Figure 4.1 illustrates a typical REE architecture as integrated into modern execution environments.

At the bottom layer of Figure 4.1, the Hardware layout represents the physical components of the

platform, including the CPU, memory, storage, and peripherals (e.g., sensors, cameras, and wireless

interfaces). The hardware provides the foundational resources required for the execution of the OS and

applications.

Above the Hardware layout, the Operating system is responsible for abstracting the hardware complex-

ity and offering standardized services to upper layers. In a REE, the OS typically ensures the isolation

of applications through process and memory management mechanisms, based on hardware MMU,
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Hardware layout

Operating system

Libraries

Application
2

Application
1

Sensitive
application

(C8) Sensitive applications’
security analysis [GB23]

Figure 4.1: A common REE architecture inspirated from [Nat21a]. Dashed box and italicized label, started
with the (C8), indicate my contribution to security of running sensitive applications in an untrusted REE.

prevents unauthorized access to system resources, and supports a multi-user environment by assigning

privileges and enforcing access control policies. It also provides device drivers to interface with hardware

components, enabling secure and efficient peripheral management. Additionally, the OS advertises the

presence of security capabilities such as the TEE or hardware RoT to applications. Finally, it facilitates

inter-process communication, allowing applications and system services to exchange data.

The Libraries layer includes software components shared across applications, such as graphics

libraries, cryptographic primitives, and networking stacks. Libraries simplify application development

by offering high-level abstractions and reducing redundant code.

At the top layer, Applications represent third-party or native software executed within the REE. These

applications leverage the OS and libraries to access system resources and deliver functionalities to end

users. Examples include messaging apps, video streaming platforms, or online shopping applications.

Applications in the REE are typically installed from an application store embedded in the device, or

downloaded from the Internet when users are allowed to install software from external sources. They

generally operate under the assumption that the OS maintains its integrity and correctly enforces its

security policies, although it is treated as potentially malicious from the perspective of secure execution

environments like the TEE.

This layered view emphasizes the reliance of applications on the OS for hardware access and security

features. It also highlights the potential risks associated with the REE’s large attack surface, given the

complexity and openness of this environment.

4.2 Software Security in the Rich Execution Environment

Associated contextual elements of this research field

Collaboration: David Naccache (ENS, Paris, France)

Publication: [GB23]

Supervision: Vincent Giraud’s Ph.D. thesis [Gir24].
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The REE provides a flexible and feature-rich environment running on an application processor that

embeds hardware security mechanisms designed to enhance software protection, such as CFI, PAC, and

CHERI [Woo+14]. While these mechanisms help mitigate certain classes of attacks, the REE remains an

open environment designed to run applications developed by various third parties. Sensitive applications

often execute in an environment that has not undergone a full security evaluation or has only undergone

a low-assurance assessment on a few specific features [Nat21b], further increasing the risk of exposure

to threats from unevaluated components. This raises fundamental questions regarding their security,

particularly when sensitive applications are executed within the REE.

Applications handling sensitive data, such as banking, healthcare, or digital identity services, rely on

the REE OS to mediate access to hardware resources and security services. In security evaluations, the

OS is generally assumed to be authentic and unmodified [Nat17; Nat21a]. Users are also encouraged to

maintain the device security by keeping their OS up to date, avoiding modifications such as rooting or

jailbreaking, and following security best practices [Nat17; Pay19].

However, the assumption that the OS remains up to date and that neither the user nor a malicious

application alters its integrity does not always hold in practice. In the case of mobile OS, updates

are not guaranteed indefinitely. For instance, Google smartphones typically receive security updates

for a maximum of seven years [Bro24], leaving older devices vulnerable to unpatched security flaws.

Furthermore, if an attacker, whether the user or a malicious application, successfully gains control over

the OS, they can conceal this modification using tools such as Magisk, making it difficult for sensitive

applications to reliably assess its trustworthiness.

As a result, the REE OS is generally considered potentially untrusted since it could interfere with

the execution of applications, eavesdrop on sensitive data, or manipulate security-critical operations.

This threat model challenges the assumption of software security in the REE and underscores the need

for additional protection layers, such as leveraging the TEE or obfuscation techniques. Nevertheless,

access to the TEE is not always available to third-party developers due to the need for prior agreements

with the platform provider, further complicating the adoption of such security mechanisms.

4.2.1 Securing Applications in the Rich Execution Environment

Related publication

BOOK Vincent Giraud and Guillaume Bouffard. “Faulting original McEliece’s implementations is possible”, In:

SILM 2023 Article in PDF [GB23]

As previously discussed, the REE remains an open and potentially untrusted environment, raising

security questions when executing sensitive applications. These applications often involve cryptographic

operations to ensure data security. Due to the complexity of developing a generic implementation that

supports multiple platforms, cryptographic libraries are often embedded directly within the application.

As a result, software cryptographic implementations deployed within the REE are highly exposed to

attacks due to the lack of strong isolation mechanisms. Without access to a TEE or hardware security

https://github.com/topjohnwu/Magisk
https://www.bouffard.info/assets/pdf/conf/eurosp/GiraudB23.pdf
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modules, such as hardware cryptographic accelerators, developers must assume an adversary capable

of fully controlling the execution environment, as in the white-box attack model [Cho+02].

In this context, the Giraud’s Ph.D. thesis [Gir24] investigates how a sensitive application can be

executed as securely as possible within an uncontrolled execution environment. Our research primarily

focuses on securing sensitive data handled by cryptographic services, particularly in the presence of a

white-box attack model.

To protect sensitive assets within an application, it is essential to conceal its implementation.

This involves applying code obfuscation techniques to make the program logic harder to analyze and

modifying data representations to render sensitive information unintelligible to an attacker. These

approaches increase the complexity of reverse engineering, significantly hindering an adversary’s ability

to extract cryptographic secrets or manipulate critical operations.

Building on this, we investigate the use of an obfuscated application as a mean to store and manipu-

late sensitive assets within an uncontrolled execution environment. Our study explores how such an

application can protect cryptographic keys and other critical data against extraction attempts, while

ensuring their secure usage despite the absence of hardware-based security mechanisms. This contribu-

tion is labeled (C8) in Figure 4.1.

White-box cryptographic implementations are particularly exposed to software-based attacks due

to the adversary’s full visibility and control over the execution environment, making them highly vul-

nerable to various forms of exploitation [Cho+02]. In this context, it is possible to transpose hardware

attacks [Boc+19] onto software implementations, leveraging binary instrumentation techniques to

extract secrets. Originally developed to break the security of SEs, hardware attack techniques can now

be transposed to the binary level, enabling state-of-the-art methodologies to evaluate and reinforce the

security of white-box cryptographic implementations.

To explore this threat, we applied fault injection attacks to the reference implementation of the

McEliece cryptosystem on Arm-based platforms [Pet+15]. Our goal was to assess its resilience and,

more broadly, to investigate how a McEliece-based white-box cryptographic implementation could

be designed while accounting for the risk of fault injection transposition. This study highlights how

attackers can exploit software-based fault injection to compromise cryptographic keys, emphasizing the

need for countermeasures tailored to white-box security models.

Our findings demonstrate that even theoretically robust cryptographic algorithms, such as McEliece,

can be vulnerable when executed in an untrusted REE. The attack presented in [GB23] exploits a fault

injection-based approach to modify program instructions at runtime, leading to information leakage

and a significant reduction in key entropy. Specifically, our attack reduced the entropy of the secret key

by 40% to 70%, drastically narrowing the search space and making key recovery feasible. These results

further reinforce the need for countermeasures that address both traditional fault injection techniques

and software-based adversarial models.
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To mitigate these threats, we propose a modified implementation of the McEliece cryptosystem

designed to resist such attacks. Our approach leverages structural modifications in the decryption

process, incorporating techniques to minimize the impact of fault injections. This contribution is part

of broader efforts to enhance the security of sensitive software in the white-box attack model, where

assumptions about the integrity of the OS no longer hold.

4.2.2 Synthesis

In this section, we examined the security challenges of executing sensitive applications within an

untrusted REE, where adversaries have full control over the execution environment. Because application

developers may lack access to a TEE or embedded hardware security mechanisms, they must rely on

obfuscation techniques to protect sensitive assets against a wide range of attacks, particularly under

white-box adversaries. This approach is especially relevant when third-party developers cannot offload

business security functions to the TEE, as described in Figure 1.2, or when applications must operate

securely within a REE without hardware-based protections.

To analyze the limitations of these obfuscation techniques, we investigated how hardware fault in-

jection methods could be transposed to software implementations using binary instrumentation [GB23].

Our study focused on an obfuscated application used to store and manipulate sensitive assets in an

uncontrolled execution environment. Through our analysis of cryptographic key storage and protec-

tion mechanisms, we demonstrated that even theoretically robust cryptographic algorithms remain

vulnerable in such contexts. Specifically, our attack reduced the secret key’s entropy by 40% to 70%,

significantly narrowing the search space and making key recovery feasible via brute force. This extends

previous research that had only managed to extract the public key [Cay22].

In light of these discoveries, we developed a revised McEliece cryptosystem implementation specif-

ically engineered to resist fault injection attacks [GB23]. This solution is part of broader efforts to

strengthen the protection of sensitive software in white-box environments, where the OS can no longer

be assumed entirely trustworthy.

This topic remains crucial whenever developers cannot ensure that a sensitive application can

offload its execution to a TEE nor verify the integrity of the REE. In such scenarios, relying on a

white-box cryptographic implementation is one potential approach, but it must be combined with

binary obfuscation techniques to protect the embedded secrets. Securing cryptographic assets under

these conditions presents a significant challenge, demanding robust defenses capable of withstanding

software-based and white-box adversaries.
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4.3 Rich Execution Environment Hardware Security Challenges

Associated contextual elements of this research field

Collaborations: Jessy Clédière (CEA/Leti, Grenoble, France), Ronan Lashermes (INRIA/LHS, Rennes,

France), MariaMéndez Real (Université de Bretagne Sud, Lab-STICC, Lorient, France)

and Jean-Christophe Prévotet (IETR & INSA, Rennes, France),

Publications: [Gon+25; Tro+21]

Supervisions: Thomas Trouchkine [Tro21] and Gwenn Le Gonidec [Gon26]. Ph.D. theses

Related publications

BOOK Gwenn Le Gonidec, Guillaume Bouffard, Jean-Christophe Prévotet, and Maria Méndez Real. “Do Not

Trust Power Management: A Survey on Internal Energy-based Attacks Circumventing Trusted Execution

Environments Security Properties”, In: ACM Transactions on Embedded Computing Systems 2025 Article in

PDF [Gon+25]

BOOK Thomas Trouchkine, Sébanjila Kevin Bukasa, Mathieu Escouteloup, Ronan Lashermes, and Guillaume

Bouffard. “Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault

models”, In: Journal of Cryptographic Engineering 2021 Article in PDF [Tro+21]

The REE runs on an application processor that integrates various hardware security mechanisms

designed to enhance software protection. These include the MMU for enforcing memory isolation, CFI

to prevent control-flow hijacking, and additional features such as PAC or CHERI to mitigate memory

corruption vulnerabilities. While these mechanisms strengthen software security against conventional

exploits, they are not designed to withstand fault injection attacks.

In the Trouchkine’s Ph.D. thesis [Tro21], we demonstrated that hardware attacks can significantly

compromise these security mechanisms [Tro+21], potentially bypassing their protections or altering

their expected behavior. Fault injection techniques can induce unintended modifications in the execution

of critical security components [Kas23; Rot24], raising concerns about the reliability of these protections

when deployed on end-user devices, where adversaries may have physical access. These works are

described in Section 3.3.1.

Complementing this research, the Ph.D. thesis of Gonidec [Gon26], described in Section 3.4, investi-

gates how integrated modules within an application SoC, such as PMUs, can be leveraged to mount

hardware attacks against the TEE. Application SoCs embed the application CPU, which executes the REE,

alongside numerous hardware modules that enhance performance and functionality. As illustrated in

Figure 3.2, these include components such as GPU, VPU, and power management units, which interact

with the execution environment. Specifically, this work examines the feasibility of remotely triggering

fault injection attacks from PMUs to compromise sensitive applications [Gon+25], highlighting novel

threats to the overall security of both TEE and REE environments.

Beyond their impact on specific hardware security mechanisms, fault injection attacks can also

undermine the integrity of the REE itself. In a scenario where the REE is initially trusted, an attacker

https://www.bouffard.info/assets/pdf/journals/acm/TECS/LeGonidecMBP24.pdf
https://www.bouffard.info/assets/pdf/journals/acm/TECS/LeGonidecMBP24.pdf
https://www.bouffard.info/assets/pdf/journals/jcen/TrouchkineBELB21.pdf
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could exploit fault injection techniques to corrupt its execution, either to gain unauthorized access

to sensitive information [Fan+22] or to manipulate the system for espionage purposes. By inducing

controlled faults, adversaries may extract confidential data processed within the REE or modify its

security policies, enabling persistent monitoring and stealthy exploitation of the system. This issue is also

explored in my ongoing research on fault injection attacks targeting TEEs, as discussed in Section 3.3.1

and presented in [ITB23].

Such attacks underscore the risks of relying solely on the REE for executing security-sensitive

applications. The ability to compromise the REE through hardware-based manipulations reinforces the

necessity of deploying additional layers of protection, such as leveraging a TEE or adopting fault-resistant

software and hardware countermeasures.

4.4 Conclusion and Perspectives

In this chapter, we explored the security challenges associated with executing sensitive applications

within the REE, an open and potentially untrusted environment. We highlighted the risks posed by

software-based and hardware-assisted attacks, particularly in the context of cryptographic implementa-

tions deployed without access to a TEE or secure hardware modules.

Our study demonstrated that white-box cryptographic implementations are highly vulnerable to

fault injection attacks, as adversaries can transpose hardware fault techniques to software through

binary instrumentation. We specifically analyzed the McEliece cryptosystem, showing that even

post-quantum algorithms can be compromised when executed in an unprotected REE. These findings

emphasize the need for robust countermeasures, including obfuscation techniques, runtime protections,

and fault-resistant cryptographic designs.

Beyond cryptographic applications, we also examined the security of hardware security mechanisms

embedded in application processors, such as MMU, CFI, and PAC. We discussed how fault injection

attacks can undermine these protections, ultimately compromising the integrity of the REE itself. The

ability to corrupt the REE through such attacks raises critical concerns regarding data confidentiality,

system integrity, and the feasibility of secure execution in untrusted environments.

These findings underscore the necessity of designing security architectures that surpass conven-

tional assumptions regarding REE OS trustworthiness. While leveraging a TEE remains a preferred

approach, it is not always feasible for developers who lack access to dedicated hardware protections.

Consequently, enhancing software security mechanisms against both logical and hardware fault-based

attacks continues to be a pressing concern. Future research should explore practical countermeasures

that effectively mitigate these threats without compromising performance or usability.

Nevertheless, although the security of sensitive applications executed in the REE is not among the

primary research perspectives outlined in Chapter 5. This topic remains critically important, particularly

for third-party developers unable to verify the integrity of the REE or offload execution to a TEE, yet my

main focus will be directed toward other aspects of hardware and software security.



Chapter 5

Conclusion and Perspectives

The work presented in this manuscript began in the LSC and continued in the LAM at the ANSSI. In

the Hardware Security Lab, I focused on analysing the security of components against hardware and

software attacks. Later, in the Hardware and Software Architectures Lab, I extended this research to

examine the security of components within their ecosystems, addressing the more complex architectures

of modern devices.

At the end of 2014, when I started working at ANSSI, SEs were the primary components used as

RoTs to run security functions. By the late 2010s, a significant shift occurred in the field of security.

Sensitive operations gradually began to be executed outside of RoTs, directly within application CPUs in

the TEE environment. This change was driven by the increasing complexity and performance demands

of sensitive applications. As a result, new architectures were needed to extend trust beyond hardware

RoTs, leading to the adoption of systems based on a CoT.

In my research activities, I have focused on the security of software implementations embedded

within each element of the CoT. This involves analyzing vulnerabilities and developing countermeasures

to enhance the overall security of software, from the hardware RoT to the REE. In this manuscript, I

described my contributions to software security within both the hardware RoT and the TEE, addressing

threats from both hardware and software attacks.

Beyond the TEE, I also explored the security challenges of executing sensitive applications within the

REE, where adversaries have full control over the execution environment. This research is particularly

relevant when developers do not have access to a TEE or secure external components to protect their

sensitive assets. In such scenarios, ensuring the integrity and confidentiality of sensitive operations

requires alternative approaches, such as software-based protections and implementations resilient

to hardware attacks. While this topic remains critical in certain contexts, it does not fall within the

long-term research perspectives outlined in Section 5.2.

To conclude this manuscript, Section 5.1 provides a synthesis of the main research activities and
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highlights the contributions made throughout the different elements of the CoT. This summary not

only recalls the results presented in each chapter but also emphasizes their coherence within a broader

research agenda. Section 5.2 outlines the future directions of my research. I will continue to enhance the

security of the CoT by participating in initiatives aimed at improving the design security of hardware

RoTs and TEEs based on open-source architectures. Additionally, I will extend my research to focus on

designing architectures for safety-critical systems, which are becoming increasingly connected. These

architectures now implement CoT [Glo23], similar to the one architecture introduced in Chapter 1. In

safety-critical systems, vulnerabilities not only compromise data security but also pose significant risks

to human life.

5.1 Summary of Activities Introduced in this Manuscript

This manuscript provides an overview of my research activities in the field of embedded software

security, focusing on defending against both software and hardware attacks across different layers of

the CoT. As introduced in Chapter 1, my work spans the security of hardware RoTs, which operate

in constrained environments with minimal attack surfaces, the protection of TEEs within complex

application CPUs, and the challenges associated with executing sensitive applications in the REE, where

adversaries have full control over the execution environment. By analyzing vulnerabilities and developing

countermeasures at each level of the CoT, this research contributes to strengthening the security of

embedded systems in diverse execution contexts, from highly isolated secure elements to open and

potentially untrusted environments.

Chapter 2 presents my research on the software security of hardware RoTs, focusing on SEs, which

represent the most secure form of hardware RoT. Most SEs embed Java Card technology. Duringmy Ph.D.

thesis [Bou14], we extensively studied the implementations of JCVMs. Upon joining ANSSI, I expanded

this work by examining the organizational assumptions underlying Common Criteria evaluations that

are intended to guarantee the security of embedded JCVM implementations, specifically the reliance

on a perfect BCV and a bug-free toolchain. In collaboration with the Thales and Serma ITSEFs, we

investigated the BCV and toolchain, revealing previously undisclosed security vulnerabilities in these

tools.

In addition to this, we explored the security of communication protocols, primarily focusing on

the ISO/IEC 7816 stack, which is mostly deployed in SEs. This investigation did not reveal specific

vulnerabilities; however, it highlighted the potential for implementation fingerprinting, which represents

an area that requires further research.

Chapter 3 details my contributions to the security of TEEs, which are embedded within application

CPUs. A TEE serves as a secure software environment that isolates sensitive and high-performance

programs, ensuring their protection during execution. However, the security of a TEE also relies on the

hardware security foundation.
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In the mid-2010s, hardware attacks originally designed to target SEs were redirected towards

application CPUs running TEEs [MBB16; TSW16; Vas+17]. These CPUs are not inherently designed to

resist hardware attacks. According to the protection profile [Glo20b], TEE implementations must take

hardware attacks into account.

When I began this research in 2017, the exploitability of fault injection attacks on application CPUs

was a subject of ongoing discussion. To address this, we focused on understanding the possibilities

and consequences of these attacks in TEE environments. We followed two approaches to achieve this

goal. First, to protect TEE implementations running on COTS components without hardware security

protections, we characterized fault effects at the ISA level. This work was part of the research conducted

in Trouchkine’s Ph.D. thesis [Tro21]. When the hardware implementation is known, we can characterize

fault effects directly at the hardware level. This work was initiated duringMarotta’s Ph.D. thesis [Mar25],

where we focused on understanding fault effects at the electronic logic level. These efforts will help

to bridge the gap between software security and hardware vulnerability analysis, contributing to the

development of more resilient TEEs capable of resisting fault injection attacks.

Furthermore, as part of Gonidec’s Ph.D. thesis [Gon26], we are examining the security risks posed

by PMUs, which have become sensitive components in modern SoCs. According to the protection profile

for embedded SEs [Eur22], other modules within an SoC can also be a source of hardware attacks. TEEs

running on application CPUs are therefore potential targets of these modules, which can be manipulated

from a compromised REE. In the context of Gonidec’s thesis, we focused specifically on PMUs, as they

share capabilities similar to other fault injection mediums, such as modifying the frequency and voltage

supply. PMUs, which control power management and are integrated alongside application CPUs,

introduce new attack vectors, including fault injections and remote manipulations, that can compromise

TEEs. Our research aims to characterize these vulnerabilities and propose high-level countermeasures

to mitigate these emerging threats.

Chapter 4 extends this analysis to the security challenges of the REE, where sensitive applicationsmay

need to operate in an environment fully controlled by adversaries [Cho+02]. Unlike TEEs or SEs, the REE

lacks strong isolation mechanisms, making it vulnerable to a wide range of attacks, including software

exploitation and hardware fault injections. This issue has been further investigated in Giraud’s Ph.D.

thesis [Gir24], which explores the security of cryptographic implementations in untrusted execution

environments and evaluates their resilience against advanced attack techniques.

Our research explored how cryptographic implementations deployed in this context can be compro-

mised and what countermeasures could be considered. We demonstrated that fault injection attacks can

be transposed to software implementations using binary instrumentation techniques [GB23], leading

to key recovery and system subversion. While this topic remains relevant in scenarios where a TEE or

external security components are unavailable, it does not fall within the long-term research directions

outlined in this manuscript.

This manuscript presents a comprehensive analysis of the security challenges faced by CoTs, covering
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the software security of hardware RoTs, the vulnerabilities in application CPUs running TEEs, and the

risks associated with executing sensitive applications within the REE. By addressing both high-level

architectural defenses and low-level hardware vulnerabilities, my research contributes to strengthen the

security of CoTs in high-performance devices, considering the global view from isolated secure elements

to open execution environments.

5.2 Perspectives

Building on the research activities presented in this manuscript, I will focus on two main research

directions over the coming years to enhance the security of the CoT and its implementation in the

safety-critical systems.

5.2.1 Towards a Secure and Reliable Chain of Trust

My research has primarily focused on the security of embedded software, addressing both software

and hardware attacks. The security of software also fundamentally depends on the security of the

hardware it runs on. Even the most secure software can be compromised by vulnerabilities in hardware

components [Bit+21; Law10; Raz11; Rou+19; Slu+23]. To improve the security of runtime environnement,

I aim to study software security through the scope of the security provided by the underlying hardware

execution environment.

To establish trust in each element of the CoT, most of my research activities have focused on analyzing

the security of software implementations on COTS components, where the underlying hardware designs

are not disclosed and remain unknown. Gaining partial insights into these architectures typically

requires formal agreements with several entities, which limits the ability to develop sovereign solutions.

With the advent of the RISC-V ISA, which is royalty-free and under open-source licence, several open-

source implementations of hardware RoTs [Low24; Ope24b], application processors [NLn24; Ope24a],

and TEEs [Lee+20; Sch+23b] layer are now available, providing valuable insights into such architectures.

However, these solutions often have incomplete security features and may not have been evaluated

under security schemes.

My research perspectives will focus on developing a secure and reliable CoT hardware architecture.

Thanks to the RISC-V ISA, it is now possible to design each element of the CoT as a set of blocks from

open-source repositories and proprietary implementations. Viewing secure hardware architecture as a

combination of blocks developed by different sources represents an original and challenging approach.

Open-source blocks benefit from community contributions and often embed cutting-edge functionalities.

However, their quality may be lower than that of proprietary blocks, as they may not fully comply with

industry standards or have the same level of maturity. The use of open-source blocks must be carefully

analyzed from both functional and security perspectives to ensure their suitability within a secure CoT.
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As introduced in Chapter 1, the REE is a layer where high-performance and untrusted applications

run. These untrusted applications generally come from different developers, and typically, only the

application binary is provided. Due to its large attack surface, the REE layer is extremely difficult

to secure. Some application CPUs embed hardware mechanisms to protect software against classic

development vulnerabilities, such as control-flow or memory access violations. For example, to prevent

software bugs related to memory management from being exploited, certain mechanisms are embedded

at the hardware runtime level to provide tagged memory pointers [Zel+08]. Recently, CHERI [Woo+14]

has emerged with significant support from component designers and software developers. This approach

primarily protects against attacks exploiting memory access bugs, such as buffer or heap overflows and

underflows.

While protecting memory accesses and enforcing control-flow integrity are essential first steps, other

vulnerabilities, such as data parsing errors, logical flaws in program architecture, or misunderstandings

of implemented specifications, remain beyond the scope of these mechanisms and require additional

measures. Furthermore, approaches to protecting applications in the REE via hardware mechanisms

often require modifying and recompiling a significant part of the software execution environment.

Enforcing the use of these hardware blocks for sensitive applications is particularly challenging if the

entire environment is not designed to support them. This process becomes even more complex when

certain software parts, such as drivers, are no longer maintained, making it difficult to adapt existing

software stacks to different architectures.

To protect sensitive high-performance applications, a more effective solution is to embed them into

the TEE layer, which is designed to execute only trusted applications. Software embedded in the TEE

layer is considered trusted if it undergoes a validation process. This process can take two forms: either

a strict security audit, such as a security certification or a rigorous code review, or a combined logistical

and technical validation. In the latter case, a trusted third party approves the application to be loaded

after several static checks, while a runtime environment ensures that the application remains segregated.

This runtime should be evaluated under specific protection profiles, capable of supporting the ability to

load applications from different developers. This approach is similar to the one deployed in the security

model of Java Card [Ora21c]. This contrasts with the untrusted applications that typically run in the

REE layer.

Current REE and TEE software layers share the same hardware runtime environment. The REE

contains a vast amount of existing code, including widely used OSes like Android, iOS, Linux, and

Windows, along with numerous applications. Since the TEE layer runs on the same architecture as the

REE layer, it also benefits from a wealth of existing code, including libraries and development tools such

as compilers, which eases development and integration. These software stacks are designed for widely

deployed architectures, and adapting them to new architectures is an extremely costly operation.

Trouchkine’s Ph.D. thesis [Tro21] demonstrates that the hardware layer designed for the REE en-

vironment remains a point of vulnerability against fault injection attacks. Since the TEE relies on the

same hardware as the REE, any features introduced to the applicative CPU aimed at improving the

performance of the REE can directly impact the security of the TEE, potentially creating new exploitable
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hardware vulnerabilities. Contrary to the requirements defined in the TEE protection profile [Glo20b],

most current implementations do not address the risks of hardware attacks. Sharing hardware between

security-oriented (TEE) and non-security-oriented (REE) layers opens vulnerabilities, as we have shown

in [Gon+25].

I believe that achieving a high-performance hardware runtime capable of mitigating hardware

attacks is impossible without modifying the hardware architecture on which the REE environnement

runs. To enhance security, the CoT architecture must therefore be reconsidered.

To improve its security, the TEE software layer should run on dedicated hardware that tends towards

the same security level as the hardware RoT, while supporting high-performance applications and

maintaining a low energy footprint. This new type of hardware block would be embedded within the

application SoC, positioned as close as possible to the main CPU running the REE. To ensure ease of

development and maintenance, this architecture should be supported by unmodified mainstream tools

to facilitate its integration into existing software ecosystems.

The secure sub-system in SoC protection profile [Eur22] describes the security requirements for

embedding a hardware RoT within an applicative SoC, where some micro-architecture blocks are shared

between secure and non-secure blocks. I believe this protection profile could be applied to dedicated

micro-architecture blocks specifically designed for secure, high-performance, and energy-efficient pur-

poses, as required by the TEE layer.

Building upon these observations, this work aims to extend the activities carried out within the

scope of research question 2, described in Section 1.3. In Chapter 3, existing implementations have been

studied from the perspective of fault injection attacks. From these insights, my research perspectives

will focus on designing a specific high-performance, energy-efficient, and secure hardware layer capable

of running a TEE environment while embedding protections against hardware attacks. Integrating such

protections within an environment hosting the TEE seeks to provide a secure foundation for sensitive,

high-performance applications with low energy consumption. To achieve this, my future research

directions will be split into two main parts: first, analyzing the countermeasures embedded in hardware

RoTs against hardware attacks, based on hardware and software blocks from different developers, as

outlined in Section 5.2.1.1; and second, securely adapting these mechanisms to meet the constraints of

high-performance and energy-efficient TEE environments, as detailed in Section 5.2.1.2.

5.2.1.1 Understanding How to Secure Hardware Root of Trust …

Associated contextual elements of this research field

Collaborations: Luc Bonnafoux (ANSSI, Paris, France), Damien Couroussé (CEA/List, Grenoble,

France), Mathieu Jan (CEA/List, Saclay, France), and Philippe Trébuchet (ANSSI,

Paris, France)

Supervisions: Angie-Sofia Bikou’s intership [Bik24] and Jonah Alle Monne’s Ph.D. these [All27].
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The emergence of open-source hardware RoTs provides a unique opportunity to analyze and enhance

their security. Existing implementations, such as OpenTitan [Low24] and CV32E40S [Ope24b], can be

embedded or adapted to be used as hardware RoTs [Sch+23a]. These designs offer valuable insights

into their architecture and their embedded countermeasures. However, to serve as secure and reliable

hardware RoTs, they should have a high-security level. Many of these solutions lack industrial maturity

and have not been evaluated under security schemes.

My upcoming research will focus on gaining a comprehensive understanding of current hardware

RoTs, examining their design, security features, and potential weaknesses. This analysis, combined

with the specific requirements for state-use products, will serve to identify best practices and areas

for improvement. Once the study of hardware RoT implementations is complete, I aim to investigate

how to integrate a hardware RoT into an applicative SoC, following the guidelines outlined in the

secure sub-system in SoC protection profile [Eur22]. This protection profile redefines the concept of

a hardware RoT from being a standalone secure enclave containing isolated hardware modules for

sensitive operations to a design integrated within an applicative SoC, where some hardware modules

may be shared with non-secure elements. Currently, only two products [Arm22; SAM24] have been

successfully evaluated under the Common Criteria scheme. The limited number of evaluated products

highlights the complexity of implementing this protection profile and the challenges in guaranteeing

security properties when transitioning from a traditional standalone hardware RoT to an integrated

system within an applicative SoC.

To achieve a hardware RoT that is both secure and reliable, it is essential to analyze the security of

existing open-source projects to understand their limitations and propose enhancements. Part of this

research is conducted within the PePR Arsene funding project, where I contribute to the work package 1,

focusing on secure RISC-V CPU.

OpenTitan Security Analysis First, a part of this research will focus on the OpenTitan project, an

open-source hardware RoT designed as an implementation of a SE, with fewer features than mature

proprietary implementations and no security evaluation. Our study of OpenTitan’s security is structured

around two main axes. The first axis focuses on the analysis of embedded software security, aiming to

evaluate and harden the software against practical, real-world requirements. The second axis involves

analyzing the security of the hardware execution environment, assessing the resilience of the hardware

layer when paired with a realistic software environment.

Through these efforts, we seek to both deepen our understanding of and contribute to the security

of OpenTitan’s implementations. Moreover, this work aims to challenge and refine ANSSI’s security

recommendations, thereby improving the security standards applied to evaluated products. This work

will involve internal projects within ANSSI, including contributions from internships such as those led

by Bikou [Bik24], and will continue through future internships and collaborations.

CV32E40S Security Analysis Next, another part of this research will be the analysis of the security

of CV32E40S, an open-source CPU which embeds countermeasures against hardware attacks. Unlike the

CPU embedded in the OpenTitan project [Low24], CV32E40S is close to those embedded in proprietary
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SE implementations. This open-source project may serve as main CPU for various hardware RoTs and

offers an opportunity to analyze and enhance its security mechanisms.

My research will particularly build on insights from a research partnership between ANSSI and CEA

where the Alle Monne [All27]’s Ph.D. thesis is conducted. The goal of this joint work is to understand

the implementation of these countermeasures, their cover and propose enhancements to reinforce the

mecanisms against hardware attacks embedded in hardware RoT.

For this purpose, the embedded countermeasures are analyzed using �ArchiFI [Tol+23], a tool based

on formal approaches operating at the RTL or netlist level. Developed during Tollec’s Ph.D. thesis [Tol24],

this tool aims to identify potential paths that could compromise declared security properties, described

using formal specifications, with respect to fault models.

Analysis of Security Properties at Every Stage of the Design Process Finally, this research area

will extend to analyzing the security properties of hardware RoTs from the RTL level down to the ASIC

mask level. This comprehensive approach aims to provide a detailed understanding of the hardware’s

security features throughout its lifecycle.

In parallel, in collaboration with CEA/List and CEA/Leti, we have begun analyzing the gap between

fault attacks simulated at the RTL or netlist levels and those observed experimentally at the silicon

(ASIC) level. For this analysis, we use the VASCO 1 proof-of-concept hardware RoT. Characterizing

these differences leverages the methodology developed during the thesis of Trouchkine [Tro21], which

measures the effects of faults starting from the instruction-set level. This approach directly connects

observable architectural faults to RTL-level simulations, a connection made possible by using an ASIC

environment where all components are fully controlled.

Building upon this experimental observation, the simulation-based approach proposed by Alle

Monne [All27] uses formal methods to anticipate fault effects before they appear at the silicon level. By

combining experimental observations and simulation, we aim to propose a robust and generic methodology

capable of enhancing the reliability of security assessments and optimizing hardware countermeasure

design.

Additionally, the thesis of Marotta [Mar25] investigated fault injection attacks at the logic gate

level, providing valuable insights into the transposition of security mechanisms from the RTL level

down to netlist and ASIC. Leveraging this work, we plan to study how hardware countermeasures can

be consistently maintained throughout the hardware synthesis process. The goal is to guarantee a

constant security level despite successive transformations involved in hardware synthesis, by identifying

necessary adjustments to prevent degradation of the implemented protections.

Ultimately, this research seeks to provide methodologies applicable to environments hosting high-

performance, energy-efficient TEEs while maintaining robust security assurances.

1. VASCO is an ASIC prototype developed by CEA to evaluate innovative security components.

https://www.leti-cea.fr/cea-tech/leti/Pages/innovation-industrielle/Demonstrateurs/vasco2.aspx
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5.2.1.2 … To Enhance Trusted Execution Environment Security to Mitigate Hardware Attacks

Associated contextual elements of this research field

Collaborations: Mariá Mendez Real (Lab-STICC, Lorient, France), Jean-Christophe Prévotet

(IETR/INSA, Rennes, France)

Publications: [Gon+25]

Supervisions: Gwenn Le Gonidec’s Ph.D. these [Gon26].

According to the protection profile [Glo20b], the TEE layer must address the threat of hardware

attacks. However, as the TEE and REE share the same performance-oriented CPU, which lacks dedicated

security protections, mitigating such threats is particularly challenging. Designing secure applications

for a TEE that considers vulnerabilities from the hardware layer requires specific risk assessments and

advanced security measures, demanding expertise from developers in both application and hardware

security. Developing a secure application is a highly complex task, and finding developers with expertise

in software security, application-specific security, and hardware security is exceptionally rare. Therefore,

relying solely on the developer’s ability to ensure security is not a viable solution. To ensure the security

of the TEE against hardware attacks, I believe it is essential for the TEE to have a dedicated CPU that is

both secure and high-performance, as outlined in the secure sub-system in SoC protection profile [Eur22].

CPUs running a TEE are integrated into modern SoCs. Those SoCs embed additional hardware

modules, such as power management systems or modems, which increase the system’s complexity

compared to hardware RoT implementations like SEs. This added complexity opens new pathways for

exploiting attack vectors [Ayo+24; Cam+18; TSS17; Zha+18].

To secure TEE implementations, it is essential to understand the impact of hardware attacks origi-

nating from or targeting these additional hardware modules. Developing such an understanding the

requirements to better protect TEE implementations against these threats. This work has begun as

part of Gonidec’s Ph.D. thesis [Gon26], where we study power management mechanisms that could

potentially leak information or enable fault attacks. Additionally, within the PTCC FORWARD funding

project, we are exploring hardware- and software-level countermeasures to enhance the protection of

the TEE against hardware attacks.

The secure sub-system in SoC protection profile [Eur22] primarily outlines how to secure a set of

hardware blocks that constitute a hardware RoT embedded within an applicative SoC. Building on

the insights gained from designing a secure hardware RoT, introduced in the Section 5.2.1.1, I believe

that similar principles can be applied to develop a dedicated hardware layer for TEEs, combining

security with high-performance. This ongoing work extends research conducted during Gonidec’s Ph.D.

thesis [Gon26], the PTCC FORWARD project, and additional internal projects.
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5.2.2 Safety-Critical Systems need High-Level of Cybersecurity

Associated contextual elements of this research field

Collaboration: Philippe Trébuchet (ANSSI, Paris, France)

Publication: [TB25]

Safety-Critical Systems are those whose failure could result in significant harm to people, property,

or the environment. They are employed in multiple sectors (e.g., medical, industrial, transportation)

where human lives and critical infrastructures are directly at stake. National and international laws,

along with industry standards, mandate robust mechanisms to enhance the safety and security of these

systems. Such mechanisms aim to prevent failures, detect anomalies, and ensure correct responses to

avoid catastrophic outcomes. As these systems become increasingly connected to external environments,

the scope and complexity of their security requirements grow correspondingly.

This work introduces a new research question: How can we effectively bridge security and safety?

This question extends the scope of the three research questions presented in Section 1.3, broadening

my investigation to critical systems requiring high levels of both security and safety. By exploring this

challenge, my goal is to propose solutions that simultaneously ensure the protection, defense, and

resilience of critical architectures, while strictly complying with the rigorous safety constraints inherent

to these environments.

5.2.2.1 Criticality of Safety and Cybersecurity in Connected Environments

Modern vehicles, often referred to as connected vehicles, illustrate well the blend of stringent safety

requirements (to protect lives) and the imperative for robust cybersecurity measures. These systems

rely on numerous connectivity technologies (Bluetooth, Wi-Fi, cellular networks, etc.) and sophisticated

sensing capabilities (cameras, LiDAR, radar, and ultrasonic sensors). While they offer enhanced comfort,

functionality, and safety features such as Advanced Driver Assistance Systems (ADAS) and autonomous

driving, they also bring new cybersecurity risks. Indeed, the increase in interconnectivity and data

exchange broadens the attack surface, exposing the system to remote and physical threats alike [Evd24;

Lab24; MV13].

For sensitive operations, connected vehicles cannot have their features disabled due to compliance

with national and international regulations. These vehicles must maintain high standards of confiden-

tiality, integrity, and availability. ANSSI thus has a critical role to play in assessing cybersecurity levels

and promoting improvements aligned with security objectives.

5.2.2.2 Challenges in Safety-Critical Domains

Beyond the automotive domain, the increasing connectivity of safety-critical systems in medical

and industrial settings also exposes them to potentially severe attacks. Medical devices such as pace-

makers [Hal+08] and industrial control systems in critical infrastructures [AZ23; Kha+16; Lan11b] face
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comparable threats. An attack on a pacemaker could endanger a patient’s life, while a breach in an

industrial control system could disrupt essential services.

In transportation, the high stakes of passenger and operational safety make the integration of

cybersecurity and safety measures especially vital. Connected and autonomous vehicles, in particular,

gather and process large volumes of sensor data and interacting with external services and other vehicles

on the road. The presence of multiple communication channels, firmware updates, and data sharing in

real time increases the risk of malicious intrusions that could undermine safety-critical features [Evd24;

Lab24].

5.2.2.3 Chain of Trust in Safe-critical Environment

A connected vehicle can be viewed as an embedded system requiring a high guarantee of functional

safety. Security in connected vehicles thus entails combining functional safety and cybersecurity while

adhering to standards that are regularly updated. To address the complexity of continuously adding

new features, GlobalPlatform [Glo23] proposes implementing a CoT: from a hardware RoT to a TEE,

and then to a REE running a complex operating system such as Android Auto. This architecture aims

at preserving the integrity of the execution environment while allowing performance-intensive yet

sensitive tasks to run within the TEE.

Unlike hardware RoTs in smartphones or computers, those embedded in vehicles are often powered

continuously, even when the vehicle is idle. This ensures that security services are always available to

verify integrity across various operational states. However, permanent power also makes the vehicle an

attractive target for attacks, including charging-port exploits on electric vehicles [Dud19] or physical

compromise by an attacker with direct access [Mel24; OFl20; Wer+23]. Such threats can mirror attacks

observed against SE [Wer+23], where an adversary might extract cryptographic keys or introduce

malicious firmware, ultimately jeopardizing the vehicle’s overall security. Incorporating protections

against these attacks is essential for safeguarding of both cybersecurity and safety properties.

5.2.2.4 Case Study: Bluetooth Stack Analysis in a Connected Vehicle

Related publication

BOOK Philippe Trébuchet and Guillaume Bouffard. “300 secondes chrono: prise de contrôle d’un infodivertisse-

ment automobile à distance”, In: SSTIC 2025 Article in PDF [TB25]

As part of an internal ANSSI project, we analyzed a representative vehicle [TB25] used by both the

French administration and private individuals. Among its wireless protocols, Bluetooth was identified as

a critical point of vulnerability because it remains active even when no user is connected. We discovered

a flaw that allows a remote, unauthenticated attacker to execute arbitrary code without occupant

interaction. Such an exploit potentially opens the door to sending unauthorized CAN messages or

performing other malicious actions once the REE is compromised 2.

2. The RoT in this vehicle filters sensitive CAN commands, preventing certain attacks on safety-critical features [TB25].

https://www.bouffard.info/assets/pdf/conf/sstic/TrebuchetB25.pdf
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In this particular vehicle, the hardware RoT is present but does not provide strong segregation from

the REE. Some sensitive CAN messages are filtered by the RoT, preventing direct harm to safety-critical

functions. Nevertheless, an attacker controlling the REE could still perform significant malicious actions.

This underscores the importance of implementing a more complete CoT architecture [Glo23], where the

hardware RoT and TEE form a robust boundary against potential compromises of the REE.

5.2.2.5 Towards a Unified Perspective on Safety and Security

The exploration of security in connected vehicles leverages expertise from the analysis of hardware

RoTs and TEEs, including knowledge of how software implementations fare against hardware-based

attacks. As I aim to deepen my understanding of connected and autonomous vehicles, this research

naturally extends to other critical sectors, medical and industrial, where similar risks emerge from the

intersection of safety and security.

The broader objective is to examine how security requirements can coexist with the stringent

demands of functional safety in these environments. Security introduces new design constraints,

while safety mandates that these additions do not erode established reliability standards. By studying

potential hardware and software attacks together, we can propose protection mechanisms that preserve

both security and safety. This approach is especially crucial for next-generation electrified vehicles,

where continuous communication with charging stations or roads further multiplies potential entry

points for attackers.

5.2.2.6 Toward more Secure Vehicules

Continuing my current research, I intend to deepen the analysis of hardware RoTs and TEEs in

connected and autonomous vehicles, including scenarios involving fault injection attacks. Another

focus will be on investigating how emerging infrastructures, such as in-motion charging, further expand

the attack surface for electrified vehicles. This work is represented by the thesis highlighted in red User-Graduate,

illustrated at the bottom of Figure 1.3, and focusing on mixing security and safety-critical CoT. It is

entitled “Security in a safety-critical environment”.

In parallel, I plan to extend these studies to other domains, particularly medical and industrial sectors,

where security and safety must coexist to protect both human lives and critical infrastructures. A key

aspect of this work will be the advocacy for rigorous security evaluations of hardware RoTs according to

recognized certification schemes, ensuring that the mechanisms protecting CoTs architectures remain

robust against sophisticated threats. Addressing safety and security jointly remains a complex challenge,

as their requirements may at times diverge or even conflict, requiring careful trade-offs to guarantee

both reliable operation and strong protection.

Ultimately, my goal is to propose solutions that harmonize security with functional safety, ensuring

that as systems become more interconnected, they also become more resilient against attacks. This

balance is paramount in domains where the slightest compromise in safety or security can have

immediate and severe repercussions.
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5.3 Conclusion

To continue the work presented in this manuscript, I will explore approaches to enhance the security

of TEEs against hardware attacks by leveraging previous research carried out on securing SEs. Initially

designed as isolated secure vaults, SEs are primarily susceptible to external attacks. However, with

the growing adoption of TEEs in application SoCs, hardware attacks have emerged as increasingly

significant and complex threats. Indeed, such attacks may originate externally, using physical means

outside the target application SoC, such as fault injection or side-channel analysis techniques, but also

internally, by compromising hardware blocks embedded within the application SoC itself to target other

system components. Understanding how to effectively protect these implementations is thus essential

to ensure the robustness of trusted architectures.

My ongoing research on analyzing open-source hardware RoTs implementations, such as Open-

Titan [Low24] and CV32E40S [Ope24b], aims to better understand the coverage of integrated security

mechanisms and identify potential improvements. Ultimately, this analysis will help to define strategies

for integrating these protections into high-performance, energy-efficient application processors running

TEEs that are resilient against hardware attacks.

In parallel with this work on securing TEEs, I have initiated research on protecting critical systems,

where combining security and safety is crucial, particularly in the context of connected vehicles. These

systems, originally designed with a safety-first approach, must now incorporate security due to the

increase in communication interfaces and the expansion of the attack surface. Research conducted

on the security of communication protocols [TB25], notably through the analysis of vulnerabilities in

the REE of connected and autonomous vehicles, highlights the necessity of strong separation between

critical and non-critical components [Glo23].

Building upon the research conducted on hardware RoTs and TEEs, this work will adopt a holistic

approach, addressing the protection of embedded software against both software and hardware attacks,

while ensuring a balance between security and safety. The objective is to define architectures integrating

CoTs tailored to safety-critical environments, where resilience and reliability are paramount.

This long-term research aims to shape the next generation of trusted architectures for safety-critical

systems. By integrating CoTs capable of balancing performance, low energy consumption, and resistance

to hardware attacks, this research addresses the growing challenges of connectivity and cybersecurity

in embedded environments. The goal is to develop robust and modular solutions adapted to safety and

security constraints, ensuring the reliability and resilience of tomorrow’s safety-critical systems.



64 CHAPTER 5. Conclusion and Perspectives



Bibliography

[Adv23] Advanced Micro Devices (AMD). SEV Secure Nested Paging Firmware ABI Specification.
56860. Version 1.55. Sept. 2023. url: https://www.amd.com/content/dam/amd/en/
documents/epyc-technical-docs/specifications/56860.pdf (visited on 07/07/2025).

[Ago+10] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia Tria.
“When Clocks Fail: On Critical Paths and Clock Faults”. In: Proceedings of the 9th Inter-
national Conference of Smart Card Research and Advanced Application (CARDIS). Ed. by
Dieter Gollmann, Jean-Louis Lanet, and Julien Iguchi- Cartigny. Vol. 6035. Lecture Notes in
Computer Science. Passau, Germany: Springer, Apr. 2010, pp. 182–193. doi: 10.1007/978-
3-642-12510-2_13.

[Alb21] Hans-Gerd Albertsen. Certification Report. H1D3 Secure Microcontroller with Crypto Library
v0.1.4. Version 2.4. Nov. 2021. url: https://www.commoncriteriaportal.org/files/
epfiles/%5BSTL%5D%5B2.4%5D%20Titan%20H1D3%20Security%20Target%20Lite%
20v2.4.pdf (visited on 07/07/2025).

[AVR14] Vincent Alimi, Sylvain Vernois, and Christophe Rosenberger. “Analysis of embedded appli-
cations by evolutionary fuzzing”. In: Proceedings of the International Conference on High
Performance Computing & Simulation (HPCS). Bologna, Italy: IEEE Computer Society, July
2014, pp. 551–557. isbn: 978-1-4799-5312-7. doi: 10.1109/HPCSim.2014.6903734.

[All27] Jonah Alle Monne. “Formalization and Analysis of Countermeasures Against Fault Injection
Attacks on Open-Source Processors”. PhD thesis. Grenoble, France: Université Grenoble
Alpes, 2027. In preparation.

[AZ23] Haya Altaleb and Rajnai Zoltan. “Malware Attacks on SCADA Systems: Assessing Risks and
Strengthening Cybersecurity Measures”. In: Proceedings of the 21st IEEE Jubilee International
Symposium on Intelligent Systems and Informatics, (SISY). Pula, Croatia: IEEE, Sept. 2023,
pp. 625–630. doi: 10.1109/SISY60376.2023.10417951.

[AF04] Tiago Alves and Don Felton. “TrustZone: Integrated Hardware and Software Security”. In:
Technology in-depth 3.4 (2004).

[AMD23] AMD. AMD Ryzen™ Pro 7000 Series Mobile Processors. Oct. 2023. url: https://www.amd.
com/content/dam/amd/en/documents/products/processors/ryzen/7000/ryzen-
pro-7000-security-whitepaper.pdf (visited on 07/07/2025).

[ANS23] ANSSI. First Level Security Certification (Certification de Sécurité de Premier Niveau (CSPN)).
HP Sure Start Hardware Root of Trust NPCX998HB0BX. ANSSI-CSPN-2023/08. July 2023.
url: https//cyber.gouv.fr/produits-certifies/hp-sure-start-hardware-root-
trust-npcx998hb0bx-hpsshwnb21b0-0 (visited on 07/07/2025).

[App16] Apple. FairPlay Streaming. Sept. 2016. url: https://developer.apple.com/streaming/
fps/ (visited on 07/07/2025).

65

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://doi.org/10.1007/978-3-642-12510-2_13
https://doi.org/10.1007/978-3-642-12510-2_13
https://www.commoncriteriaportal.org/files/epfiles/%5BSTL%5D%5B2.4%5D%20Titan%20H1D3%20Security%20Target%20Lite%20v2.4.pdf
https://www.commoncriteriaportal.org/files/epfiles/%5BSTL%5D%5B2.4%5D%20Titan%20H1D3%20Security%20Target%20Lite%20v2.4.pdf
https://www.commoncriteriaportal.org/files/epfiles/%5BSTL%5D%5B2.4%5D%20Titan%20H1D3%20Security%20Target%20Lite%20v2.4.pdf
https://doi.org/10.1109/HPCSim.2014.6903734
https://doi.org/10.1109/SISY60376.2023.10417951
https://www.amd.com/content/dam/amd/en/documents/products/processors/ryzen/7000/ryzen-pro-7000-security-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/products/processors/ryzen/7000/ryzen-pro-7000-security-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/products/processors/ryzen/7000/ryzen-pro-7000-security-whitepaper.pdf
https//cyber.gouv.fr/produits-certifies/hp-sure-start-hardware-root-trust-npcx998hb0bx-hpsshwnb21b0-0
https//cyber.gouv.fr/produits-certifies/hp-sure-start-hardware-root-trust-npcx998hb0bx-hpsshwnb21b0-0
https://developer.apple.com/streaming/fps/
https://developer.apple.com/streaming/fps/


66 Bibliography

[App24] Apple. Apple Platform Security. May 2024. url: https://support.apple.com/guide/
security/welcome/web (visited on 07/07/2025).

[Arm12] Arm. Jazelle direct bytecode execution support. July 2012. url: https://developer.arm.
com/documentation/ddi0406/c/Application-Level-Architecture/Application-
Level-Programmers--Model/Jazelle-direct-bytecode-execution-support (visited
on 07/07/2025).

[Arm17] Arm. TrustZone technology for the ARMv8-M architecture Version 2.0. Mar. 2017. url: https:
//developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology
(visited on 07/07/2025).

[Arm22] Arm. Arm® CryptoIsland™-300P. Integrated Secure Element Security Target Lite. NSCIB-CC-
0397801-CR. Version 2.0. Aug. 2022. url: https://www.commoncriteriaportal.org/
files/epfiles/arm_cryptoisland300p_integrated_secure_element_security_
target_lite_107611_0000_02_en.pdf (visited on 07/07/2025).

[Arr+20] Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. “Cryptographic Fault
Diagnosis using VerFI”. In: Proceedings of the IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). San Jose, CA, USA: IEEE, Dec. 2020, pp. 229–240. doi:
10.1109/HOST45689.2020.9300264.

[Ars+20] Muhammad Arsath, Vinod Ganesan, Rahul Bodduna, and Chester Rebeiro. “PARAM: A
Microprocessor Hardened for Power Side-Channel Attack Resistance”. In: Proceedings of
the IEEE International Symposium on Hardware Oriented Security and Trust (HOST). San
Jose, CA, USA: IEEE, Dec. 2020, pp. 23–34. doi: 10.1109/HOST45689.2020.9300263.

[AG21] Ever Atilano and Arnaud de Grandmaison. “Assessing the effectiveness of MCUBoot
protections against fault injection attacks”. In: Linaro Connect Virtual Connect Fall (Sept.
2021). url: https://resources.linaro.org/en/resource/ibFLwRzhpZjBfvY5jhPypJ
(visited on 07/07/2025).

[AF18] Gildas Avoine and Loïc Ferreira. “Attacking GlobalPlatform SCP02-compliant Smart Cards
Using a Padding Oracle Attack”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2018.2 (May 2018), pp. 149–170. doi: 10.13154/tches.v2018.i2.149-
170.

[Ayo+24] Pierre Ayoub, Romain Cayre, Aurélien Francillon, and Clémentine Maurice. “BlueScream:
Screaming Channels on Bluetooth Low Energy”. In: Proceedings of the 40th Annual Computer
Security Applications Conference (ACSAC ’24). Waikiki, Honolulu, Hawaii, United States,
Dec. 2024.

[Bal+15] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. “DPA, Bitslicing
and Masking at 1 GHz”. In: Proceedings of the 17th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES). Ed. by Tim Güneysu and Helena Handschuh.
Vol. 9293. Lecture Notes in Computer Science. Saint-Malo, France: Springer, Sept. 2015,
pp. 599–619. doi: 10.1007/978-3-662-48324-4_30.

[Bar+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan. “The
Sorcerer’s Apprentice Guide to Fault Attacks”. In: Proceedings of the IEEE 94.2 (Feb. 2006),
pp. 370–382. doi: 10.1109/JPROC.2005.862424.

[Bar+22] Guillaume Barbu,Ward Beullens, Emmanuelle Dottax, Christophe Giraud, Agathe Houzelot,
Chaoyun Li, Mohammad Mahzoun, Adrián Ranea, and Jianrui Xie. “ECDSA White-Box
Implementations: Attacks and Designs from CHES 2021 Challenge”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2022.4 (Aug. 2022), pp. 527–552. doi:
10.46586/TCHES.V2022.I4.527-552.

https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Programmers--Model/Jazelle-direct-bytecode-execution-support
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Programmers--Model/Jazelle-direct-bytecode-execution-support
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Programmers--Model/Jazelle-direct-bytecode-execution-support
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology
https://www.commoncriteriaportal.org/files/epfiles/arm_cryptoisland300p_integrated_secure_element_security_target_lite_107611_0000_02_en.pdf
https://www.commoncriteriaportal.org/files/epfiles/arm_cryptoisland300p_integrated_secure_element_security_target_lite_107611_0000_02_en.pdf
https://www.commoncriteriaportal.org/files/epfiles/arm_cryptoisland300p_integrated_secure_element_security_target_lite_107611_0000_02_en.pdf
https://doi.org/10.1109/HOST45689.2020.9300264
https://doi.org/10.1109/HOST45689.2020.9300263
https://resources.linaro.org/en/resource/ibFLwRzhpZjBfvY5jhPypJ
https://doi.org/10.13154/tches.v2018.i2.149-170
https://doi.org/10.13154/tches.v2018.i2.149-170
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.46586/TCHES.V2022.I4.527-552


Bibliography 67

[BBI13] Guillaume Barbu, Guillaume Bouffard, and Julien Iguchy-Cartigny. “La Sécurité Logique”.
In: Les Cartes à puce. Ed. by Samia Bouzefrane and Pierre Paradinas. Hermes Science, 2013.
Chap. 6, pp. 171–201. isbn: 9782746239135.

[Bar+11] Matthieu Barreaud, Guillaume Bouffard, Nassima Kamel, and Jean-Louis Lanet. “Fuzzing on
the HTTP protocol implementation in mobile embedded web server”. In: C&ESAR. Rennes,
France, Nov. 2011, pp. 14–27.

[BB23] Lejla Batina and Ileana Buhan. “Side-Channel Attacks”. In: Encyclopedia of Cryptography,
Security and Privacy. Ed. by Sushil Jajodia, Pierangela Samarati, and Moti Yung. Berlin,
Heidelberg: Springer Berlin Heidelberg, June 2023, pp. 1–4. isbn: 978-3-642-27739-9. doi:
10.1007/978-3-642-27739-9_1795-1.

[Bel20] Yanis Belkheyar. “Authenticated Disk Encryption”. Master’s thesis. Paris, France: Université
Paris 7, Sept. 2020.

[Ber+14] Reinhard Berlach, Michael Lackner, Christian Steger, Johannes Loinig, and Ernst Hasel-
steiner. “Memory-efficient on-card byte code verification for Java cards”. In: Proceedings
of the 1rd Workshop on Cryptography and Security in Computing Systems (CS2@HiPEAC).
Ed. by Jens Knoop, Valentina Salapura, Israel Koren, and Gerardo Pelosi. Vienna, Austria:
ACM, Jan. 2014, pp. 37–40. doi: 10.1145/2556315.2556323.

[BRS17] Swarup Bhunia, Sandip Ray, and Susmita Sur-Kolay, eds. Fundamentals of IP and SoC Secu-
rity. Design, Verification, and Debug. 1st ed. Springer Cham, Feb. 2017. isbn: 978-3319934631.
doi: 10.1007/978-3-319-50057-7.

[Bik24] Angie-Sofia Bikou. “Analysis of an Open-Source Secure Component Architecture”. Master’s
thesis. Paris, France: Sorbonne Université, Sept. 2024.

[Bin+08] Walter Binder, Martin Schoeberl, Philippe Moret, and Alex Villazón. “Cross-Profiling for
Embedded Java Processors”. In: Proceedings of the 5th International Conference on the
Quantitative Evaluaiton of Systems (QEST). Saint-Malo, France: IEEE Computer Society,
Sept. 2008, pp. 287–296. doi: 10.1109/QEST.2008.39.

[Bit+21] Otto Bittner, Thilo Krachenfels, Andreas Galauner, and Jean-Pierre Seifert. “The Forgotten
Threat of Voltage Glitching: A Case Study on Nvidia Tegra X2 SoCs”. In: Proceedings of the
18th Workshop on Fault Detection and Tolerance in Cryptography (FDTC). Milan, Italy: IEEE,
Sept. 2021, pp. 86–97. doi: 10.1109/FDTC53659.2021.00021.

[Boc+19] Estuardo Alpirez Bock, Joppe W. Bos, Chris Brzuska, Charles Hubain, Wil Michiels, Cristo-
faro Mune, Eloi Sanfelix Gonzalez, Philippe Teuwen, and Alexander Treff. “White-Box
Cryptography: Don’t Forget About Grey-Box Attacks”. In: Journal of Cryptology 32.4 (2019),
pp. 1095–1143. doi: 10.1007/S00145-019-09315-1.

[Bos+16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. “Differential Compu-
tation Analysis: Hiding Your White-Box Designs is Not Enough”. In: Proceedings of the
18th International Conference on Cryptographic Hardware and Embedded Systems (CHES).
Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Aug. 2016, pp. 215–236. doi: 10.1007/978-3-
662-53140-2_11.

[Bou14] Guillaume Bouffard. “A Generic Approach for Protecting Java Card Smart Card Against
Software Attacks”. PhD thesis. Limoges, France: Université de Limoges, Oct. 2014.

[BG18] Guillaume Bouffard and Léo Gaspard. “Hardening a Java Card Virtual Machine Implemen-
tation with the MPU”. In: Symposium sur la sécurité des technologies de l’information et des
communications (SSTIC). Rennes, France, June 2018.

https://doi.org/10.1007/978-3-642-27739-9_1795-1
https://doi.org/10.1145/2556315.2556323
https://doi.org/10.1007/978-3-319-50057-7
https://doi.org/10.1109/QEST.2008.39
https://doi.org/10.1109/FDTC53659.2021.00021
https://doi.org/10.1007/S00145-019-09315-1
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-662-53140-2_11


68 Bibliography

[BGG21] Guillaume Bouffard, Vincent Giraud, and LéoGaspard. “Java Card VirtualMachineMemory
Organization: a Design Proposal”. In: CoRR (2021). arXiv: 2110.10037.

[BIL11] Guillaume Bouffard, Julien Iguchi-Cartigny, and Jean-Louis Lanet. “Combined Software and
Hardware Attacks on the Java Card Control Flow”. In: Proceedings of the 10th International
Conference on Smart Card Research and Advanced Applications (CARDIS). Ed. by Emmanuel
Prouff. Vol. 7079. Lecture Notes in Computer Science. Leuven, Belgium: Springer, Sept. 2011,
pp. 283–296. doi: 10.1007/978-3-642-27257-8_18.

[Bou+13a] Guillaume Bouffard, Tom Khefif, Jean-Louis Lanet, Ismael Kane, and Sergio Casanova
Salvia. “Accessing secure information using export file fraudulence”. In: Proceedings of the
International Conference on Risks and Security of Internet and Systems (CRiSIS). Ed. by Bruno
Crispo, Ravi S. Sandhu, Nora Cuppens-Boulahia, Mauro Conti, and Jean-Louis Lanet. La
Rochelle, France: IEEE Computer Society, Oct. 2013, pp. 1–5. doi: 10.1109/CRiSIS.2013.
6766346.

[Bou+14] Guillaume Bouffard, Michael Lackner, Jean-Louis Lanet, and Johannes Loinig. “Heap …
Hop! Heap Is Also Vulnerable”. In: Proceedings of the 13th International Conference Smart
Card Research and Advanced Applications (CARDIS). Ed. by Marc Joye and Amir Moradi.
Vol. 8968. Lecture Notes in Computer Science. Paris, France: Springer, Nov. 2014, pp. 18–31.
isbn: 978-3-319-16762-6. doi: 10.1007/978-3-319-16763-3_2.

[BL12] Guillaume Bouffard and Jean-Louis Lanet. “The Next Smart Card Nightmare - Logical At-
tacks, Combined Attacks, Mutant Applications and Other Funny Things”. In: Cryptography
and Security: From Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater
on the Occasion of His 65th Birthday. Ed. by David Naccache. Vol. 6805. Lecture Notes in
Computer Science. Springer, 2012, pp. 405–424. isbn: 978-3-642-28367-3. doi: 10.1007/978-
3-642-28368-0_26.

[BL14a] Guillaume Bouffard and Jean-Louis Lanet. “Escalade de privilège dans une carte à puce Java
Card”. In: Symposium sur la sécurité des technologies de l’information et des communications
(SSTIC). Rennes, France, June 2014.

[BL14b] Guillaume Bouffard and Jean-Louis Lanet. “Reversing the operating system of a Java based
smart card”. In: Journal of Computer Virology and Hacking Techniques 10.4 (July 2014),
pp. 239–253. doi: 10.1007/s11416-014-0218-7.

[BL15] Guillaume Bouffard and Jean-Louis Lanet. “The ultimate control flow transfer in a Java
based smart card”. In: Computers and Security 50 (May 2015), pp. 33–46. doi: 10.1016/j.
cose.2015.01.004.

[Bou+11] Guillaume Bouffard, Jean-Louis Lanet, Jean-Baptiste Machemie, Jean-Yves Poichotte, and
Jean-Philippe Wary. “Evaluation of the Ability to Transform SIM Applications into Hostile
Applications”. In: Proceedings of the 10th International Conferencee Smart Card Research
and Advanced Applications (CARDIS). Ed. by Emmanuel Prouff. Vol. 7079. Lecture Notes in
Computer Science. Leuven, Belgium: Springer, Sept. 2011, pp. 1–17. doi: 10.1007/978-3-
642-27257-8_1.

[Bou+13b] Guillaume Bouffard, Mathieu Lassale, Sergio Ona Domene, Hanan Tadmori, and Jean-Louis
Lanet. “Intégration d’une politique de flot de contrôle dans un automate de sécurité”. In:
8ème Conférence sur la Sécurité des Architectures Réseaux et des Systèmes d’Information
(SAR-SSI). Mont de Marsan, France, Sept. 2013.

https://arxiv.org/abs/2110.10037
https://doi.org/10.1007/978-3-642-27257-8_18
https://doi.org/10.1109/CRiSIS.2013.6766346
https://doi.org/10.1109/CRiSIS.2013.6766346
https://doi.org/10.1007/978-3-319-16763-3_2
https://doi.org/10.1007/978-3-642-28368-0_26
https://doi.org/10.1007/978-3-642-28368-0_26
https://doi.org/10.1007/s11416-014-0218-7
https://doi.org/10.1016/j.cose.2015.01.004
https://doi.org/10.1016/j.cose.2015.01.004
https://doi.org/10.1007/978-3-642-27257-8_1
https://doi.org/10.1007/978-3-642-27257-8_1


Bibliography 69

[BTL13a] Guillaume Bouffard, Bhagyalekshmy N. Thampi, and Jean-Louis Lanet. “Detecting Laser
Fault Injection for Smart Cards Using Security Automata”. In: Proceedings of the Interna-
tional Symposium on Security in Computing and Communications (SSCC). Ed. by Sabu M.
Thampi, Pradeep K. Atrey, Chun-I Fan, and Gregorio Martínez Pérez. Vol. 377. Communica-
tions in Computer and Information Science. Mysore, India: Springer, Aug. 2013, pp. 18–29.
isbn: 978-3-642-40575-4. doi: 10.1007/978-3-642-40576-1_3.

[BTL13b] Guillaume Bouffard, Bhagyalekshmy N. Thampi, and Jean-Louis Lanet. “Vulnerability
Analysis on Smart Cards Using Fault Tree”. In: Proceedings of the 32nd International Con-
ference on Computer Safety, Reliability, and Security (SAFECOMP). Ed. by Friedemann
Bitsch, Jérémie Guiochet, and Mohamed Kaâniche. Vol. 8153. Lecture Notes in Computer
Science. Toulouse, France: Springer, Sept. 2013, pp. 82–93. isbn: 978-3-642-40792-5. doi:
10.1007/978-3-642-40793-2_8.

[BTL14] Guillaume Bouffard, Bhagyalekshmy N. Thampi, and Jean-Louis Lanet. “Security automa-
ton to mitigate laser-based fault attacks on smart cards”. In: International Journal of Trust
Management in Computing and Communications (IJTMCC) 2.2 (Sept. 2014), pp. 185–205.
doi: 10.1504/IJTMCC.2014.064158.

[Bro24] C. Scott Brown. Here are the phone update policies from every major Android manufac-
turer. Oct. 2024. url: https://www.androidauthority.com/phone-update-policies-
1658633/ (visited on 07/07/2025).

[Bur+17] Jan Burchard, Mael Gay, Ange-Salomé Messeng Ekossono, Jan Horácek, Bernd Becker,
Tobias Schubert, Martin Kreuzer, and Ilia Polian. “AutoFault: Towards Automatic Con-
struction of Algebraic Fault Attacks”. In: Proceedings of the Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). Taipei, Taiwan: IEEE Computer Society, Sept. 2017,
pp. 65–72. doi: 10.1109/FDTC.2017.13.

[BV21] SGS Brightsight BV. H1D3 Secure Microcontroller with Crypto Library v0.1.4. NSCIB-CC-
0228971-CR. Version 2. Nov. 2021. url: https://www.commoncriteriaportal.org/
files/epfiles/NSCIB-CC-0228971-CR.pdf (visited on 07/07/2025).

[CFT14] Andrea Calvagna, Andrea Fornaia, and Emiliano Tramontana. “Combinatorial Interaction
Testing of a Java Card Static Verifier”. In: Proceedings of the 7th IEEE International Conference
on Software Testing, Verification and Validation (ICST). Cleveland, Ohio, USA: IEEE Computer
Society, Mar. 2014, pp. 84–87. isbn: 978-0-7695-5194-4. doi: 10.1109/ICSTW.2014.10.

[CT13] Andrea Calvagna and Emiliano Tramontana. “Automated Conformance Testing of Java
Virtual Machines”. In: Proceedings of the 7th International Conference on Complex, Intelligent,
and Software Intensive Systems (CISIS). Ed. by Leonard Barolli, Fatos Xhafa, Hsing-Chung
Chen, Antonio Fernandez Gómez-Skarmeta, and Farooq Hussain. Taichung, Taiwan: IEEE
Computer Society, July 2013, pp. 547–552. doi: 10.1109/CISIS.2013.99.

[Cam+18] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and Aurélien Francil-
lon. “Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers”.
In: Proceedings of the ACM Conference on Computer and Communications Security (CCS).
Ed. by David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang. Toronto, ON,
Canada: ACM, Oct. 2018, pp. 163–177. doi: 10.1145/3243734.3243802.

[Car07] CardLogix. Gemalto Achieves Major Breakthrough in Security Technology with Java Card
Highest Level of Certification. Oct. 2007. url: https://www.cardlogix.com/industry-
news / gemalto - major - breakthrough - security - technology - java - card - eal7 -
certification/ (visited on 07/07/2025).

https://doi.org/10.1007/978-3-642-40576-1_3
https://doi.org/10.1007/978-3-642-40793-2_8
https://doi.org/10.1504/IJTMCC.2014.064158
https://www.androidauthority.com/phone-update-policies-1658633/
https://www.androidauthority.com/phone-update-policies-1658633/
https://doi.org/10.1109/FDTC.2017.13
https://www.commoncriteriaportal.org/files/epfiles/NSCIB-CC-0228971-CR.pdf
https://www.commoncriteriaportal.org/files/epfiles/NSCIB-CC-0228971-CR.pdf
https://doi.org/10.1109/ICSTW.2014.10
https://doi.org/10.1109/CISIS.2013.99
https://doi.org/10.1145/3243734.3243802
https://www.cardlogix.com/industry-news/gemalto-major-breakthrough-security-technology-java-card-eal7-certification/
https://www.cardlogix.com/industry-news/gemalto-major-breakthrough-security-technology-java-card-eal7-certification/
https://www.cardlogix.com/industry-news/gemalto-major-breakthrough-security-technology-java-card-eal7-certification/


70 Bibliography

[Cas02] Ludovic Casset. “Development of an Embedded Verifier for Java Card Byte Code Using
Formal Methods”. In: Proceedings of the International Symposium of Formal Methods Europe
(FME). Ed. by Lars-Henrik Eriksson and Peter A. Lindsay. Vol. 2391. Lecture Notes in
Computer Science. Copenhagen, Denmark: Springer, July 2002, pp. 290–309. isbn: 3-540-
43928-5. doi: 10.1007/3-540-45614-7_17.

[Cay22] Pierre-Louis Cayrel. “Contributions to code-based cryptography”. Habilitation to conduct
researches. Aug. 2022.

[Cer+20] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. “SoK: Understanding the
Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems”. In: Proceedings
of the IEEE Symposium on Security and Privacy. San Francisco, CA, USA: IEEE Computer
Society, 2020, pp. 1416–1432. doi: 10.1109/SP40000.2020.00061.

[CCH23] Thomas Chamelot, Damien Couroussé, and Karine Heydemann. “MAFIA: Protecting the
Microarchitecture of Embedded Systems Against Fault Injection Attacks”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 42.12 (May 2023),
pp. 4555–4568. doi: 10.1109/TCAD.2023.3276507.

[Che00] Zhiqun Chen. Java Card technology for smart cards: architecture and programmer’s guide.
Addison-Wesley Professional, June 2000. isbn: 0201703297.

[CX23] Tinghung Chiu and Wenjie Xiong. “SoK: Fault Injection Attacks on Cryptosystems”. In:
Proceedings of the 12th International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP). Toronto, Canada: ACM, Oct. 2023, pp. 64–72. doi: 10.1145/
3623652.3623671.

[Cho+02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. “A White-Box
DES Implementation for DRM Applications”. In: Proceedings of the Security and Privacy in
Digital Rights Management (DRM). Ed. by Joan Feigenbaum. Vol. 2696. Lecture Notes in
Computer Science. Washington, DC, USA: Springer, Nov. 2002, pp. 1–15. isbn: 3-540-40410-4.
doi: 10.1007/978-3-540-44993-5_1.

[CB19] Ludovic Claudepierre and Philippe Besnier. “Microcontroller Sensitivity to Fault-Injection
Induced by Near-Field Electromagnetic Interference”. In: Proceedings of the International
Symposium on Electromagnetic Compatibility (EMC). Sapporo, Japan, June 2019, pp. 673–676.
doi: 10.23919/EMCTokyo.2019.8893701.

[Cla+21] Ludovic Claudepierre, Pierre-Yves Péneau, Damien Hardy, and Erven Rohou. “TRAITOR: A
Low-Cost Evaluation Platform for Multifault Injection”. In: Proceedings of the 21rd Interna-
tional Symposium on Advanced Security on Software and Systems (ASSS). Ed. by Weizhi Meng
and Li Li. Virtual Event, Hong Kong: ACM, June 2021, pp. 51–56. doi: 10.1145/3457340.
3458303.

[Com24] Common Criteria. Certified Products. 2024. url: https://www.commoncriteriaportal.
org/products/index.cfm (visited on 07/07/2025).

[DB21] Jean Dubreuil and Guillaume Bouffard. “PhiAttack - Rewriting the Java Card Class Hier-
archy”. In: Proceedings of the 20th International Conference on Smart Card Research and
Advanced Applications (CARDIS). Ed. by Vincent Grosso and Thomas Pöppelmann. Vol. 13173.
Lecture Notes in Computer Science. Lübeck, Germany: Springer, Nov. 2021, pp. 275–288.
doi: 10.1007/978-3-030-97348-3_15.

https://doi.org/10.1007/3-540-45614-7_17
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/TCAD.2023.3276507
https://doi.org/10.1145/3623652.3623671
https://doi.org/10.1145/3623652.3623671
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.23919/EMCTokyo.2019.8893701
https://doi.org/10.1145/3457340.3458303
https://doi.org/10.1145/3457340.3458303
https://www.commoncriteriaportal.org/products/index.cfm
https://www.commoncriteriaportal.org/products/index.cfm
https://doi.org/10.1007/978-3-030-97348-3_15


Bibliography 71

[Dub+12] Jean Dubreuil, Guillaume Bouffard, Jean-Louis Lanet, and Julien Cartigny. “Type Classi-
fication against Fault Enabled Mutant in Java Based Smart Card”. In: Proceedings of the
7th International Conference on Availability, Reliability and Security (ARES). Prague, Czech
Republic: IEEE Computer Society, Aug. 2012, pp. 551–556. isbn: 978-1-4673-2244-7. doi:
10.1109/ARES.2012.24.

[Dub+13] Jean Dubreuil, Guillaume Bouffard, Bhagyalekshmy N. Thampi, and Jean-Louis Lanet.
“Mitigating Type Confusion on Java Card”. In: International Journal of Secure Software
Engineering 4.2 (2013), pp. 19–39. doi: 10.4018/jsse.2013040102.

[DBP23] Soline Ducousso, Sébastien Bardin, and Marie-Laure Potet. “Adversarial Reachability for
Program-level Security Analysis”. In: Proceedings of the 32nd European Symposium on
Programming, (ESOP) Held as Part of the European Joint Conferences on Theory and Practice
of Software, (ETAPS). Ed. by Thomas Wies. Vol. 13990. Lecture Notes in Computer Science.
Paris, France: Springer, Apr. 2023, pp. 59–89. doi: 10.1007/978-3-031-30044-8_3.

[Dud19] Sébastien Dudek. “V2G Injector: Whispering to cars and charging units through the Power-
Line”. In: Symposium sur la sécurité des technologies de l’information et des communications
(SSTIC). Rennes, France, June 7, 2019.

[DLM21] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. “Modeling and Simulating Elec-
tromagnetic Fault Injection”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 40.4 (2021), pp. 680–693. doi: 10.1109/TCAD.2020.3003287.

[Dur+16] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude Crohen, and
Philippe de Choudens. “FISSC: A Fault Injection and Simulation Secure Collection”. In:
Proceedings of the 35th International Conference on Computer Safety, Reliability, and Security
(SAFECOMP). Ed. by Amund Skavhaug, Jérémie Guiochet, and Friedemann Bitsch. Vol. 9922.
Lecture Notes in Computer Science. Trondheim, Norway: Springer, Sept. 2016, pp. 3–11.
isbn: 978-3-319-45476-4. doi: 10.1007/978-3-319-45477-1_1.

[EMV07] EMV. EMV Card Personalisation Specification. July 2007.

[EMV08] EMV. Common Payment Application Specification. Mar. 2008.

[EMV11a] EMV. Book 1. Integrated Circuit Card Specifications for Payment Systems. Version 4.3. Geneva,
Switzerland, Nov. 2011.

[EMV11b] EMV. Book 2. Security and Key Management. Version 4.3. Nov. 2011.

[EMV11c] EMV. Book 3. Application Specification. Version 4.3. Nov. 2011.

[EMV11d] EMV. Book 4. Cardholder, Attendant, and Acquirer Interface Requirements. Version 4.3. Nov.
2011.

[Eur14] Eurosmart. Smartcard IC Platform Protection Profile with Augmentation Packages. BSI-CC-
PP-0084. Version 1.0. Jan. 2014. url: https://www.commoncriteriaportal.org/files/
ppfiles/pp0084b_pdf.pdf (visited on 07/07/2025).

[Eur22] Eurosmart. Secure Sub-System in System-on-Chip Protection Profile. BSI-CC-PP-0117. Ver-
sion 1.5. Mar. 2022. url: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Zertifizierung/Reporte/ReportePP/pp0117a_pdf (visited on 07/07/2025).

[Evd24] Mikhail Evdokimov. “0-click RCE on the IVI component: Pwn2Own Automotive edition”.
In: Hexacon (Oct. 2024).

https://doi.org/10.1109/ARES.2012.24
https://doi.org/10.4018/jsse.2013040102
https://doi.org/10.1007/978-3-031-30044-8_3
https://doi.org/10.1109/TCAD.2020.3003287
https://doi.org/10.1007/978-3-319-45477-1_1
https://www.commoncriteriaportal.org/files/ppfiles/pp0084b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0084b_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/ReportePP/pp0117a_pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/ReportePP/pp0117a_pdf


72 Bibliography

[Fan+22] Clément Fanjas, Clément Gaine, Driss Aboulkassimi, Simon Pontié, and Olivier Potin.
“Combined Fault Injection and Real-Time Side-Channel Analysis for Android Secure-Boot
Bypassing”. In: Proceedings of the 21st International Conference of Smart Card Research and
Advanced Applications (CARDIS). Ed. by Ileana Buhan and Tobias Schneider. Vol. 13820.
Lecture Notes in Computer Science. Birmingham, UK: Springer, Nov. 2022, pp. 25–44. doi:
10.1007/978-3-031-25319-5_2.

[FV10] Emilie Faugeron and Sebastien Valette. “How to hoax an off-card verifier”. In: e-smart (Sept.
2010).

[Gai+20] Clément Gaine, Driss Aboulkassimi, Simon Pontié, Jean-Pierre Nikolovski, and Jean-Max
Dutertre. “Electromagnetic Fault Injection as a New Forensic Approach for SoCs”. In:
Proceedings of the 12th IEEE International Workshop on Information Forensics and Security
(WIFS). New York City, New York, USA: IEEE Computer Society, Dec. 2020, pp. 1–6. isbn:
978-1-7281-9930-6. doi: 10.1109/WIFS49906.2020.9360902.

[Gas17] Léo Gaspard. “Implementation of a Secure Operating System for Java Card-based Secure
Element”. Master’s thesis. Palaiseau, France: École Polytechnique, Sept. 2017.

[Gir19] Vincent Giraud. “Secure Implementation of GlobalPlatform for Java Card Platform”. Mas-
ter’s thesis. Rennes, France: INSA, Sept. 2019.

[Gir23a] VincentGiraud. “Method for protecting a terminal against a side channel attack ”. FR3142818A1.
Oct. 2023. url: https://patents.google.com/patent/FR3142818A1.

[Gir23b] Vincent Giraud. “White box encoding”. WO2024083849A1. Oct. 2023. url: https : / /
patents.google.com/patent/WO2024083849A1.

[Gir23c] Vincent Giraud. “White-box cryptographic keys”. WO2024083855A1. Oct. 2023. url: https:
//patents.google.com/patent/WO2024083855A1.

[Gir24] Vincent Giraud. “Application security on uncontrolled systems. Study of the risks, protec-
tions, stakes and interests around trust in off-the-shelf computer products”. PhD thesis.
Paris, France: École Normale Supérieure, Sept. 2024.

[GB23] Vincent Giraud and Guillaume Bouffard. “Faulting original McEliece’s implementations
is possible. How to mitigate this risk?” In: IEEE European Workshops on Symposium on
Security and Privacy (EuroS&PW). Delft, Netherlands: IEEE, July 2023, pp. 311–319. doi:
10.1109/EuroSPW59978.2023.00039.

[GN23a] Vincent Giraud and David Naccache. “Batterie à bord: quand les jauges de carburant
dépassent les limites”. In: Symposium sur la sécurité des technologies de l’information et des
communications (SSTIC). Rennes, France, June 2023.

[GN23b] Vincent Giraud and David Naccache. “Power Analysis Pushed too Far: Breaking Android-
Based Isolation with Fuel Gauges”. In: Proceedings of the 18th International Workshop on
Security (IWSEC). Ed. by Junji Shikata and Hiroki Kuzuno. Vol. 14128. Lecture Notes in
Computer Science. Yokohama, Japan: Springer, Aug. 2023, pp. 3–15. doi: 10.1007/978-3-
031-41326-1_1.

[Glo12] Global Platform. Java Card Contactless API and Export File for Card Specification v2.2.1
(org.globalplatform.contactless) v1.1. Feb. 2012. url: https://globalplatform.org/specs-
library/java-card-contactless-api-ad-export-file-for-card-specification-
v2-2-1-org-globalplatform-contactless-v1-1/ (visited on 07/07/2025).

[Glo18a] GlobalPlatform. Introduction to Secure Elements. May 2018. url: https://globalplatform.
org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.
pdf (visited on 07/07/2025).

https://doi.org/10.1007/978-3-031-25319-5_2
https://doi.org/10.1109/WIFS49906.2020.9360902
https://patents.google.com/patent/FR3142818A1
https://patents.google.com/patent/WO2024083849A1
https://patents.google.com/patent/WO2024083849A1
https://patents.google.com/patent/WO2024083855A1
https://patents.google.com/patent/WO2024083855A1
https://doi.org/10.1109/EuroSPW59978.2023.00039
https://doi.org/10.1007/978-3-031-41326-1_1
https://doi.org/10.1007/978-3-031-41326-1_1
https://globalplatform.org/specs-library/java-card-contactless-api-ad-export-file-for-card-specification-v2-2-1-org-globalplatform-contactless-v1-1/
https://globalplatform.org/specs-library/java-card-contactless-api-ad-export-file-for-card-specification-v2-2-1-org-globalplatform-contactless-v1-1/
https://globalplatform.org/specs-library/java-card-contactless-api-ad-export-file-for-card-specification-v2-2-1-org-globalplatform-contactless-v1-1/
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf


Bibliography 73

[Glo18b] GlobalPlatform. Root of Trust Definitions and Requirements. Version 1.1. June 2018. url:
https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_
and_Requirements_v1.1_PublicRelease-2018-06-28.pdf.

[Glo19] GlobalPlatform. An Introduction to GlobalPlatform’s Device Trust Architecture. July 2019.

[Glo20a] GlobalPlatform. TEE Client Core API Specification. GPD_SPE_007. Version 1.0. July 2020.
url: https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_
Specification-V1.0.pdf (visited on 07/07/2025).

[Glo20b] GlobalPlatform. TEE Protection Profile. GPD_SPE_021. Version 1.3. July 2020. url: https:
//globalplatform.org/specs-library/tee-protection-profile-v1-3/ (visited on
07/07/2025).

[Glo21] GlobalPlatform. TEE Internal Core API Specification. Version 1.3.1. July 2021. url: https:
//globalplatform.org/wp-content/uploads/2021/03/GPD_TEE_Internal_Core_
API_Specification_v1.3.1_PublicRelease_CC.pdf (visited on 07/07/2025).

[Glo23] GlobalPlatform. Trust & Security in Automotive Systems. Tech. rep. Oct. 2023. url: https:
//globalplatform.org/wp-content/uploads/2023/10/GP-Trust-for-Secure-
AutoServices-White-Paper_Web_Spreads.pdf (visited on 07/07/2025).

[Gon26] Gwenn Le Gonidec. “Securing RISC-V System-on-Chip against Energy-based Attacks”.
PhD thesis. Rennes, France: Université Bretagne Sud, 2026. In preparation.

[Gon+25] Gwenn Le Gonidec, Guillaume Bouffard, Jean-Christophe Prévotet, and Maria Méndez
Real. “Do Not Trust Power Management: A Survey on Internal Energy-based Attacks
Circumventing Trusted Execution Environments Security Properties”. In: ACM Transactions
on Embedded Computing Systems 24.4 (July 2025). issn: 1539-9087. doi: 10.1145/3735556.

[Hal+08] Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane S. Clark, Benessa
Defend, Will Morgan, Kevin Fu, Tadayoshi Kohno, and William H. Maisel. “Pacemakers
and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses”.
In: Proceedings of the IEEE Symposium on Security and Privacy (S& P). Oakland, California,
USA: IEEE Computer Society, May 2008, pp. 129–142. doi: 10.1109/SP.2008.31.

[Ham+12] Samiya Hamadouche, Guillaume Bouffard, Jean-Louis Lanet, Bruno Dorsemaine, Bastien
Nouhant, AlexandreMagloire, and Arnaud Reygnaud. “Subverting Byte Code Linker service
to characterize Java Card API”. In: Proceedings of the 7th Conference on Network and
Information Systems Security (SAR-SSI). Cabourg, France, May 2012, pp. 75–81. isbn: 978-2-
9542630-0-7.

[Heu24] Maurice Heumann. Bypassing Denuvo in Hogwarts Legacy. Mar. 2024. url: https : / /
momo5502.com/posts/2024-03-31-bypassing-denuvo-in-hogwarts-legacy/ (visited
on 07/07/2025).

[HSP20] Max Hoffmann, Falk Schellenberg, and Christof Paar. “ARMORY: Fully Automated and
Exhaustive Fault Simulation on ARM-M Binaries”. In: IEEE Transactions on Information
Forensics and Security 16 (Sept. 2020), pp. 1058–1073. doi: 10.1109/TIFS.2020.3027143.

[Idr+17] Noreddine El Janati El Idrissi, Guillaume Bouffard, Jean-Louis Lanet, and Said El Hajji.
“Trust can be misplaced”. In: Journal of Cryptographic Engineering 7.1 (2017), pp. 21–34. doi:
10.1007/s13389-016-0142-5.

[Int22a] Intel. Intel™ Software Guard Extensions (Intel ™ SGX). 2022. url: https://www.intel.
com/content/www/us/en/products/docs/accelerator-engines/software-guard-
extensions.html (visited on 07/07/2025).

https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://globalplatform.org/wp-content/uploads/2021/03/GPD_TEE_Internal_Core_API_Specification_v1.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2021/03/GPD_TEE_Internal_Core_API_Specification_v1.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2021/03/GPD_TEE_Internal_Core_API_Specification_v1.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2023/10/GP-Trust-for-Secure-AutoServices-White-Paper_Web_Spreads.pdf
https://globalplatform.org/wp-content/uploads/2023/10/GP-Trust-for-Secure-AutoServices-White-Paper_Web_Spreads.pdf
https://globalplatform.org/wp-content/uploads/2023/10/GP-Trust-for-Secure-AutoServices-White-Paper_Web_Spreads.pdf
https://doi.org/10.1145/3735556
https://doi.org/10.1109/SP.2008.31
https://momo5502.com/posts/2024-03-31-bypassing-denuvo-in-hogwarts-legacy/
https://momo5502.com/posts/2024-03-31-bypassing-denuvo-in-hogwarts-legacy/
https://doi.org/10.1109/TIFS.2020.3027143
https://doi.org/10.1007/s13389-016-0142-5
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html


74 Bibliography

[Int21] International Civil Aviation Organization. Machine Readable Travel Documents. Part 11:
Security Mechanisms for MRTDs. Version Eighth Edition. 2021.

[Int06] International Organization for Standardization. ISO/IEC 7816. Part 3: Cards with contacts—
Electrical interface and transmission protocols. Geneva, Switzerland, 2006.

[Int13] International Organization for Standardization. ISO/IEC 7816. Part 4: Organization, security
and commands for interchange. Geneva, Switzerland, 2013.

[Int15] International Organization for Standardization. ISO/IEC 11889 Information Technology —
Trusted Platform Module Library. Part 1: Architecture. Geneva, Switzerland, 2015.

[Int18] International Organization for Standardization. ISO/IEC 14443 Cards and security devices
for personal identification — Contactless proximity objects. Part 4: Transmission protocol.
Geneva, Switzerland, 2018.

[Int22b] International Organization for Standardization. ISO/IEC 15408: Information security, cy-
bersecurity and privacy protection. Evaluation criteria for IT security. Geneva, Switzerland,
2022.

[ITB23] Alexandre Iooss, Thomas Trouchkine, and Guillaume Bouffard. “Pew Pew, I’m root! De la
caractérisation à l’exploitation: un voyage plein d’embûches”. fr. In: Journée thématique sur
les attaques par injection de fautes (JAIF) (Sept. 2023). url: https://jaif.io/2023/.

[Jac+23] Hans Niklas Jacob, Christian Werling, Robert Buhren, and Jean -Pierre Seifert. “faulTPM:
Exposing AMD fTPMs’ Deepest Secrets”. In: Proceedings of the 8th IEEE European Symposium
on Security and Privacy. Delft, Netherlands: IEEE Computer Society, July 2023, pp. 1128–1142.
doi: 10.1109/EUROSP57164.2023.00069.

[JM14] Marc Joye and Amir Moradi, eds. Proceedings of the 13th International Conference Smart
Card Research and Advanced Applications (CARDIS). Vol. 8968. Lecture Notes in Computer
Science. Paris, France: Springer, Nov. 2014. isbn: 978-3-319-16762-6. doi: 10.1007/978-3-
319-16763-3.

[KAS20] J. Karthik, P. P. Amritha, and M. Sethumadhavan. “Video Game DRM: Analysis and
Paradigm Solution”. In: Proceedings of the 11th International Conference on Computing,
Communication and Networking Technologies, ICCCNT 2020, Kharagpur, India, July 1-3 , 2020.
IEEE Computer Society, 2020, pp. 1–4. doi: 10.1109/ICCCNT49239.2020.9225560.

[Kas23] Kaspersky. Kaspersky discloses iPhone hardware feature vital in Operation Triangulation
case. Dec. 2023. url: https://www.kaspersky.com/about/press-releases/kaspersky-
discloses-iphone-hardware-feature-vital-in-operation-triangulation-case
(visited on 07/07/2025).

[Kha+16] Rafiullah Khan, Peter Maynard, Kieran McLaughlin, David M. Laverty, and Sakir Sezer.
“Threat Analysis of BlackEnergy Malware for Synchrophasor based Real-time Control and
Monitoring in Smart Grid”. In: Proceedings of the 4th International Symposium for ICS &
SCADA Cyber Security Research 2016, ICS-CSR. Ed. by Thomas Brandstetter and Helge
Janicke. Workshops in Computing. Queen’s Belfast University, UK: BCS, Aug. 2016. url:
https://ewic.bcs.org/content/ConWebDoc/56478 (visited on 07/07/2025).

[Kin24] Beth Kindig.Arm Stock: AI Chip Favorite Is Overpriced. Mar. 2024. url: https://www.forbes.
com/sites/bethkindig/2024/03/21/arm-stock-ai-chip-favorite-is-overpriced/
(visited on 07/07/2025).

https://jaif.io/2023/
https://doi.org/10.1109/EUROSP57164.2023.00069
https://doi.org/10.1007/978-3-319-16763-3
https://doi.org/10.1007/978-3-319-16763-3
https://doi.org/10.1109/ICCCNT49239.2020.9225560
https://www.kaspersky.com/about/press-releases/kaspersky-discloses-iphone-hardware-feature-vital-in-operation-triangulation-case
https://www.kaspersky.com/about/press-releases/kaspersky-discloses-iphone-hardware-feature-vital-in-operation-triangulation-case
https://ewic.bcs.org/content/ConWebDoc/56478
https://www.forbes.com/sites/bethkindig/2024/03/21/arm-stock-ai-chip-favorite-is-overpriced/
https://www.forbes.com/sites/bethkindig/2024/03/21/arm-stock-ai-chip-favorite-is-overpriced/


Bibliography 75

[Koc+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: Proceedings of the IEEE
Symposium on Security and Privacy. San Francisco, CA, USA: IEEE, May 2019, pp. 1–19. doi:
10.1109/SP.2019.00002.

[KH14] Thomas Korak and Michael Hoefler. “On the Effects of Clock and Power Supply Tampering
on Two Microcontroller Platforms”. In: Proceedings of the Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). Ed. by Assia Tria and Dooho Choi. Busan, South Korea:
IEEE Computer Society, Sept. 2014, pp. 8–17. isbn: 978-1-4799-6292-1. doi: 10.1109/FDTC.
2014.11.

[Lab24] CyberThreat Research Lab. Under Pressure: Exploring a Zero-Click RCE Vulnerability in
Tesla’s TPMS. Dec. 2024. url: https://vicone.com/blog/under-pressure-exploring-
a-zero-click-rce-vulnerability-in-teslas-tpms (visited on 07/07/2025).

[Lan11a] Julien Lancia. “Un framework de fuzzing pour cartes à puce: application aux protocoles
EMV”. In: Symposium sur la sécurité des technologies de l’information et des communications
(SSTIC). Rennes, France, June 2011.

[LB15] Julien Lancia and Guillaume Bouffard. “Java Card Virtual Machine Compromising from a
Bytecode Verified Applet”. In: Proceedings of the 14th International Conference Smart Card
Research and Advanced Applications (CARDIS). Vol. 9514. Lecture Notes in Computer Science.
Bochum, Germany: Springer, Nov. 2015, pp. 75–88. doi: 10.1007/978-3-319-31271-2_5.

[LB16] Julien Lancia and Guillaume Bouffard. “Fuzzing and Overflows in Java Card Smart Cards”.
In: Symposium sur la sécurité des technologies de l’information et des communications (SSTIC).
Rennes, France, June 2016.

[Lan+18] Jean-Louis Lanet, Hélène Le Bouder, Mohammed Benattou, and Axel Legay. “When time
meets test”. In: International Journal of Information Security 17.4 (2018), pp. 395–409. doi:
10.1007/s10207-017-0371-3.

[Lan+14] Jean-Louis Lanet, Guillaume Bouffard, Rokia Lamrani, Ranim Chakra, Afef Mestiri, Mo-
hammed Monsif, and Abdellatif Fandi. “Memory Forensics of a Java Card Dump”. In:
Proceedings of the 13th International Conference Smart Card Research and Advanced Appli-
cations (CARDIS). Ed. by Marc Joye and Amir Moradi. Vol. 8968. Lecture Notes in Com-
puter Science. Paris, France: Springer, Nov. 2014, pp. 3–17. isbn: 978-3-319-16762-6. doi:
10.1007/978-3-319-16763-3_1.

[Lan11b] Ralph Langner. “Stuxnet: Dissecting a Cyberwarfare Weapon”. In: IEEE Security & Privacy
9.3 (May 2011), pp. 49–51. doi: 10.1109/MSP.2011.67.

[Lap+20] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. “Browser Fingerprint-
ing: A Survey”. In:ACMTransactions on theWeb 14.2 (2020), 8:1–8:33. doi: 10.1145/3386040.

[Lau+19] Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian Pebay-Peyroula, and Athana-
sios Papadimitriou. “Cross-layer analysis of software fault models and countermeasures
against hardware fault attacks in a RISC-V processor”. In: Microprocessors and Microsystems
71 (Aug. 2019). doi: 10.1016/J.MICPRO.2019.102862.

[Lau+21] Johan Laurent, Christophe Deleuze, Florian Pebay-Peyroula, and Vincent Beroulle. “Bridg-
ing the Gap between RTL and Software Fault Injection”. In: ACM Journal on Emerging
Technologies in Computing Systems 17.3 (May 2021), 38:1–38:24. doi: 10.1145/3446214.

[Law10] Nate Lawson. How the PS3 Hypervisor was Hacked. Jan. 2010. url: https://rdist.root.
org/2010/01/27/how-the-ps3-hypervisor-was-hacked/ (visited on 07/07/2025).

https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/FDTC.2014.11
https://doi.org/10.1109/FDTC.2014.11
https://vicone.com/blog/under-pressure-exploring-a-zero-click-rce-vulnerability-in-teslas-tpms
https://vicone.com/blog/under-pressure-exploring-a-zero-click-rce-vulnerability-in-teslas-tpms
https://doi.org/10.1007/978-3-319-31271-2_5
https://doi.org/10.1007/s10207-017-0371-3
https://doi.org/10.1007/978-3-319-16763-3_1
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1145/3386040
https://doi.org/10.1016/J.MICPRO.2019.102862
https://doi.org/10.1145/3446214
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/


76 Bibliography

[Lee+20] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn Song. “Keystone:
an open framework for architecting trusted execution environments”. In: Proceedings of the
15th EuroSys Conference. Ed. by Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos,
Dejan Kostic, and Margo I. Seltzer. Heraklion, Greece: ACM, Apr. 2020, pp. 1–16. doi:
10.1145/3342195.3387532.

[Leg23] Alessandro Legnani. Trusted Firmware for a Research Computer. Aug. 2023. doi: 20.500.
11850/634201.

[Ler02] Xavier Leroy. “Bytecode verification on Java smart cards”. In: Software - Practice and Experi-
ence (SPE) 32.4 (2002), pp. 319–340. doi: 10.1002/spe.438.

[LG19] Haohao Liao and Catherine H. Gebotys. “Methodology for EM Fault Injection: Charge-
based Fault Model”. In: Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition (DATE). Ed. by Jürgen Teich and Franco Fummi. Florence, Italy: IEEE, Mar.
2019, pp. 256–259. doi: 10.23919/DATE.2019.8715150.

[Lip+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
“Meltdown: Reading Kernel Memory from User Space”. In: Proceedings of the 27th USENIX
Security Symposium. Ed. by William Enck and Adrienne Porter Felt. Baltimore, MD, USA:
USENIX Association, Aug. 2018, pp. 973–990.

[Lon+15] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. “SoC It to EM: ElectroMag-
netic Side-Channel Attacks on a Complex System-on-Chip”. In: Proceedings of the 17th
International Workshop Cryptographic Hardware and Embedded Systems (CHES). Ed. by Tim
Güneysu and Helena Handschuh. Vol. 9293. Lecture Notes in Computer Science. Saint-Malo,
France: Springer, Sept. 2015, pp. 620–640. doi: 10.1007/978-3-662-48324-4_31.

[Low24] LowRISC. OpenTitan. 2024. url: https://github.com/lowRISC/opentitan (visited on
07/07/2025).

[MBB16] Fabien Majéric, Eric Bourbao, and Lilian Bossuet. “Electromagnetic security tests for SoC”.
In: Proceedings of the IEEE International Conference on Electronics, Circuits and Systems
(ICECS). Monte Carlo, Monaco: IEEE Computer Society, Dec. 2016, pp. 265–268. isbn:
978-1-5090-6113-6. doi: 10.1109/ICECS.2016.7841183.

[Mal22] Louisa Malki. “Fingerprinting of Embedded Software Implementation”. Master’s thesis.
Paris, France: École 42, Sept. 2022.

[Man+18] Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich Weber. “How Secure
Is Green IT? The Case of Software-Based Energy Side Channels”. In: Proceedings of the
23rd European Symposium on Research in Computer Security (ESORICS). Ed. by Javier
López, Jianying Zhou, and Miguel Soriano. Vol. 11098. Lecture Notes in Computer Science.
Barcelona, Spain: Springer, Sept. 2018, pp. 218–239. doi: 10.1007/978-3-319-99073-6_11.

[Mar25] Amélie Marotta. “Effects of synchronous clock glitch on the security of integrated circuits”.
PhD thesis. Rennes, France: Université de Rennes, June 2025.

[Mar+24] Amélie Marotta, Ronan Lashermes, Guillaume Bouffard, Olivier Sentieys, and Rachid Dafali.
“Characterizing and Modeling Synchronous Clock-Glitch Fault Injection”. In: Proceedings
of the 15th International Workshop on Constructive Side-Channel Analysis and Secure Design
(COSADE). Ed. by Romain Wacquez and Naofumi Homma. Vol. 14595. Lecture Notes in
Computer Science. Gardanne, France: Springer, Apr. 2024, pp. 3–21. doi: 10.1007/978-3-
031-57543-3_1.

[Mel24] Willem Melching. Bypassing the Renesas RH850/P1M-E read protection using fault injection.
Nov. 8, 2024. url: https://icanhack.nl/blog/rh850-glitch/ (visited on 07/07/2025).

https://doi.org/10.1145/3342195.3387532
https://doi.org/20.500.11850/634201
https://doi.org/20.500.11850/634201
https://doi.org/10.1002/spe.438
https://doi.org/10.23919/DATE.2019.8715150
https://doi.org/10.1007/978-3-662-48324-4_31
https://github.com/lowRISC/opentitan
https://doi.org/10.1109/ICECS.2016.7841183
https://doi.org/10.1007/978-3-319-99073-6_11
https://doi.org/10.1007/978-3-031-57543-3_1
https://doi.org/10.1007/978-3-031-57543-3_1
https://icanhack.nl/blog/rh850-glitch/


Bibliography 77

[MV13] Charlie Miller and Chris Valasek. “Remote Exploitation of an Unaltered Passenger Vehicle”.
In: DEF CON 2023 (Aug. 2013).

[Nat17] National Information Assurance Partnership. Protection Profile for Mobile Device Funda-
mentals. Version 3.1. June 2017. url: https://www.commoncriteriaportal.org/files/
ppfiles/pp_md_v3.1.pdf (visited on 07/07/2025).

[Nat21a] National Information Assurance Partnership. Protection Profile for Application Software.
CCEVS-VR-PP-0080. Version 1.4. Oct. 2021. url: https://www.commoncriteriaportal.
org/files/ppfiles/PP_APP_V1.4_VR.pdf (visited on 07/07/2025).

[Nat21b] National Information Assurance Partnership. Validation Report. Google Pixel Phones on An-
droid 11.0. CCEVS-VR-11124-2021. Version 1.0. Aug. 2021. url: https://www.commoncriteriaportal.
org/files/epfiles/st_vid11124-vr.pdf (visited on 07/07/2025).

[Nem+17] Matús Nemec, Marek Sýs, Petr Svenda, Dusan Klinec, and Vashek Matyas. “The Return of
Coppersmith’s Attack: Practical Factorization of Widely Used RSA Moduli”. In: Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security (CCS). Ed. by
Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. Dallas, TX, USA: ACM,
Oct. 2017, pp. 1631–1648. doi: 10.1145/3133956.3133969.

[NLn24] NLnet. NaxRiscv. 2024. url: https://github.com/SpinalHDL/NaxRiscv (visited on
07/07/2025).

[Nou+09] Agnès Cristèle Noubissi, Ahmadou Al Khary Sere, Julien Iguchi-Cartigny, Jean-Louis Lanet,
Guillaume Bouffard, and Julien Boutet. “Carte à puce : Attaques et Contremesures”. In:
Majecstic. 1112. Avignon, France, Nov. 2009.

[OFl20] Colin O’Flynn. “BAM BAM‼ On Reliability of EMFI for in-situ Automotive ECU Attacks”.
In: IACR Cryptology ePrint Archive (2020), p. 937. eprint.

[Ope24a] OpenHW Group. CVA6 RISC-V CPU. 2024. url: https://github.com/openhwgroup/cva6
(visited on 07/07/2025).

[Ope24b] OpenHW Group. OpenHW Group CORE-V CV32E40S RISC-V IP. 2024. url: https://
github.com/openhwgroup/cv32e40s (visited on 07/07/2025).

[Ope23] OpenTitan Developer Team. OpenTitan’s use cases. 2023. url: https://opentitan.org/
book/doc/use_cases/ (visited on 07/07/2025).

[Ora21a] Oracle. Java Card 3 Platform, Runtime Environment Specification. Classic Edition. Version 3.1.
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065: Oracle, Feb. 2021.

[Ora21b] Oracle. Java Card 3 Platform, Virtual Machine Specification. Classic Edition. Version 3.1.
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065: Oracle, Feb. 2021.

[Ora21c] Oracle. Java Card Protection Profile – Open Configuration. Oracle Corporation, 500 Oracle
Parkway, Redwood Shores, CA 94065, May 2021.

[Pas22] Calinel Pasteanu. Oracle Celebrates the Java Card Forum’s 25th Anniversary. Oct. 2022. url:
https://blogs.oracle.com/java/post/java-card-forum-25-years-anniversary
(visited on 07/07/2025).

[PSF22] Gwendal Patat, Mohamed Sabt, and Pierre-Alain Fouque. “Exploring Widevine for Fun
and Profit”. In: Proceedings of the IEEE Symposium on Security and Privacy. San Francisco,
CA, USA: IEEE Computer Society, May 2022, pp. 277–288. doi: 10.1109/SPW54247.2022.
9833867.

[Pay19] Payment Card Industry.Contactless Payments on COTS (CPoC™). Version 1.0. Dec. 2019. url:
https://listings.pcisecuritystandards.org/documents/Contactless_Payments_
on_COTS-Security_and_Test_Requirements-v1.0.pdf (visited on 07/07/2025).

https://www.commoncriteriaportal.org/files/ppfiles/pp_md_v3.1.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp_md_v3.1.pdf
https://www.commoncriteriaportal.org/files/ppfiles/PP_APP_V1.4_VR.pdf
https://www.commoncriteriaportal.org/files/ppfiles/PP_APP_V1.4_VR.pdf
https://www.commoncriteriaportal.org/files/epfiles/st_vid11124-vr.pdf
https://www.commoncriteriaportal.org/files/epfiles/st_vid11124-vr.pdf
https://doi.org/10.1145/3133956.3133969
https://github.com/SpinalHDL/NaxRiscv
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cv32e40s
https://github.com/openhwgroup/cv32e40s
https://opentitan.org/book/doc/use_cases/
https://opentitan.org/book/doc/use_cases/
https://blogs.oracle.com/java/post/java-card-forum-25-years-anniversary
https://doi.org/10.1109/SPW54247.2022.9833867
https://doi.org/10.1109/SPW54247.2022.9833867
https://listings.pcisecuritystandards.org/documents/Contactless_Payments_on_COTS-Security_and_Test_Requirements-v1.0.pdf
https://listings.pcisecuritystandards.org/documents/Contactless_Payments_on_COTS-Security_and_Test_Requirements-v1.0.pdf


78 Bibliography

[Pay20] Payment Card Industry. Software-based PIN Entry on COTS (SPoC). June 2020. url: https:
//www.pcisecuritystandards.org/standards/software-based-pin-entry-on-
cots-spoc/ (visited on 07/07/2025).

[Pet+15] Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-Louis Cayrel, and Viktor
Fischer. “Countermeasure against the SPA attack on an embedded McEliece cryptosystem”.
In: Proceedings of 25th IEEE International Conference Radioelektronika (MAREW). Pardubice,
Czech Republic, Apr. 2015, pp. 462–466. doi: 10.1109/RADIOELEK.2015.7129055.

[Pic+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. “SoK: Deep
Learning-based Physical Side-channel Analysis”. In: ACM Computing Surveys 55.11 (2023),
227:1–227:35. doi: 10.1145/3569577.

[Pot+14] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil. “Lazart: A Symbolic
Approach for Evaluation the Robustness of Secured Codes against Control Flow Injections”.
In: Proceedings of the 7th IEEE International Conference on Software Testing, Verification and
Validation, (ICST). Cleveland , Ohio, USA: IEEE Computer Society, Mar. 2014, pp. 213–222.
doi: 10.1109/ICST.2014.34.

[Pro+19] Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majéric, and Albert Cohen. “A
First ISA-Level Characterization of EM Pulse Effects on Superscalar Microarchitectures:
A Secure Software Perspective”. In: Proceedings of the 14th International Conference on
Availability, Reliability and Security (ARES). Canterbury, UK: ACM, Aug. 2019, 7:1–7:10. doi:
10.1145/3339252.3339253.

[Ram23] Rambus Press. Hardware Root of Trust: Everything you need to know. July 2023. url: https:
//www.rambus.com/blogs/hardware-root-of-trust/ (visited on 07/07/2025).

[Rao22] Anil Rao. Rising to the Challenge. Data Security with Intel Confidential Computing. Jan.
2022. url: https://community.intel.com/t5/Blogs/Products-and-Solutions/
Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/
post/1353141 (visited on 07/07/2025).

[RBL12] Tiana Razafindralambo, Guillaume Bouffard, and Jean-Louis Lanet. “A Friendly Framework
for Hidding fault enabled virus for Java Based Smartcard”. In: Proceedings of the 26th
Annual Conference on Data and Applications Security and Privacy (DBSec). Ed. by Nora
Cuppens-Boulahia, Frédéric Cuppens, and Joaqu ín García-Alfaro. Vol. 7371. Lecture Notes
in Computer Science. Paris, France: Springer, July 2012, pp. 122–128. doi: 10.1007/978-3-
642-31540-4_10.

[Raz+12] Tiana Razafindralambo, Guillaume Bouffard, Bhagyalekshmy N. Thampi, and Jean-Louis
Lanet. “A Dynamic Syntax Interpretation for Java Based Smart Card to Mitigate Logical
Attacks”. In: Proceedings of the International Conference on Recent Trends in Computer
Networks and Distributed Systems Security (SNDS). Trivandrum, India, Oct. 2012, pp. 185–
194. doi: 10.1007/978-3-642-34135-9_19.

[Raz11] Razkar. The Reset Glitch Hack - A New Exploit on Xbox 360. Aug. 2011. url: https://www.
logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-
xbox-360-en.html (visited on 07/07/2025).

[Ric+21] Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir Moradi, and Tim
Güneysu. “FIVER - Robust Verification of Countermeasures against Fault Injections”. In:
IACR Transactions on Cryptographic Hardware and Embedded Systems 2021.4 (Sept. 2021),
pp. 447–473. doi: 10.46586/TCHES.V2021.I4.447-473.

https://www.pcisecuritystandards.org/standards/software-based-pin-entry-on-cots-spoc/
https://www.pcisecuritystandards.org/standards/software-based-pin-entry-on-cots-spoc/
https://www.pcisecuritystandards.org/standards/software-based-pin-entry-on-cots-spoc/
https://doi.org/10.1109/RADIOELEK.2015.7129055
https://doi.org/10.1145/3569577
https://doi.org/10.1109/ICST.2014.34
https://doi.org/10.1145/3339252.3339253
https://www.rambus.com/blogs/hardware-root-of-trust/
https://www.rambus.com/blogs/hardware-root-of-trust/
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://doi.org/10.1007/978-3-642-31540-4_10
https://doi.org/10.1007/978-3-642-31540-4_10
https://doi.org/10.1007/978-3-642-34135-9_19
https://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html
https://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html
https://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html
https://doi.org/10.46586/TCHES.V2021.I4.447-473


Bibliography 79

[Riv+15] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean- Luc Danger, Julien Bringer, and Laurent
Sauvage. “High precision fault injections on the instruction cache of ARMv7-M architec-
tures”. In: Proceedings of the IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). Washington, District of Columbia, USA: IEEE Computer Society, May
2015, pp. 62–67. isbn: 978-1-4673-7420-0. doi: 10.1109/HST.2015.7140238.

[Roc+21] Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent Imbert. “A Side Journey To
Titan”. In: Proceedings of the 30th USENIX Security Symposium. Ed. by Michael D. Bailey
and Rachel Greenstadt. USENIX Association, Aug. 2021, pp. 231–248.

[Ros21] Ever Atilano Rosales. “Security of the Secure Boot against Fault Attacks”. Master’s thesis.
Paris, France: Université Paris 6, Sept. 2021.

[Rot24] Thomas Roth. “ACE Up the Sleeve: Hacking Into Apple’s New USB-C Controller”. In: (Dec.
2024). url: https://media.ccc.de/v/38c3-ace-up-the-sleeve-hacking-into-
apple-s-new-usb-c-controller (visited on 07/07/2025).

[Rou+19] Gauvain Tanguy Henri Gabriel Isidore Roussel-Tarbouriech, Noel Menard, Tyler True,
TiniVi, and Reisyukaku. “Methodically Defeating Nintendo Switch Security”. In: CoRR
abs/1905.07643 (June 2019). arXiv: 1905.07643.

[SAM24] SAMSUNG Electronics Co. Ltd. STRONGV4P00 of S5E9945 with Specific IC Dedicated Soft-
ware. NSCIB-CC-2300085-02. Version 1.0.Mar. 2024. url: https://www.commoncriteriaportal.
org/nfs/ccpfiles/files/epfiles/NSCIB-CC-2300085-01-ST_Lite_v0.1.pdf (vis-
ited on 07/07/2025).

[SFL13] Aymerick Savary, Marc Frappier, and Jean-Louis Lanet. “Detecting Vulnerabilities in Java-
Card Bytecode Verifiers UsingModel-Based Testing”. In: Proceedings of the 10th International
Conference on Integrated Formal Methods (IFM). Ed. by Einar Broch Johnsen and Luigia
Petre. Vol. 7940. Lecture Notes in Computer Science. Turku, Finland: Springer, June 2013,
pp. 223–237. isbn: 978-3-642-38612-1. doi: 10.1007/978-3-642-38613-8_16.

[Sch+24] S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam, D. Genkin, A. Miller, E. Ronen,
Y. Yarom, and C. Garman. “SoK: SGX.Fail: How Stuff Gets eXposed”. In: Proceedings of the
IEEE Symposium on Security and Privacy. Los Alamitos, CA, USA: IEEE Computer Society,
May 2024, pp. 248–248. doi: 10.1109/SP54263.2024.00260.

[Sch+23a] Pasquale Davide Schiavone, Simone Machetti, Miguel Peón Quirós, Jose Miranda, Benoît W.
Denkinger, Thomas Christoph Müller, Ruben Rodríguez, Saverio Nasturzio, and David
Atienza Alonso. “X-HEEP: An Open-Source, Configurable and Extendible RISC-V Microcon-
troller”. In: Proceedings of the 20th ACM International Conference on Computing Frontiers
(CF). Ed. by Andrea Bartolini, Kristian F. D. Rietveld, Catherine D. Schuman, and Jose
Moreira. Bologna, Italy: ACM, May 2023, pp. 379–380. doi: 10.1145/3587135.3591431.

[Sch05] Martin Schoeberl. “JOP: A Java Optimized Processor for Embedded Real-Time Systems”.
PhD thesis. Vienna University of Technology, 2005. url: https://www.jopdesign.com/
thesis/thesis.pdf (visited on 07/07/2025).

[Sch+23b] David Schrammel, Moritz Waser, Lukas Lamster, Martin Unterguggenberger, and Stefan
Mangard. “SPEAR-V: Secure and Practical Enclave Architecture for RISC-V”. In: Proceedings
of the ACM Asia Conference on Computer and Communications Security (AsiaCCS). Ed. by
Joseph K. Liu, Yang Xiang, Surya Nepal, and Gene Tsudik. Melbourne, VIC, Australia: ACM,
July 2023, pp. 457–468. doi: 10.1145/3579856.3595784.

https://doi.org/10.1109/HST.2015.7140238
https://media.ccc.de/v/38c3-ace-up-the-sleeve-hacking-into-apple-s-new-usb-c-controller
https://media.ccc.de/v/38c3-ace-up-the-sleeve-hacking-into-apple-s-new-usb-c-controller
https://arxiv.org/abs/1905.07643
https://www.commoncriteriaportal.org/nfs/ccpfiles/files/epfiles/NSCIB-CC-2300085-01-ST_Lite_v0.1.pdf
https://www.commoncriteriaportal.org/nfs/ccpfiles/files/epfiles/NSCIB-CC-2300085-01-ST_Lite_v0.1.pdf
https://doi.org/10.1007/978-3-642-38613-8_16
https://doi.org/10.1109/SP54263.2024.00260
https://doi.org/10.1145/3587135.3591431
https://www.jopdesign.com/thesis/thesis.pdf
https://www.jopdesign.com/thesis/thesis.pdf
https://doi.org/10.1145/3579856.3595784


80 Bibliography

[SGD08] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. “Practical Setup Time Violation
Attacks on AES”. In: Proceedings of the 7th European Dependable Computing Conference
(EDCC). Kaunas, Lithuania: IEEE Computer Society, May 2008, pp. 91–96. doi: 10.1109/
EDCC-7.2008.11.

[Sil24] Mário da Silva Araújo. “Security analysis of open-source RISC-V processors”. Master’s
thesis. Gardanne, France: École des Mines de Saint-Étienne, Sept. 2024.

[Sim20] Boris Simunovic. “Security Analysis of the ISO-7816 Stack”. Master’s thesis. Valence, France:
ESISAR, Sept. 2020.

[Sir99] Emin Gü Sirer. “Testing Java Virtual Machines: An Experience Report on Automatically
Testing Java Virtual Machines”. In: Proceedings of the International Conference on Software
Testing And Review. San Jose, California, Nov. 1999.

[Slu+23] pcy Sluys, Lennert Wouters, Benedikt Gierlichs, and Ingrid Verbauwhede. “An In-Depth
Security Evaluation of the Nintendo DSi Gaming Console ”. In: Proceedings of the 22nd
International Smart Card Research and Advanced Applications (CARDIS) Conference, Revised
Selected Papers. Ed. by Shivam Bhasin and Thomas Roche. Vol. 14530. Lecture Notes in
Computer Science. Amsterdam, The Netherlands: Springer, Nov. 2023, pp. 23–42. doi:
10.1007/978-3-031-54409-5_2.

[SCW19] Jinho Song, Chaeho Cho, and Yoojae Won. “Analysis of operating system identification
via fingerprinting and machine learning”. In: Computers & Electrical Engineering 78 (2019),
pp. 1–10. doi: 10.1016/j.compeleceng.2019.06.012.

[Sve+22] Petr Svenda, Rudolf Kvasnovský, Imrich Nagy, and Antonin Dufka. “JCAlgTest: Robust
Identification Metadata for Certified Smartcards ”. In: Proceedings of the 19th International
Conference on Security and Cryptography (SECRYPT). Ed. by Sabrina De Capitani di Vimer-
cati and Pierangela Samarati. Lisbon, Portugal: SCITEPRESS, July 2022, pp. 597–604. doi:
10.5220/0011294000003283.

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. “CLKSCREW: Exposing the
Perils of Security-Oblivious Energy Management”. In: Proceedings of the 26th USENIX
Security Symposium. Ed. by Engin Kirda and Thomas Ristenpart. Vancouver, BC, Canada:
USENIX Association, Aug. 2017, pp. 1057–1074.

[Tho22] Romain Thomas. “DroidGuard: A Deep Dive into SafetyNet”. In: Symposium sur la sécurité
des technologies de l’information et des communications (SSTIC) (June 2022). url: https:
//www.sstic.org/2022/presentation/droidguard_a_deep_dive_into_safetynet/
(visited on 07/07/2025).

[TM17] Niek Timmers and Cristofaro Mune. “Escalating Privileges in Linux Using Voltage Fault
Injection”. In: Proceedings of the Workshop on Fault Diagnosis and Tolerance in Cryptography,
(FDTC). Taipei, Taiwan: IEEE Computer Society, Sept. 2017, pp. 1–8. doi: 10.1109/FDTC.
2017.16.

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. “Controlling PC on ARM Using Fault
Injection”. In: Proceedings of the Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC). Santa Barbara, California, USA: IEEE Computer Society, Aug. 2016, pp. 25–35. isbn:
978-1-5090-1108-7. doi: 10.1109/FDTC.2016.18.

[Tol24] Simon Tollec. “Formal verification of processor microarchitecture to analyze system security
against fault attacks”. PhD thesis. Saclay, France: Université Paris-Saclay, Nov. 2024.

https://doi.org/10.1109/EDCC-7.2008.11
https://doi.org/10.1109/EDCC-7.2008.11
https://doi.org/10.1007/978-3-031-54409-5_2
https://doi.org/10.1016/j.compeleceng.2019.06.012
https://doi.org/10.5220/0011294000003283
https://www.sstic.org/2022/presentation/droidguard_a_deep_dive_into_safetynet/
https://www.sstic.org/2022/presentation/droidguard_a_deep_dive_into_safetynet/
https://doi.org/10.1109/FDTC.2017.16
https://doi.org/10.1109/FDTC.2017.16
https://doi.org/10.1109/FDTC.2016.18


Bibliography 81

[Tol+23] Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann, and Mathieu Jan.
“�ARCHIFI: Formal Modeling and Verification Strategies for Microarchitectural Fault
Injections”. In: Proceedings of the Formal Methods in Computer-Aided Design (FMCAD). Ed.
by Alexander Nadel and Kristin Yvonne Rozier. Ames, IA , USA: IEEE, Oct. 2023, pp. 101–109.
doi: 10.34727/2023/ISBN.978-3-85448-060-0_18.

[Tol+24] Simon Tollec, Vedad Hadzic, Pascal Nasahl, Mihail Asavoae, Roderick Bloem, Damien
Couroussé, Karine Heydemann, Mathieu Jan, and Stefan Mangard. “Fault-Resistant Parti-
tioning of Secure CPUs for System Co-Verification against Faults”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2024.4 (Sept. 2024), pp. 179–204. doi:
10.46586/TCHES.V2024.I4.179-204.

[Tou22] Bill Toulas. New Intel chips won’t play Blu-ray disks due to SGX deprecation. Jan. 2022. url:
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-
blu-ray-disks-due-to-sgx-deprecation/ (visited on 07/07/2025).

[TB25] Philippe Trébuchet and Guillaume Bouffard. “300 secondes chrono: prise de contrôle d’un
infodivertissement automobile à distance”. In: Symposium sur la sécurité des technologies de
l’information et des communications (SSTIC). June 2025.

[Tro17] Thomas Trouchkine. “Hardware Implementation of a Java Card Virtual Machine”. Master’s
thesis. Gardanne, France: École des Mines de Saint-Étienne, Sept. 2017.

[Tro21] Thomas Trouchkine. “System-on-Chip Physical Security Evaluation”. PhD thesis. Grenoble,
France: Université Grenoble Alpes, Mar. 2021.

[TBC19] Thomas Trouchkine, Guillaume Bouffard, and Jessy Clédière. “Fault Injection Characteri-
zation on Modern CPUs”. In: Proceedings of the 13th International Conference Information
Security Theory and Practice (WISTP). Ed. by Maryline Laurent and Thanassis Giannetsos.
Vol. 12024. Lecture Notes in Computer Science. Paris, France: Springer, Dec. 2019, pp. 123–
138. doi: 10.1007/978-3-030-41702-4_8.

[TBC21] Thomas Trouchkine, Guillaume Bouffard, and Jessy Clédière. “EM Fault Model Characteri-
zation on SoCs: From Different Architectures to the Same Fault Model”. In: Proceedings of
the 18th Workshop on Fault Detection and Tolerance in Cryptography (FDTC). Milan, Italy:
IEEE, Sept. 2021, pp. 31–38. doi: 10.1109/FDTC53659.2021.00014.

[Tro+21] Thomas Trouchkine, Sébanjila Kevin Bukasa, Mathieu Escouteloup, Ronan Lashermes, and
Guillaume Bouffard. “Electromagnetic fault injection against a complex CPU, toward new
micro-architectural fault models”. In: Journal of Cryptographic Engineering (JCEN) (Mar.
2021). doi: 10.1007/s13389-021-00259-6.

[Tur96] Jim Turley. “Sun reveals first Java processor core”. In: Microprocessor Report 10.14 (1996),
pp. 28–31.

[Vas+17] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle Morisset, and Sébastien
Ermeneux. “Laser-Induced Fault Injection on Smartphone Bypassing the Secure Boot”. In:
Proceedings of the Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). aipei,
Taiwan: IEEE Computer Society, Sept. 2017, pp. 41–48. doi: 10.1109/FDTC.2017.18.

[Vas+20] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle Morisset, and Sébastien
Ermeneux. “Laser-Induced Fault Injection on Smartphone Bypassing the Secure Boot-
Extended Version”. In: IEEE Transactions on Computers 69.10 (Oct. 2020), pp. 1449–1459.
doi: 10.1109/TC.2018.2860010.

[Vin15] Guillaume Vinet. “Compromission de carte à puce via la couche protocolaire ISO 7816-3”.
In: Symposium sur la sécurité des technologies de l’information et des communications (SSTIC).
Rennes, France, June 2015.

https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_18
https://doi.org/10.46586/TCHES.V2024.I4.179-204
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://doi.org/10.1007/978-3-030-41702-4_8
https://doi.org/10.1109/FDTC53659.2021.00014
https://doi.org/10.1007/s13389-021-00259-6
https://doi.org/10.1109/FDTC.2017.18
https://doi.org/10.1109/TC.2018.2860010


82 Bibliography

[Wer+23] Christian Werling, Niclas Kühnapfel, Hans Niklas Jacob, and Oleg Drokin. “Back in the
Driver’s Seat: Recovering Critical Data from Tesla Autopilot Using Voltage Glitching”. In:
Proceedings of the 37th Chaos Communication Congress (Dec. 2023). url: https://media.
ccc.de/v/37c3-12144-back_in_the_driver_s_seat_recovering_critical_data_
from_tesla_autopilot_using_voltage_glitching.

[Wer+19] Mario Werner, Robert Schilling, Thomas Unterluggauer, and Stefan Mangard. “Protecting
RISC-V Processors against Physical Attacks”. In: Proceedings of the Design, Automation &
Test in Europe Conference & Exhibition (DATE). Ed. by Jürgen Teich and Franco Fummi.
Florence, Italy: IEEE, Mar. 2019, pp. 1136–1141. doi: 10.23919/DATE.2019.8714811.

[Wid17] DRM Widevine. “Architecture Overview”. In: Google-Confidential. Google Inc (2017).

[Wik24a] Wikipedia. Commercial off-the-shelf. May 2024. url: https://en.wikipedia.org/wiki/
Commercial_off-the-shelf (visited on 07/07/2025).

[Wik24b] Wikipedia. ISO/IEC 7816. Aug. 2024. url: https://en.wikipedia.org/wiki/ISO/IEC_
7816 (visited on 07/07/2025).

[Wik24c] Wikipedia. Microarchitecture. May 2024. url: https : / / en . wikipedia . org / wiki /
Microarchitecture (visited on 07/07/2025).

[Wik24d] Wikipedia. Protection Profile. June 2024. url: https : / / en . wikipedia . org / wiki /
Protection_Profile (visited on 07/07/2025).

[Woo+14] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore, Jonathan
Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert M. Norton, and Michael
Roe. “The CHERI capability model: Revisiting RISC in an age of risk”. In: Proceedings of the
ACM/IEEE 41st International Symposium on Computer Architecture (ISCA). Minneapolis, MN,
USA: IEEE Computer Society, June 2014, pp. 457–468. doi: 10.1109/ISCA.2014.6853201.

[Yah23] Taro Yahagi.Anti-cheat and Anti-PiracyMeasures in PCGames Recommendations for In-House
Production. Oct. 2023. url: https://www.capcom-games.com/coc/2023/en/session/04/
(visited on 07/07/2025).

[Yan+15] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. “A Study on Power Side Channels on
Mobile Devices”. In: Proceedings of the 7th Asia-Pacific Symposium on Internetware. Ed. by
Hong Mei, Jian Lü, Xiaoxing Ma, Qianxiang Wang, Gang Yin, and Xiaofei Liao. Wuhan,
China: ACM, Nov. 2015, pp. 30–38. doi: 10.1145/2875913.2875934.

[YSW18] Bilgiday Yuce, Patrick Schaumont, andMarcWitteman. “Fault Attacks on Secure Embedded
Software: Threats, Design, and Evaluation”. In: Journal of Hardware and Systems Security
2.2 (2018), pp. 111–130. doi: 10.1007/s41635-018-0038-1.

[ZDS23] Lukás Zaoral, Antonin Dufka, and Petr Svenda. “The Adoption Rate of JavaCard Features
by Certified Products and Open-Source Projects”. In: Proceedings of the 22nd International
Conference Smart Card Research and Advanced Applications (CARDIS). Ed. by Shivam Bhasin
and Thomas Roche. Vol. 14530. Lecture Notes in Computer Science. Amsterdam, The
Netherlands: Springer, Nov. 2023, pp. 169–189. doi: 10.1007/978-3-031-54409-5_9.

[Zel+08] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. “Hardware
Enforcement of Application Security Policies Using Tagged Memory”. In: Proceedings of the
8th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Ed. by
Richard Draves and Robbert van Renesse. San Diego, California, USA: USENIX Association,
Dec. 2008, pp. 225–240. url: https://www.usenix.org/events/osdi08/tech/full_
papers/zeldovich/zeldovich.pdf (visited on 07/07/2025).

https://media.ccc.de/v/37c3-12144-back_in_the_driver_s_seat_recovering_critical_data_from_tesla_autopilot_using_voltage_glitching
https://media.ccc.de/v/37c3-12144-back_in_the_driver_s_seat_recovering_critical_data_from_tesla_autopilot_using_voltage_glitching
https://media.ccc.de/v/37c3-12144-back_in_the_driver_s_seat_recovering_critical_data_from_tesla_autopilot_using_voltage_glitching
https://doi.org/10.23919/DATE.2019.8714811
https://en.wikipedia.org/wiki/Commercial_off-the-shelf
https://en.wikipedia.org/wiki/Commercial_off-the-shelf
https://en.wikipedia.org/wiki/ISO/IEC_7816
https://en.wikipedia.org/wiki/ISO/IEC_7816
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Protection_Profile
https://en.wikipedia.org/wiki/Protection_Profile
https://doi.org/10.1109/ISCA.2014.6853201
https://www.capcom-games.com/coc/2023/en/session/04/
https://doi.org/10.1145/2875913.2875934
https://doi.org/10.1007/s41635-018-0038-1
https://doi.org/10.1007/978-3-031-54409-5_9
https://www.usenix.org/events/osdi08/tech/full_papers/zeldovich/zeldovich.pdf
https://www.usenix.org/events/osdi08/tech/full_papers/zeldovich/zeldovich.pdf


Bibliography 83

[Zha+18] Zhenkai Zhang, Zihao Zhan, Daniel Balasubramanian, Xenofon D. Koutsoukos, and Gabor
Karsai. “Triggering Rowhammer Hardware Faults on ARM: A Revisit”. In: Proceedings of
the 2018 Workshop on Attacks and Solutions in Hardware Security (ASHES@CCS). Ed. by
Chip-Hong Chang, Ulrich Rührmair, Daniel E. Holcomb, and Jorge Guajardo. Toronto, ON,
Canada: ACM, Oct. 2018, pp. 24–33. doi: 10.1145/3266444.3266454.

[Zho+22] Yadi Zhong, Ayush Jain, M. Tanjidur Rahman, Navid Asadizanjani, Jiafeng Xie, and Ujjwal
Guin. “AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking”. In: Journal of
Electronic Testing 38.5 (Nov. 2022), pp. 527–546. doi: 10.1007/S10836-022-06028-5.

https://doi.org/10.1145/3266444.3266454
https://doi.org/10.1007/S10836-022-06028-5


84 Bibliography



Appendix A

Curriculum vitæ

A.1 Administrative Information

Personal Information

Name: Guillaume Bouffard
Marital Status: Married
Nationality: French
Date of Birth: May 1, 1987

A.2 Professional Experience and Degrees

A.2.1 Professional Experience

Since Nov. 2014 Expert in Embedded Software Security
ANSSI, Paris

— Study of embedded systems security.

— Providing support to ANSSI beneficiaries.

— Technical support for security evaluations (Common Criteria, CPSN).

— Since 2023: Hardware and Software Architectures Lab (LAM)

— From 2014 to 2022: Hardware Security Lab (LSC)

2019 — 2024 Associate Researcher
Ecole Normale Supérieure (ENS), Computer Science Department, Security Team,
Paris
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A.2.2 Academic Degrees
2011 — 2014 PhD in Computer Science, Doctoral School S2IM, Limoges

Thesis conducted at the Xlim research institute under the supervision of Pr. Jean-
Louis Lanet
Title: A Generic Approach to Protect Java Card Smartcards Against Software
Attacks

— Erik Poll, President, Associate Professor, Radboud University, Netherlands

— David Naccache, Reviewer, Professor, ENS Paris: report in Appendix A.7.1

— Peter Ryan, Reviewer, Professor, University of Luxembourg: report in Ap-
pendix A.7.2

— Jean-Louis Lanet, Professor, INRIA

— Emmanuel Prouff, Examiner, HDR, ANSSI/Sorbonne University

— Eric Vétillard, Examiner, Oracle

The official defense report can be found in Appendix A.7.3. I received the PhD
Award of the CNRS “Objets intelligents sécurisés et Internet des objets”
initiative in 2015.

Smartcards are used in a variety of applications (payment, telephony, etc.). To
strengthen their security, Java technology was integrated into operating systems in
the 1990s, becoming the main application platform. Since these operating systems
are frequent attack targets, continuous adaptation of countermeasures is required.
We use Fault Tree Analysis, adapted to Java Card technology constraints, to en-
sure data and code integrity and confidentiality. Focusing on code integrity, we
discovered new vulnerabilities and proposed countermeasures that have a signifi-
cant impact on the security evaluations carried out by ITSEFs and contributed to
improving the security of products developed by industrial stakeholders.

2008 — 2010 Master’s Degree in Information Security, Mathematics, and Computer Sci-
ence (Information Security track – CRYPTIS)
Faculty of Science and Technology, University of Limoges

Year-end project: Analysis and transformation of binary code. Protection
of sensitive parts of binary code without access to the source code, carried out
during my internship at Technicolor. Sensitive instructions were replaced by a
communication mechanism with a USB dongle, which executed the protected
instructions and allowed the application to run only if the key was present.

The CRYPTIS Master’s Program trains specialists in the security of distributed
information systems, as well as in the development of secure software and hardware.
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https://p.lanet.free.fr/pmwiki-2.2.81/
https://www.cs.ru.nl/E.Poll/
https://securite.di.ens.fr/en/david-naccache/
https://www.uni.lu/en/people/peter-y-a-ryan/
https://p.lanet.free.fr/pmwiki-2.2.81/
https://www.linkedin.com/in/emmanuel-prouff-15857b7
https://www.linkedin.com/in/evetillard
https://www.sciences.unilim.fr/informatique/master-cryptis/
https://www.technicolor.com/
https://www.sciences.unilim.fr/informatique/master-cryptis/


A.3. Teaching 87

A.3 Teaching

Year Course Hours/session Total

From 2018 to 2024 Hardware to Software Security module at CY-Tech,
University of Cergy 28h/year 168h(6 years)

Since 2017 Cybersecurity of Embedded Systems training
program at École Polytechnique Executive
Education

3.5h/session 60h(7 years)

- Lecture on Embedded Software Security
From 2015 to 2018 Java Card and Global Platform module at ENSICAEN

7h/year 28h
(3 years) - Lecture on Java Card Platform Security
Since 2015

Teaching on behalf of the CFSSI:
(10 years)

- Course 10: Cryptography (Since 2025)
- Lecture on Cryptography in Secure Components 1.5h/session 1.5h

- Course 23: Security of Components (Until 2023)
- Lecture on Java Card Security 3.5h/session 31.5h

- Course 25: Embedded Systems Security (Since 2025)
- Lecture on Trusted Boot Chain 3.5h/session 3.5h

Total: 289h

A.3.1 Teaching Responsibilities
From 2018 to 2024, I was in charge of the “Hardware to Software Security” course unit at CY-Tech,

University of Cergy, for last-year students. This course, which hosted around sixty students split into
two groups, covered how the different layers of an information system work and the associated security
issues.

A.3.2 Expert Committee for the Recruitment of Associate Professors
2019: for the University of Cergy-Pontoise, position in CNU 27.

A.3.3 Participation in MOOCs
— Participation in the MOOC “Hardware Security: the Hardware Attacks” as an expert on hardware

attacks for ANSSI. The video is available on YouTube: Youtube Interview ANSSI (in French).

A.4 Research Activities at ANSSI

The objective of the ANSSI laboratories is to provide high-level expertise to all of the agency’s
beneficiaries. My duties revolve around three main and complementary areas:

https://cytech.cyu.fr
https://exed.polytechnique.edu/formations/data/cybersecurite-systemes-embarques
https://www.ensicaen.fr
https://cytech.cyu.fr
https://www.youtube.com/playlist?list=PLjXls-kqM6JC5dc6EXaGBNGFvh4UV0F1R
https://www.youtube.com/watch?v=ucm9hui5kpk


88 APPENDIX A. Curriculum vitæ

1. Expertise:

— Technical support for the operational teams at ANSSI.
— Technical support for the National Certification Center, an entity under ANSSI responsible

for overseeing and accrediting ITSEFs, as well as certifying products evaluated in France.
— Participation in the technical working groups of GlobalPlatform and JHAS, contributing to

the security evaluation methodologies for products.
— Technical collaboration with our foreign counterparts (such as BSI, NLNCSA) in the con-

text of security evaluations, the development of shared specifications, joint work, and the
enforcement of European regulations.

— Technical support for European projects (e.g., the European Digital Identity project) and
national projects (e.g., France Identité Numérique).

— Technical support for national and international audits of ITSEFs carried out within the
framework of the Common Criteria.

2. Research and Development (approximately 33% of my working time):

— Studying the security of embedded software, anticipating risks associated with software
and hardware attacks, and designing original countermeasures. This work is informed by
my expertise activities and, in turn, continuously enhances them.

— Supervising Ph.D. candidates and research interns.

3. Training:

— Designing and delivering training sessions for the CFSSI, a training center under ANSSI. These
sessions, which are also offered to other external audiences, directly leverage my expertise
and research activities, ensuring content that is relevant, up-to-date, and illustrated with
concrete examples.

— Participating in events that foster the dissemination of cybersecurity knowledge.

A.4.1 My Research Activities
My research focuses on the security of embedded software within the CoT. The CoT relies on a

secure architecture where each component, from the RoT to the TEE, ensures the reliability and integrity
of higher-level layers, while isolating less secure environments such as Android and other REEs, thus
protecting the overall system. An overview of my research activities is provided in Figure 1.3, and
detailed throughout this manuscript in subsequent chapters, notably Chapters 2 to 4.

Question 1: How are the local and platform security functions, provided by hardware RoTs,
designed and leveraged to reinforce security? My doctoral thesis [Bou14] focused on the security
of embedded software implementations in SEs. Subsequently, my research extended to the study of
hardware RoTs, examining their integration into a CoT from both the developer’s and user’s perspective.
The goal is to anticipate risks and ensure effective use of these critical security elements.

Question 2: How can a high level of security be guaranteed in TEEs, which offer a high-
performance environment for business application security functions? The integration of
TEEs into application processors, such as Arm TrustZone [Arm17], has strengthened the security of
sensitive applications by isolating their critical operations in a secure enclave. The certification of the
TEE protection profile by ANSSI [Glo20b] was a major step forward, although hardware attacks remain
insufficiently addressed. Yet these attacks, initially targeting hardware RoTs [Vas+20; TSW16], now
exploit the broader attack surface of application processors, making their protection more complex.

https://globalplatform.org/
https://www.sogis.eu/uk/detail_operation_en.html
https://www.bsi.bund.de
https://www.tuv-nederland.nl/
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://france-identite.gouv.fr/
https://www.commoncriteriaportal.org/
https://www.ssi.gouv.fr/administration/produits-et-prestataires-de-services-de-confiance/catalogue-des-stages-de-formation/
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Question 3: How can sensitive applications operate in the REE, an environment lacking security
features? In many cases, access to TEEs and hardware RoTs is restricted due to platform vendor
agreements. Sensitive applications thus have to run in the REE, where they are exposed to white-box
attacks [Cho+02]. Numerous software solutions protected by DRM mechanisms [Yah23; App16] or
proprietary solutions, notably for streaming or video games [Heu24], are deployed in this environment.
Even some critical payment applications are installed here, significantly increasing risks [Pay20]. The
scientific community strives to identify and analyze these vulnerabilities [Bar+22]. It is therefore
essential to evaluate the feasibility of using obfuscated applications as an alternative to RoTs in the REE,
in order to guide their adoption when the use of a RoT or TEE is not possible.

A.4.2 Past and Ongoing Scientific Collaborations

Participation in Funded Projects 1:

2025 — 2029 PTCC FORWARD
(48 months) Goal: ensure the resilience of hardware countermeasures by using formal verification

against physical attacks.
Partners: CEA (project leader), INRIA, Mines Saint-Étienne, Sorbonne Université,
ANSSI, Thales DIS, and Safran.
Contributions: selecting secure architectures, overseeing fault experiments, and
formalizing conclusions and perspectives.
Total grant: 1 226 500 euros / total budget: 2 213 450 euros

2023 — 2029 PEPR ARSENE
(60 months) Goal: accelerate the research, development, and demonstration of sovereign and

industrializable security solutions, using ASIC and FPGA demonstrators to test and
showcase research findings.
Partners: CEA (project leader), INRIA, CNRS, and ANSSI.
Participation in Work Package 1: Secure RISC-V: studying and validating protec-
tions against hardware attacks for a 32-bit core.
Total grant: 7 900 000 euros / total budget: 12 440 000 euros

Participation in Funded Projects as a Member of the Scientific Committee:

2021 — 2025 ANR TrustGW
(42 months) Goal: Develop a heterogeneous software-hardware architecture for a gateway that

can be dynamically reconfigured and trusted.
Partners: Lab-STICC (project leader), IRISA, IETR.
Total grant: 465 752 euros.

2021 — 2025 ANR Secure-V
(42 months) Goal: Design a secure, open, high-performance processor based on the RISC-V archi-

tecture.
Partners: IETR (project leader) (University of Nantes), LS2N (University of Nantes,
Centrale Nantes), IMS (University of Bordeaux), TRT (Thales), INVIA (Thales).
Total grant: 731 831 euros

1. ANSSI co-funds projects via the SGDSN, which restricts our involvement to in-house funding. This limits our direct
contributions but allows us to follow projects through a scientific committee and to develop parallel collaborations.

https://www.pepr-cyber-arsene.fr/
https://anr.fr/Projet-ANR-21-CE39-0005
https://anr.fr/Projet-ANR-21-CE39-0017
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2017 — 2020 FUI SecurIOT-2
(36 months) Goal: Develop a secure microcontroller for the next generation of IoT devices and

connected objects.
Partners: Tiempo Secure (project leader), Archos, Alpwise, Sensing Labs, Trusted
Objects, INRIA Rhone Alpes, University of Grenoble Alpes.
Total budget: 5 410 000 euros

2015 — 2018 FUI TEEVA
(36 months) Goal: Analyze the security level of TEE technologies and white-box cryptography

against software and hardware attacks on smartphone processors.
Partners: Gemalto (project leader), Trustonic, Phonesec, LIRMM/University of Mont-
pellier, ENSMSE Gardanne, LHC/University Saint Etienne.
Total budget: 3 161 000 euros

Collaborative Works

My research activities would not have been possible without the collaborations developed over the
course of my work. Below is a list, organized by institution, of external researchers with whom I have
had the opportunity to collaborate:

1. ANSSI

— Luc Bonnafoux: collaboration on hardware implementation security during the supervision
of Angie-Sofia Bikou and Guillaume P. internships.

— Patrick Haddad: collaboration on the design of a hardware JCVM on FPGA during the
supervision of Thomas Trouchkine’s internship.

— Valentin Houchouas and José Lopes Esteves: collaboration on the reproducibility of EMFI
experiments, with the goal of providing sufficient information in scientific publications to
allow third parties to reproduce the setups and results.

— Louiza Khati: collaboration on the security of disk encryption during the supervision of
Yanis Belkheyar’s internship.

— Philippe Trébuchet: collaboration on analyzing the cybersecurity of connected vehicles.

2. Arm

— Arnaud de Grandmaison: collaboration on software security against hardware attacks by
supervising Ever Atilano Rosales’s internship.

3. CEA/Leti

— Jessy Clédière: collaboration on characterizing the effects of fault injection attacks on
application SoCs. Supervised the Ph.D. of Thomas Trouchkine.

4. CEA/List

— Damien Couroussé and Mathieu Jan: collaboration on analyzing implementation security
against hardware attacks through formal approaches, by supervising the Ph.D. of Jonah Alle
Monne and the internship of Mário da Silva Araújo.

5. DGA-MI

— Rachid Dafali: studying the effects of fault injection attacks on micro-architecture. Partici-
pation in co-supervising the Ph.D. of Amélie Marotta.

https://www.pole-scs.org/projets/securiot-2-3/
https://www.pole-scs.org/projets/teeva/
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6. ENS

— David Naccache: studying software security in an uncontrolled execution environment.
Supervisor of the Ph.D. of Vincent Giraud.

7. IETR

— Jean-Christophe Prévotet: studying the security of TEEs against hardware attacks. Co-
supervisor of the Ph.D. of Gwenn Le Gonidec.

8. INRIA

— Ronan Lashermes (LHS) and Olivier Sentieys (TARAN): studying the effects of fault
injection attacks on micro-architecture. Co-supervisors of the Ph.D. of Amélie Marotta.

9. Sorbonne Université/LIP6

— Karine Heydemann: collaboration on software security against hardware attacks. We
worked together around the Ph.D. of Thomas Trouchkine and co-supervised Ever Atilano
Rosales’s internship (Arm).

10. Université Bretagne-Sud/Lab-STICC

— MariaMéndez Real: studying the security of TEEs against hardware attacks. Co-supervisor
of the Ph.D. of Gwenn Le Gonidec.

A.5 Scientific Responsibilities

A.5.1 Ph.D. Supervision

Co-supervised and Defended Theses

2021 — 2025 Amélie Marotta, Effects of synchronous clock glitch on the security of integrated circuits
Co-supervised with Olivier Sentieys (INRIA, director), Ronan Lashermes (INRIA, co-
director) and Rachid Dafali (DGA-MI)
Supervision rate: 25%. This thesis took place at INRIA in Rennes.
This thesis took place at INRIA in Rennes.
Doctoral School: Mathématiques, Télécommunications, Informatique, Signal, Sys-
tèmes, Électronique (ED 601 – MATISSE)
Specialty: Computer Science
Publication: [Mar+24]

2020 — 2024 Vincent Giraud, Security of Applications on Uncontrolled Systems: Risk Analysis, Protec-
tions, Challenges, and the Value of Trust in Off-the-shelf IT Products
Co-supervised with David Naccache (ENS, director)
Supervision rate: 75%. This thesis took place at Ingenico in Paris.
Doctoral School: Sciences Mathématiques de Paris Centre (ED 386 – SPMC)
Specialty: Computer Science
Publications: [GB23; GN23a; GN23b]
Patents: [Gir23a; Gir23b; Gir23c]
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2017 — 2021 Thomas Trouchkine, Physical Security Evaluation of SoCs
Co-supervised with Jessy Clédière (CEA/Leti, director)
Supervision rate: 75%. This thesis took place at ANSSI in Paris.
Doctoral School: Électronique, Électrotechnique, Automatique, Traitement du Signal
(ED 220 – EEATS)
Specialty: Nanoelectronics and Nanotechnologies
Publications: [TBC21; Tro+21; TBC19]

Ongoing Theses

Since 2024 Jonah Alle Monne, Formalization and Analysis of Countermeasures against Fault Injection
Attacks on Open-source Processors.
Co-supervised with Damien Couroussé (CEA/List, director) and Mathieu Jan (CEA/List,
co-director)
Supervision rate: 33%. This thesis is taking place at CEA/List in Grenoble.
Doctoral School: Mathématiques, Sciences et Technologies de l’Information, Informa-
tique (ED 217 – MSTII)
Specialty: Computer Science

Since 2023 Gwenn Le Gonidec, Securing RISC-V System-on-Chip against Energy-based Attacks
Co-supervised with Maria Méndez Real (Lab-STICC, director) and Jean-Christophe
Prévotet (INSA/IETR, co-director)
Supervision rate: 35%. This thesis is taking place at Lab-STICC in Lorient.
Doctoral School: Mathématiques & Sciences et Technologies de l’Information et de la
Communication en Bretagne Océane (ED 644 – MathSTIC Bretagne Océane)
Specialty: Electronics
Publication: [Gon+25]

A.5.2 Apprenticeship Supervision

2017 to 2020 Boris Simunovic: Security Analysis of the ISO-7816 Protocol Stack.

A.5.3 Internship Supervision
The internships I supervise, each lasting 6 months, are research internships at the Master 2 level.

2025 Guillaume P., Implementation of a security architecture on an Arm COTS SoC.
Co-supervised with Luc Bonnafoux (ANSSI/LAM).

2024 Angie-Sofia Bikou, Analysis of a Secure Component Architecture.
Co-supervision with Luc Bonnafoux (ANSSI/LAM).

2024 Mário da Silva Araújo, Security Analysis of RISC-V Processors in the Age of Open Source.
Co-supervision with Damien Couroussé (CEA/List), Mathieu Jan (CEA/List) and Simon Tollec
(CEA/List).

2022 Louisa Malki-Haegel, Measurement of Embedded Software Footprint.
2021 Ever Atilano Rosales, Securing Secure Boot Against Fault Injection Attacks.

Co-supervision with Arnaud de Grandmaison (Arm) and Karine Heydemann (Sorbonne
Université/LIP6). This work was presented at the Linaro 2021 conference 2.

2020 Yanis Belkheyar, Authenticated Disk Encryption.



A.5. Scientific Responsibilities 93

Co-supervision with Louiza Khati (ANSSI/Cryptography Lab).
2019 Vincent Giraud, Secure Implementation of GlobalPlatform for Java Card Platforms.
2017 Thomas Trouchkine, Development of a Native Java Card Processor on a Virtex 5 FPGA.

Co-supervision with Patrick Haddad (ANSSI/LSC).
2016 Léo Gaspard, Implementation of a Secure OS for Java Card Platforms.

Part of this work was published at SSTIC 2018 [BG18].

A.5.4 Scientific Involvement

Conference Organization

Since 2023 Member of the scientific committee of the European Cyber Week conference, participat-
ing in the BITFLIP by DGA workshop, organized by the DGA Maîtrise de l’Information.
This event highlights recent advances in failure analysis for digital systems, covering
both radiation hardening and protection against intentional disruption attacks. This
conference is held every 2 years, and we welcome around 80 on-site participants

Since 2018 Co-organization of the Thematic Days on Fault Injection Attacks (JAIF), gathering
annually the French research community working on fault analysis of modern system.
These workshops aim to consolidate knowledge and support comprehensive research,
gathering around 130 participants on-site, and a similar number attending remotely.
I organized the 2020 and 2021 editions at ENS Paris.

Session Chair in Conferences

2021 Session chair for short papers at FDTC 2021.
2016 Session chair for Java Card at CARDIS 2016.

Journal Article Reviewer

2024 ACM Transactions on Embedded Computing Systems.
2023 International Journal of Information and Computer Security.
2020 ACM Transactions on Privacy and Security.
2020 ACM Digital Threats: Research and Practice: Special issue on Threats of Hardware Security.

Program Committee Membership and Reviewing

2026 CASCADE: Workshop on Embedded System Security.
Since 2022 FDTC: Workshop on Fault Diagnosis and Tolerance in Cryptography.
Since 2018 SecITC: International Conference on Information Technology and Communication

Security
2024 DRIN: Workshop on DevSecOps in Resource-Constrained IoT Networks

2. Ever Atilano, Arnaud Grandmaison, “Assessing the effectiveness of MCUBoot protections against fault injection at-
tacks”. In: Linaro Connect Virtual Connect Fall (Sept. 2021). url: https : / / resources . linaro . org / en / resource /
ibFLwRzhpZjBfvY5jhPypJ (visited on 07/07/2025).

https://www.european-cyber-week.eu/
https://www.european-cyber-week.eu/bitflip
https://jaif.io
https://fdtc.deib.polimi.it/FDTC21
https://cardis.org/
https://dl.acm.org/journal/tecs
https://www.inderscience.com/jhome.php?jcode=ijics
https://dl.acm.org/journal/tops
https://dl.acm.org/journal/dtrap
https://cascade-conference.org/
https://fdtc.deib.polimi.it/FDTC/
https://www.secitc.eu/
https://tinypart.github.io/IEEE-LCN-2024-Special-Track-DRIN/
https://resources.linaro.org/en/resource/ibFLwRzhpZjBfvY5jhPypJ
https://resources.linaro.org/en/resource/ibFLwRzhpZjBfvY5jhPypJ
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2021 SILM: Workshop on the Security of Software/Hardware Interfaces.
2020 TrustCom: IEEE International Conference on Trust, Security and Privacy in Computing

and Communications
2015 CARDIS: Smart Card Research and Advanced Application Conference

External Conference Reviewer

2025 ICCAD: The 2025 International Conference on Computer-Aided Design: Track 1.8 Architecture
and Systems for Security

2022 CARDIS: Smart Card Research and Advanced Application Conference
2020 CHES: Conference on Cryptographic Hardware and Embedded Systems
2019 CARDIS: Smart Card Research and Advanced Application Conference
2017 CHES: Conference on Cryptographic Hardware and Embedded Systems
2017 C2SI: Codes, Cryptology and Information Security
2015 PROOFS: International Workshop on Security Proofs for Embedded Systems

Expert Assessments

I served as an expert in 2020 and 2021 for the French National Research Agency (ANR), evaluating
projects under the “CE39 — Global Security, Cybersecurity” call for proposals.

Other Activities

Since 2019 Participation in the international competition CSAW as a judge for the Apply Research
Competition challenge.

A.5.5 Participation in Thesis Defense Committees as Examiner

2024 Antoine Gicquel, Vulnerability Analysis of Binary Programs Under Multiple Precise Faults:
Metrics and Countermeasures. Co-supervisors: Damien Hardy, Karine Heydemann, and Erven
Rohou.

2024 Simon Tollec, Formal Micro-Architecture Verification for Fault Injection Effects and Countermea-
sure Robustness. Co-supervisors: Mihail Asavoae, Damien Couroussé, Karine Heydemann,
and Mathieu Jan.

2023 Soline Ducousso, Transitioning from Safety to Security in Code Analysis: the Attacker Model.
Co-supervisors: Sébastien Bardin and Marie-Laure Potet.

2022 Vincent Werner, Optimizing the Identification and Exploitation of Fault Injection Vulnerabilities
in Microcontrollers. Co-supervisors: Laurent Maingault and Marie-Laure Potet.

2021 Youssef Inedjaren, Contribution to Intelligent Transport Systems: Securing Communications in
Vehicular Ad Hoc Networks. Co-supervisors: Jean-Pierre Barbot, Mohamed Maachaoui, and
Besma Zeddini.

2019 Sebanjila Kevin Bukasa, Vulnerability Analysis of Embedded Systems Against Physical Attacks.
Co-supervisors: Jean-Louis Lanet and Ronan Lashermes.

2018 Damien Marion, Multidimensionality of Models and Data in Side-Channel Analysis. Co-
supervisors: Adrien Facon and Sylvain Guilley.

2018 Abdelhak Mesbah, Reconstructing Execution Traces from Fragments by Using Constraint Solvers.
Co-supervisors: Jean-Louis Lanet and Mohamed Mezghiche.

https://silm-workshop-2021.inria.fr/
https://ieee-trustcom.org/TrustCom2020/
https://cardis.org/
https://2025.iccad.com/
https://cardis.org/
https://ches.iacr.org/
https://cardis.org/
https://ches.iacr.org/
https://www.c2si-conference.org/2017/
https://www.proofs-workshop.org/2015/
https://www.agence-nationale-recherche.fr/
https://www.csaw.io/


A.5. Scientific Responsibilities 95

2016 Tiana Razafindralambo, Security of Embedded Microcontrollers: from Smart Cards to Mobile
Devices. Co-supervisors: Christophe Clavier and Jean-Louis Lanet.

2016 Louis Dureuil, Code Analysis and Evaluation Processes of Secure Components Against Fault
Injection. Co-supervisors: Philippe de Choudens and Marie-Laure Potet.

A.5.6 Participation in Mid-term Ph.D. Evaluations
— Mathieu Escouteloup (2019 & 2020)

— Léopold Ouairy (2018 & 2019)

A.5.7 Scientific Publications
This section lists the publications I have co-authored during and after my doctoral thesis [Bou14].

Table A.14 summarizes and enumerates a selection of my scientific publications.

Number and References
Type of Publication After my Ph.D. During my Ph.D.

(after 2014) (before 2014)

Book Chapters – 2 [BBI13; BL12]
Journal Articles 3 [Gon+25; Tro+21; Idr+17] 4 [BL15; BL14b; BTL14; Dub+13]
International Conferences 6 [Mar+24; GB23; DB21; TBC21;

TBC19; LB15]
10 [Bou+14; Lan+14; Bou+13a;

BTL13a; BTL13b; Dub+12;
RBL12; Raz+12; BIL11; Bou+11]

National Conferences 3 [TB25; BG18; LB16] 4 [BL14a; Bou+13b; Ham+12;
Nou+09]

Table A.14: Listing of published works. A digital copy of each article is available on HAL and on my
personal website.

The full list of my publications can be found in section A.6. Below, I highlight seven key publications
that illustrate the quality and breadth of my research in computer security.

[Gon+25] Gwenn Le Gonidec, Guillaume Bouffard, Jean-Christophe Prévotet, Maria Méndez Real,
“Do Not Trust Power Management: A Survey on Internal Energy-based Attacks Circum-
venting Trusted Execution Environments Security Properties”. In: ACM Transactions on
Embedded Computing Systems 24.4 (July 2025). issn: 1539-9087. doi: 10.1145/3735556.

[TB25] Philippe Trébuchet, Guillaume Bouffard, “300 secondes chrono: prise de contrôle d’un
infodivertissement automobile à distance”. In: Symposium sur la sécurité des technologies de
l’information et des communications (SSTIC). June 2025.

[Mar+24] Amélie Marotta, Ronan Lashermes, Guillaume Bouffard, Olivier Sentieys, Rachid Dafali,
“Characterizing and Modeling Synchronous Clock-Glitch Fault Injection”. In: Proceedings
of the 15th International Workshop on Constructive Side-Channel Analysis and Secure Design
(COSADE). Ed. by Romain Wacquez and Naofumi Homma. Vol. 14595. Lecture Notes in
Computer Science. Gardanne, France: Springer, Apr. 2024, pp. 3–21. doi: 10.1007/978-3-
031-57543-3_1.

https://cv.hal.science/guillaume-bouffard
https://www.bouffard.info/publications/
https://doi.org/10.1145/3735556
https://doi.org/10.1007/978-3-031-57543-3_1
https://doi.org/10.1007/978-3-031-57543-3_1
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[DB21] Jean Dubreuil,GuillaumeBouffard, “PhiAttack - Rewriting the Java Card Class Hierarchy”.
In: Proceedings of the 20th International Conference on Smart Card Research and Advanced
Applications (CARDIS). Ed. by Vincent Grosso and Thomas Pöppelmann. Vol. 13173. Lecture
Notes in Computer Science. Lübeck, Germany: Springer, Nov. 2021, pp. 275–288. doi:
10.1007/978-3-030-97348-3_15.

[TBC21] Thomas Trouchkine, Guillaume Bouffard, Jessy Clédière, “EM Fault Model Characteriza-
tion on SoCs: From Different Architectures to the Same Fault Model”. In: Proceedings of
the 18th Workshop on Fault Detection and Tolerance in Cryptography (FDTC). Milan, Italy:
IEEE, Sept. 2021, pp. 31–38. doi: 10.1109/FDTC53659.2021.00014.

[Tro+21] Thomas Trouchkine, Sébanjila Kevin Bukasa, Mathieu Escouteloup, Ronan Lashermes,
Guillaume Bouffard, “Electromagnetic fault injection against a complex CPU, toward
new micro-architectural fault models”. In: Journal of Cryptographic Engineering (JCEN)
(Mar. 2021). doi: 10.1007/s13389-021-00259-6.

[LB15] Julien Lancia, Guillaume Bouffard, “Java Card Virtual Machine Compromising from a
Bytecode Verified Applet”. In: Proceedings of the 14th International Conference Smart Card
Research and Advanced Applications (CARDIS). Vol. 9514. Lecture Notes in Computer Science.
Bochum, Germany: Springer, Nov. 2015, pp. 75–88. doi: 10.1007/978-3-319-31271-2_5.

A.6 Full List of My Publications

Book Chapters

[BBI13] Guillaume Barbu, Guillaume Bouffard, Julien Iguchy-Cartigny, “La Sécurité Logique”. In:
Les Cartes à puce. Ed. by Samia Bouzefrane and Pierre Paradinas. Hermes Science, 2013.
Chap. 6, pp. 171–201. isbn: 9782746239135.

[BL12] GuillaumeBouffard, Jean-Louis Lanet, “The Next Smart Card Nightmare - Logical Attacks,
Combined Attacks, Mutant Applications and Other Funny Things”. In: Cryptography and
Security: From Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater on the
Occasion of His 65th Birthday. Ed. by David Naccache. Vol. 6805. Lecture Notes in Computer
Science. Springer, 2012, pp. 405–424. isbn: 978-3-642-28367-3. doi: 10.1007/978-3-642-
28368-0_26.

Journal Articles

[Gon+25] Gwenn Le Gonidec, Guillaume Bouffard, Jean-Christophe Prévotet, Maria Méndez Real,
“Do Not Trust Power Management: A Survey on Internal Energy-based Attacks Circum-
venting Trusted Execution Environments Security Properties”. In: ACM Transactions on
Embedded Computing Systems 24.4 (July 2025). issn: 1539-9087. doi: 10.1145/3735556.

[Tro+21] Thomas Trouchkine, Sébanjila Kevin Bukasa, Mathieu Escouteloup, Ronan Lashermes,
Guillaume Bouffard, “Electromagnetic fault injection against a complex CPU, toward
new micro-architectural fault models”. In: Journal of Cryptographic Engineering (JCEN)
(Mar. 2021). doi: 10.1007/s13389-021-00259-6.

[Idr+17] Noreddine El Janati El Idrissi, Guillaume Bouffard, Jean-Louis Lanet, Said El Hajji, “Trust
can be misplaced”. In: Journal of Cryptographic Engineering 7.1 (2017), pp. 21–34. doi:
10.1007/s13389-016-0142-5.

https://doi.org/10.1007/978-3-030-97348-3_15
https://doi.org/10.1109/FDTC53659.2021.00014
https://doi.org/10.1007/s13389-021-00259-6
https://doi.org/10.1007/978-3-319-31271-2_5
https://doi.org/10.1007/978-3-642-28368-0_26
https://doi.org/10.1007/978-3-642-28368-0_26
https://doi.org/10.1145/3735556
https://doi.org/10.1007/s13389-021-00259-6
https://doi.org/10.1007/s13389-016-0142-5
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[BL15] Guillaume Bouffard, Jean-Louis Lanet, “The ultimate control flow transfer in a Java based
smart card”. In: Computers and Security 50 (May 2015), pp. 33–46. doi: 10.1016/j.cose.
2015.01.004.

[BL14b] Guillaume Bouffard, Jean-Louis Lanet, “Reversing the operating system of a Java based
smart card”. In: Journal of Computer Virology and Hacking Techniques 10.4 (July 2014),
pp. 239–253. doi: 10.1007/s11416-014-0218-7.

[BTL14] Guillaume Bouffard, Bhagyalekshmy N. Thampi, Jean-Louis Lanet, “Security automaton
to mitigate laser-based fault attacks on smart cards”. In: International Journal of Trust
Management in Computing and Communications (IJTMCC) 2.2 (Sept. 2014), pp. 185–205.
doi: 10.1504/IJTMCC.2014.064158.

[Dub+13] Jean Dubreuil, Guillaume Bouffard, Bhagyalekshmy N. Thampi, Jean-Louis Lanet, “Miti-
gating Type Confusion on Java Card”. In: International Journal of Secure Software Engineering
4.2 (2013), pp. 19–39. doi: 10.4018/jsse.2013040102.

International Conference Proceedings

[Mar+24] Amélie Marotta, Ronan Lashermes, Guillaume Bouffard, Olivier Sentieys, Rachid Dafali,
“Characterizing and Modeling Synchronous Clock-Glitch Fault Injection”. In: Proceedings
of the 15th International Workshop on Constructive Side-Channel Analysis and Secure Design
(COSADE). Ed. by Romain Wacquez and Naofumi Homma. Vol. 14595. Lecture Notes in
Computer Science. Gardanne, France: Springer, Apr. 2024, pp. 3–21. doi: 10.1007/978-3-
031-57543-3_1.

[GB23] Vincent Giraud, Guillaume Bouffard, “Faulting original McEliece’s implementations
is possible. How to mitigate this risk?” In: IEEE European Workshops on Symposium on
Security and Privacy (EuroS&PW). Delft, Netherlands: IEEE, July 2023, pp. 311–319. doi:
10.1109/EuroSPW59978.2023.00039.

[DB21] Jean Dubreuil,GuillaumeBouffard, “PhiAttack - Rewriting the Java Card Class Hierarchy”.
In: Proceedings of the 20th International Conference on Smart Card Research and Advanced
Applications (CARDIS). Ed. by Vincent Grosso and Thomas Pöppelmann. Vol. 13173. Lecture
Notes in Computer Science. Lübeck, Germany: Springer, Nov. 2021, pp. 275–288. doi:
10.1007/978-3-030-97348-3_15.

[TBC21] Thomas Trouchkine, Guillaume Bouffard, Jessy Clédière, “EM Fault Model Characteriza-
tion on SoCs: From Different Architectures to the Same Fault Model”. In: Proceedings of
the 18th Workshop on Fault Detection and Tolerance in Cryptography (FDTC). Milan, Italy:
IEEE, Sept. 2021, pp. 31–38. doi: 10.1109/FDTC53659.2021.00014.

[TBC19] Thomas Trouchkine, Guillaume Bouffard, Jessy Clédière, “Fault Injection Characteriza-
tion on Modern CPUs”. In: Proceedings of the 13th International Conference Information
Security Theory and Practice (WISTP). Ed. by Maryline Laurent and Thanassis Giannetsos.
Vol. 12024. Lecture Notes in Computer Science. Paris, France: Springer, Dec. 2019, pp. 123–
138. doi: 10.1007/978-3-030-41702-4_8.

[LB15] Julien Lancia, Guillaume Bouffard, “Java Card Virtual Machine Compromising from a
Bytecode Verified Applet”. In: Proceedings of the 14th International Conference Smart Card
Research and Advanced Applications (CARDIS). Vol. 9514. Lecture Notes in Computer Science.
Bochum, Germany: Springer, Nov. 2015, pp. 75–88. doi: 10.1007/978-3-319-31271-2_5.

https://doi.org/10.1016/j.cose.2015.01.004
https://doi.org/10.1016/j.cose.2015.01.004
https://doi.org/10.1007/s11416-014-0218-7
https://doi.org/10.1504/IJTMCC.2014.064158
https://doi.org/10.4018/jsse.2013040102
https://doi.org/10.1007/978-3-031-57543-3_1
https://doi.org/10.1007/978-3-031-57543-3_1
https://doi.org/10.1109/EuroSPW59978.2023.00039
https://doi.org/10.1007/978-3-030-97348-3_15
https://doi.org/10.1109/FDTC53659.2021.00014
https://doi.org/10.1007/978-3-030-41702-4_8
https://doi.org/10.1007/978-3-319-31271-2_5
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[Bou+14] Guillaume Bouffard, Michael Lackner, Jean-Louis Lanet, Johannes Loinig, “Heap … Hop!
Heap Is Also Vulnerable”. In: Proceedings of the 13th International Conference Smart Card
Research and Advanced Applications (CARDIS). Ed. by Marc Joye and Amir Moradi. Vol. 8968.
Lecture Notes in Computer Science. Paris, France: Springer, Nov. 2014, pp. 18–31. isbn:
978-3-319-16762-6. doi: 10.1007/978-3-319-16763-3_2.

[Lan+14] Jean-Louis Lanet, Guillaume Bouffard, Rokia Lamrani, Ranim Chakra, Afef Mestiri,
Mohammed Monsif, Abdellatif Fandi, “Memory Forensics of a Java Card Dump”. In: Pro-
ceedings of the 13th International Conference Smart Card Research and Advanced Applications
(CARDIS). Ed. by Marc Joye and Amir Moradi. Vol. 8968. Lecture Notes in Computer Science.
Paris, France: Springer, Nov. 2014, pp. 3–17. isbn: 978-3-319-16762-6. doi: 10.1007/978-3-
319-16763-3_1.

[Bou+13a] Guillaume Bouffard, Tom Khefif, Jean-Louis Lanet, Ismael Kane, Sergio Casanova Salvia,
“Accessing secure information using export file fraudulence”. In: Proceedings of the Interna-
tional Conference on Risks and Security of Internet and Systems (CRiSIS). Ed. by Bruno Crispo,
Ravi S. Sandhu, Nora Cuppens-Boulahia, Mauro Conti, and Jean-Louis Lanet. La Rochelle,
France: IEEE Computer Society, Oct. 2013, pp. 1–5. doi: 10.1109/CRiSIS.2013.6766346.

[BTL13a] GuillaumeBouffard, BhagyalekshmyN. Thampi, Jean-Louis Lanet, “Detecting Laser Fault
Injection for Smart Cards Using Security Automata”. In: Proceedings of the International
Symposium on Security in Computing and Communications (SSCC). Ed. by Sabu M. Thampi,
Pradeep K. Atrey, Chun-I Fan, and Gregorio Martínez Pérez. Vol. 377. Communications in
Computer and Information Science. Mysore, India: Springer, Aug. 2013, pp. 18–29. isbn:
978-3-642-40575-4. doi: 10.1007/978-3-642-40576-1_3.

[BTL13b] Guillaume Bouffard, Bhagyalekshmy N. Thampi, Jean-Louis Lanet, “Vulnerability Analy-
sis on Smart Cards Using Fault Tree”. In: Proceedings of the 32nd International Conference on
Computer Safety, Reliability, and Security (SAFECOMP). Ed. by Friedemann Bitsch, Jérémie
Guiochet, and Mohamed Kaâniche. Vol. 8153. Lecture Notes in Computer Science. Toulouse,
France: Springer, Sept. 2013, pp. 82–93. isbn: 978-3-642-40792-5. doi: 10.1007/978-3-642-
40793-2_8.

[Dub+12] Jean Dubreuil, Guillaume Bouffard, Jean-Louis Lanet, Julien Cartigny, “Type Classifi-
cation against Fault Enabled Mutant in Java Based Smart Card”. In: Proceedings of the
7th International Conference on Availability, Reliability and Security (ARES). Prague, Czech
Republic: IEEE Computer Society, Aug. 2012, pp. 551–556. isbn: 978-1-4673-2244-7. doi:
10.1109/ARES.2012.24.

[RBL12] Tiana Razafindralambo, Guillaume Bouffard, Jean-Louis Lanet, “A Friendly Framework
for Hidding fault enabled virus for Java Based Smartcard”. In: Proceedings of the 26th
Annual Conference on Data and Applications Security and Privacy (DBSec). Ed. by Nora
Cuppens-Boulahia, Frédéric Cuppens, and Joaqu ín García-Alfaro. Vol. 7371. Lecture Notes
in Computer Science. Paris, France: Springer, July 2012, pp. 122–128. doi: 10.1007/978-3-
642-31540-4_10.

[Raz+12] Tiana Razafindralambo, Guillaume Bouffard, Bhagyalekshmy N. Thampi, Jean-Louis
Lanet, “A Dynamic Syntax Interpretation for Java Based Smart Card to Mitigate Logical
Attacks”. In: Proceedings of the International Conference on Recent Trends in Computer
Networks and Distributed Systems Security (SNDS). Trivandrum, India, Oct. 2012, pp. 185–
194. doi: 10.1007/978-3-642-34135-9_19.

https://doi.org/10.1007/978-3-319-16763-3_2
https://doi.org/10.1007/978-3-319-16763-3_1
https://doi.org/10.1007/978-3-319-16763-3_1
https://doi.org/10.1109/CRiSIS.2013.6766346
https://doi.org/10.1007/978-3-642-40576-1_3
https://doi.org/10.1007/978-3-642-40793-2_8
https://doi.org/10.1007/978-3-642-40793-2_8
https://doi.org/10.1109/ARES.2012.24
https://doi.org/10.1007/978-3-642-31540-4_10
https://doi.org/10.1007/978-3-642-31540-4_10
https://doi.org/10.1007/978-3-642-34135-9_19
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[BIL11] Guillaume Bouffard, Julien Iguchi-Cartigny, Jean-Louis Lanet, “Combined Software and
Hardware Attacks on the Java Card Control Flow”. In: Proceedings of the 10th International
Conference on Smart Card Research and Advanced Applications (CARDIS). Ed. by Emmanuel
Prouff. Vol. 7079. Lecture Notes in Computer Science. Leuven, Belgium: Springer, Sept. 2011,
pp. 283–296. doi: 10.1007/978-3-642-27257-8_18.

[Bou+11] Guillaume Bouffard, Jean-Louis Lanet, Jean-Baptiste Machemie, Jean-Yves Poichotte,
Jean-Philippe Wary, “Evaluation of the Ability to Transform SIM Applications into Hostile
Applications”. In: Proceedings of the 10th International Conferencee Smart Card Research
and Advanced Applications (CARDIS). Ed. by Emmanuel Prouff. Vol. 7079. Lecture Notes in
Computer Science. Leuven, Belgium: Springer, Sept. 2011, pp. 1–17. doi: 10.1007/978-3-
642-27257-8_1.

National Conference Proceedings

[TB25] Philippe Trébuchet, Guillaume Bouffard, “300 secondes chrono: prise de contrôle d’un
infodivertissement automobile à distance”. In: Symposium sur la sécurité des technologies de
l’information et des communications (SSTIC). June 2025.

[BG18] Guillaume Bouffard, Léo Gaspard, “Hardening a Java Card Virtual Machine Implementa-
tion with the MPU”. In: Symposium sur la sécurité des technologies de l’information et des
communications (SSTIC). Rennes, France, June 2018.
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Glossary

A | B | C | E | I | O | P | U | W

A

ANSSINational Cybersecurity Agency of France (ANSSI) is a French agency established by decree in July
2009. This national authority is attached to the General Secretariat for Defense and National
Security (SGDSN), the body responsible for assisting the Prime Minister in fulfilling his
responsibilities in defense and national security. ANSSI is tasked with building and organizing
the protection of the Nation against cyberattacks. It thus contributes to strengthening the
overall level of cybersecurity and the stability of cyberspace. 1, 2, 6, 13, 29, 51, 52, 57, 58, 60,
61, 85–90, 92, 93

B

BMC The Baseboard Management Controller (BMC) is a component that manages controller used
in computer devices such as server. It is composed of a microcontroller embedded on the
motherboard. 3

C

CAP file The Java Card CAP (Converted Applet) file format is used to load Java applications onto the
JCVM. Each CAP file includes all classes and interfaces defined in a single Java package and
can represent either a library or an applet. This file format results from translating a Java
class file using the Java Card converter. 15–20, 109

class file A Java class file is the result of compiling Java source code. It contains Java bytecode that
can be executed on the JVM. Each class file defines a single Java class and includes the
bytecode for its methods. When an application consists of multiple Java classes, they are
typically packaged together in a JAR file, which archives all the class files. 15, 17, 19

COTS component Commercial off-the-shelf (COTS) components refer to ready-made hardware prod-
ucts that are commercially available to the public [Wik24a]. 7, 8, 22, 31, 33, 34, 36, 43, 53, 54,
92

E

export file The Java Card export file contains public API linking information for all classes in a package.
This file is generated during the conversion of Java class files to Java Card CAP file. In the
class file, symbols are resolved by their Unicode names. Because storing this information
directly would be too memory-intensive for a SE, the Java Card converter translates these
Unicode symbols into token-based references using the export file as a reference for all available
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public tokens. When a new library that provides public functionalities is converted, the Java
Card converter creates an export file that assigns these token values. 15, 18–20

I

In-Order A CPU pipeline architecture in which instructions are fetched, decoded, and executed se-
quentially in the order they appear in the program, without reordering for optimization. 35,
36

O

Out-of-Order A CPU pipeline architecture that allows instructions to be executed in a different
order than they appear in the program, enabling performance optimizations by exploiting
instruction-level parallelism and reducing idle pipeline stages. 32

P

Protection Profile A Protection Profile is a document used in the Common Criteria certification process
to serve as a generic form of a Security Target, created to specify security requirements inde-
pendent of implementation. It includes threats, security objectives, assumptions, functional
requirements, assurance requirements, and rationales [Wik24d]. 4, 6–9, 12, 18, 29, 40, 53,
55–57, 59, 88

U

USART Universal Synchronous/Asynchronous Receiver-Transmitter (USART), a hardware communica-
tion module that supports both synchronous and asynchronous serial communication between
devices. 22, 23

W

White-Box Cryptographic implementation A white-box implementation refers to a cryptographic
software design where the attacker is assumed to have full visibility and control over the
execution environment, including access to the binary code, memory, and runtime operations.
This model presents a significant challenge, as it requires protecting cryptographic secrets
against an adversary capable of reverse engineering and dynamic analysis [Cho+02]. 47, 48





Contributions à la sécurité des logiciels embarqués dans la chaîne de confiance
Résumé

Ce mémoire d’habilitation à diriger les recherches (HDR) porte sur la sécurisation des logiciels dans les systèmes
embarqués à travers la notion de chaîne de confiance (Chain of Trust, CoT). En 2011, mes travaux ont débuté dans
un contexte où la sécurité des opérations sensibles reposait principalement sur la carte à puce, principal exemple de
racine de confiance (Root of Trust, RoT) matérielle. Ces dispositifs, à l’architecture minimaliste, offraient un haut
niveau de sécurité pour une consommation énergétique très faible, au prix de performances limitées. Ces principes
ont été étendus aux composants sécurisés (SE), devenus une référence en matière de RoT matérielle.
À partir de 2016, l’évolution des systèmes embarqués et les besoins croissants en performance ont conduit à la
migration d’opérations critiques vers les environnements d’exécution de confiance (Trusted Execution Environments,
TEE), exécutés sur des processeurs applicatifs. Ces architectures reposent désormais sur une CoT, dont la RoT
matérielle constitue le socle.
Ce manuscrit présente mes contributions à l’analyse et au renforcement de la sécurité logicielle dans les différentes
couches de cette CoT : RoT matérielle, TEE et environnement riche d’exécution (Rich Execution Environment, REE).
J’ai d’abord étudié le logiciel embarqué dans les SE (notamment Java Card), ainsi que la sécurité des interfaces et
de l’architecture matérielle.
J’ai ensuite étendu cette approche aux TEE, dont les implémentations partagent généralement le processeur avec le
REE pour concilier performance et consommation énergétique. Je montre que, comme pour les SE, la robustesse
matérielle est essentielle, et j’évalue l’impact des attaques par injection de fautes sur plusieurs TEE.
Enfin, dans les systèmes modernes, l’accès aux TEE ou SE reste souvent restreint pour les développeurs tiers. Les
applications sensibles doivent alors s’exécuter dans le REE, considéré comme hostile. J’ai étudié leur vulnérabilité
face aux attaques en boîte blanche et exploré des contre-mesures logicielles, telles que l’obscurcissement, pour
renforcer la résilience globale de la CoT.

Mots clés : chaine de confiance, sécurité, attaques matérielles et logicielles

Abstract

This habilitation thesis (HDR) focuses on securing software in embedded systems through the concept of a Chain
of Trust (CoT). When I began my research in 2011, the protection of sensitive operations primarily relied on smart
cards, the main example of a hardware Root of Trust (RoT). These minimalist devices provided high security with
very low power consumption, at the cost of limited performance. Their principles were later extended to Secure
Elements (SEs), which are now standard hardware RoTs.
From 2016, the growing complexity of embedded systems and increasing performance demands led to a shift of
critical operations to Trusted Execution Environments (TEEs) running on application processors. These architectures
now rely on a CoT rooted in the hardware RoT.
This manuscript presents my contributions to the analysis and hardening of embedded software across the CoT:
the hardware RoT, the TEE, and the Rich Execution Environment (REE). I first investigated SEs, especially Java Card
platforms, as well as the security of their interfaces and underlying hardware.
I then extended this work to TEEs, typically implemented by sharing the application processor with the REE to
balance performance and energy efficiency. As with SEs, hardware robustness is key. I analyze the impact of fault
injection attacks on existing TEEs.
Finally, in modern systems, access to TEE or SE functionality is often limited for third-party developers. Sensitive
applications must therefore run in the REE, an untrusted environment. I studied their vulnerability to white-box
attacks and explored software-level countermeasures, such as code obfuscation, to improve resilience and enhance
the overall security of the CoT.

Keywords: chain of trust, security, hardware and software attacks


	Remerciements
	Acronyms
	Contents
	List of Figures
	1 Introduction
	1.1 Background
	1.1.1 The Root of Trust
	1.1.2 The Chain of Trust

	1.2 Research Context
	1.3 Challenges
	1.4 My Contributions
	1.4.1 Contributions to Hardware Root of Trust Security
	1.4.2 Contributions to Trusted Execution Environment Security
	1.4.3 Contributions to Rich Execution Environment Security

	1.5 Organization of this Manuscript

	2 Contributions to the Hardware Root of Trust Security
	2.1 Common Secure Element Architecture
	2.2 Security of the On-Chip *OSOperating System Layout
	2.2.1 Overview of the Java Card Technology
	2.2.2 Analysis of the Java Card External Mechanisms
	2.2.3 Synthesis and Perspectives

	2.3 Security Analysis of the Input/Output Interfaces
	2.3.1 Security analysis of Embedded ISO/IEC 7816 implementations
	2.3.2 Synthesis and Perspectives

	2.4 Analysis of CPU Security Against Hardware Attacks
	2.4.1 CPU Analysis against Fault Attacks
	2.4.2 Secure-oriented CPU Analysis against Fault Attacks
	2.4.3 Synthesis and Perspectives

	2.5 Conclusion and Perspectives

	3 Contributions to the Trusted Execution Environment Security
	3.1 Common Trusted Execution Environment Architecture
	3.2 Hardware Architecture of Application Processors
	3.3 Impact of Hardware Attacks on High-Perfomance Processors
	3.3.1 Fault Effects Characterization from the Software to the Hardware
	3.3.2 Fault Effects Characterization from the Hardware to the Software

	3.4 Impact of Environment on Application Processors Security
	3.5 Conclusion and Perspectives

	4 Contributions to Execute Sensitive Applications in the Rich Execution Environment
	4.1 Common Rich Execution Environment Architecture
	4.2 Software Security in the Rich Execution Environment
	4.2.1 Securing Applications in the Rich Execution Environment
	4.2.2 Synthesis

	4.3 Rich Execution Environment Hardware Security Challenges
	4.4 Conclusion and Perspectives

	5 Conclusion and Perspectives
	5.1 Summary of Activities Introduced in this Manuscript
	5.2 Perspectives
	5.2.1 Towards a Secure and Reliable Chain of Trust
	5.2.2 Safety-Critical Systems need High-Level of Cybersecurity

	5.3 Conclusion

	Bibliography
	A Curriculum vitæ
	A.1 Administrative Information
	A.2 Professional Experience and Degrees
	A.2.1 Professional Experience
	A.2.2 Academic Degrees

	A.3 Teaching
	A.3.1 Teaching Responsibilities
	A.3.2 Expert Committee for the Recruitment of Associate Professors
	A.3.3 Participation in MOOCs

	A.4 Research Activities at ANSSI
	A.4.1 My Research Activities
	A.4.2 Past and Ongoing Scientific Collaborations

	A.5 Scientific Responsibilities
	A.5.1 Ph.D. Supervision
	Co-supervised and Defended Theses
	Ongoing Theses
	A.5.2 Apprenticeship Supervision
	A.5.3 Internship Supervision
	A.5.4 Scientific Involvement
	A.5.5 Participation in Thesis Defense Committees as Examiner
	A.5.6 Participation in Mid-term Ph.D. Evaluations
	A.5.7 Scientific Publications

	A.6 Full List of My Publications
	Book Chapters
	Journal Articles
	International Conference Proceedings
	National Conference Proceedings

	A.7 Ph.D. Thesis Reports and Defense Minutes
	A.7.1 Ph.D. Thesis Report by Prof. David Naccache
	A.7.2 Ph.D. Thesis Report by Prof. Peter Ryan
	A.7.3 Official Report of the Thesis Defense


	Glossary

