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Who am I?
2014 Ph.D. thesis at University of Limoges

A Generic Approach for Protecting Java Card Smart Card Against Software
Attacks

Since 2014 Expert in embedded software security at ANSSI
2014–2022: ANSSI > Hardware Security Lab (LSC)
Since 2023: ANSSI > Hardware and Software Architectures Lab (LAM)
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What is ANSSI?
ANSSI: French Cybersecurity Agency.

Is the national authority in charge of cybersecurity in France.
Reports to the SGDSN (General Secretariat for Defence and National Security) which assists the
Prime Minister.

Main missions: (https://cyber.gouv.fr/en/what-we-do)

SHIELD-ALT Defending critical information systems and the victims of large-scale cyberattacks;
Brain Knowing the state of the art in cybersecurity and cyberspace threats;
SHARE-ALT Sharing knowledge, recommendations, and expertise in digital safety;
Hands-Helping Assisting the national and international ecosystem;
Gavel Regulating cybersecurity organisations, goods, and services.
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ANSSI: Research Labs Activities

Lightbulb Expertise

Technical support to
internal teams and
certification bodies.
Contributions to
GlobalPlatform and
JHAS workgroups.
Collaboration with EU
partners (e.g., BSI, …).
Support to national and
European projects (e.g.,
France Identité, EU-Digital
Identity).

Chalkboard-Teacher Training
Design and delivery of
CFSSI training courses.
Support for awareness
and outreach events.

Design and delivery of
university courses (in my
personal time).

Flask R&D

(≈33%)
Focus on how to
protect embedded
software:

software and
hardware attacks
studies.
design of
countermeasures.

Supervision of Ph.D.
students and interns.
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2. Background
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The Root of Trust (RoT)

Several functionalities must be executed in an environment that is capable of:
hosting sensitive apps:

where sensitive data is protected;
performing sensitive operations:

with no leakage.

Root of Trust (RoT) is defined by GlobalPlatform [Glo18] as:
an element with a processing unit, code and data.
whose integrity cannot be verified.
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[Glo18] GlobalPlatform. Root of Trust Definitions and Requirements. Version 1.1. June 2018 (https://globalplatform.org/wp-
content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf).
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In the 2000s, Cybersecurity Relied on Smart Cards

Tamper-resistant computing platform;
Ubiquitous in daily life:

credit cards;
(U)SIM cards;
health cards (e.g., French Carte Vitale);
pay TV access cards;
…

The smart card is a Secure Element designed to act as a hardware RoT.
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Secure Element: Minimalism for Maximum Security

Highly constrained architecture:
Minimal hardware & software layout.
Very limited embedded functionalities.
Ultra-low power consumption.

Security evaluations
Resistance to high attack potential (Common Criteria AVA_VAN.5 level).

Long and rigorous process.
Based on a few targets of evaluation:

threats and protections are clearly defined.
evaluations may rely on Protection Profiles (PPs) for common use cases.

Between 2010 and 2018, more than 35 billion Secure Elements (SEs) were
deployed [Glo19].
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evaluations may rely on Protection Profiles (PPs) for common use cases.

Between 2010 and 2018, more than 35 billion SEs were deployed [Glo19].

[Glo19] “6.2 Billion GlobalPlatform-Compliant Secure Elements Deployed in 2018”. 2019 (https://globalplatform.org/latest-
news/6-2-billion-globalplatform-compliant-secure-elements-deployed-in-2018/).
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Typical Secure Element (SE) Architecture

Security
evaluation #11

Security evaluation #22

Security evaluations #3 to #n3

CPU with
hardware
attack

protections

True random
number
generator

Crypto-
processors

Light and
tamper
detection
sensors

Internal
memories

Memory
protection

unit

Few
input/output
interfaces

Shared bus and resource controller

On-Chip
Operating
System

Secure apps

1SE PP [Eur14] or embedded SE PP [Eur22].
2Java Card PP [Ora21].
3Secure apps’ PP: (U)SIM [Rad10], identity [Sic12], payment [BS10], tachograph [Cen17], …
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Secure Element: Limitations

SE are designed with a minimal attack surface:
only one app running at a time.
very limited interfaces and resources.

Strong isolation

, but at the cost of:
low performance.
limited extensibility.
restricted developer access.

Not suitable for modern use cases requiring both security and rich functionality:
Secure biometric authentication + encrypted storage + remote attestation.
Running multiple secure services in parallel (e.g., payments + identity + DRM).

SEs need to be complemented withmore flexible secure environments.
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Trusted Execution Environment (TEE)

Initially designed as a performance-oriented emulation of a hardware RoT.

A Trusted Execution Environment (TEE) [Glo22] is an execution environment that:
Mixes security and performance for sensitive applications;
Runs only sensitive applications signed by a trusted entity;
Ensures resistance to software attacks and certain hardware attacks [Glo20].

[Glo20] GlobalPlatform. TEE Protection Profile. GPD_SPE_021. Version 1.3. July 2020 (https://globalplatform.org/specs-
library/tee-protection-profile-v1-3/).
[Glo22] GlobalPlatform. TEE System Architecture. Version 1.3. May 2022 (https://globalplatform.org/specs-library/tee-
system-architecture/).
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Rich Execution Environment (REE)

Designed for rich functionalities with direct access to system resources.

The Rich Execution Environment (REE) is an execution environment that:
Runs a standard Operating System (OS) designed to support a wide range of devices;

primarily functionality- and performance-oriented;
Hosts applications frommultiple sources; (app stores, Internet, etc.)

Provides limited isolation guarantees, compared to a TEE.
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The Chain of Trust (CoT)

Trusted Execution
Environment (TEE)

Hardware
Root of Trust (RoT)

Rich Execution
Environment

(REE)

Small attack surface Large attack surface

High trust level Low trust level

Local and platform
security functions Business security functions Business logic without

security functions
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3. My Research Activities
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Research Context

2000 2010 2015 2020 2025

� � �

Cybersecurity relies on SE:
SEs are designed for specific use-cases.

Sensitive operations increasingly moved to TEEs

Transposition of hardware attacks from SE to TEEs [Vas+17; YSW18] and to REEs [Bos+16].

Today
Digital services are ubiquitous, making robust protection of the entire CoT essential for
trust and data security.
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My Research Activities

Focusing on embedded softwares security

, my research explores how security functions
can be migrated from hardware RoT to more powerful and versatile environments.

Trusted Execution
Environment (TEE)

Hardware
Root of Trust (RoT)

Rich Execution
Environment

(REE)

Small attack surface Large attack surface

High trust level Low trust level

Local and platform
security functions Business security functions Business logic without

security functions

Research question 1 Research question 2 Research question 3

1 How are local and platform security functions
developed and used to enhance security?

2 How to achieve high security in TEEs for
business security functions?

3 How can sensitive apps run securely in the REE?
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3. My Research Activities

Trusted Execution
Environment

Hardware
Root of Trust (RoT)

Rich Execution
Environment

(REE)

Small attack surface Large attack surface

High trust level Low trust level

Local and platform
security functions Business security functions Business logic without

security functions

Research question 1 Research question 2 Research question 3

Research question 1:
How are local and platform security functions,
provided by hardware RoT, developed and used to
enhance security?
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Secure Elements as Hardware RoTs

SE are the most widely deployed hardware RoTs worldwide.
Resistance to high attack potential. (Common Criteria AVA_VAN.5)

My early research started on closed SEs:
Both software and hardware implementations are proprietary and closed source.
Focus on existing software implementations to understand design choices:

secure applications mostly studied by the community. (EMVCo [AM14; BST21], (U)SIM [Sec25])

Focus on the software stack beneath secure applications.

[AM14] “EMV: why payment systems fail”, Communication of ACM 2014.
[BST21] “The EMV Standard: Break, Fix, Verify”, S&P 2021.
[Sec25] “eSIM security”. 2025 (https://security-explorations.com/esim-security.html).
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Contributions to Hardware RoT Security

CPU with
hardware
attack

protections

True random
number
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Crypto-
processors
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detection
sensors

Internal
memories

Memory
protection

unit
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input/output
interfaces

Shared bus and resource controller

On-Chip
Operating
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Secure apps
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The On-Chip Operating System

Most of the on-chip OS embedded in SE includes:
A minimal and hardened OS;
A Java Card Virtual Machine (JCVM). (≈ 150 Common Criteria certified products per year)

6 billion devices embed a JCVM are deployed annually [Pas22].

The Java Card technology provides:
A development environment to build secure applications;
A platform-independent runtime environment;
A multiple-applicative environmnent;
A strong application isolation.

[Pas22] “Oracle Celebrates the Java Card Forum’s 25th Anniversary”. 2022 (https://blogs.oracle.com/java/post/java-card-
forum-25-years-anniversary).
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Analysis of the Java Card Platform Security

Studied during my Ph.D thesis
[Bouffard’s Ph.D., 2014]

Java class Java Card CAP Installation
module

Installed
app

Java Card
converter

Byte Code
Verifier (BCV)

Application
signature

export
corresponding
to the target
JCVM image

Firewall

Analysis of the BCV
[LB15; LB16]

Analysis of the
application convert-
ing process [DB21]

Converting process Security mechanisms external to the JCVM Security mechanisms embedded in the JCVM

Design of a state-of-the-art JCVM
[Gaspard’s Internship, 2017]
[Trouchkine’s Intenship, 2017]
[Giraud’s Intenship, 2019]
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Contributions to Hardware RoT Security (cont.)
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Research Question 1: Summary of Contributions

Trusted Execution
Environment (TEE)

Hardware Root
of Trust (RoT)

Rich Execution
Environment

(REE)

Small attack surface Large attack surface

High trust level Low trust level

Local and platform
security functions Business security functions Business logic without

security functions

Research question 1 Research question 2 Research question 3

Research question 1:
How are local and platform security functions, provided by
hardware RoT, developed and used to enhance security?

SEs = strongest Hardware RoTs but hardware & software are closed and proprietary.

Research focus: embedded software security without access to target internals.
1 Anticipated risks frommisused tools and environments

by studying deployed JCVM implementation and toolchains.
2 Designed a state-of-the-art JCVM

minimizing reliance on external elements to strengthen implementation security.
3 Evaluated the security of communication interfaces

by uncovering leakage and fingerprinting opportunities in deployed implementations.
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3. My Research Activities
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Research question 2:
How to achieve high security in TEEs for business
security functions?
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TEE Security: Requirements and Challenges

The TEE must be both high-performance and secure area
Deployed in application SoCs (> 2015)

Security evaluations:
PP for TEE [Glo20]
Resistance to Basic or Enhanced-Basic attack potential (Common Criteria AVA_VAN.2 or 3 level)

The TEE PP requires:
Resistance to software attacks

=> 3 (covered in evaluations)

Resistance to hardware attacks

=> ?

In this work, I focus on Arm TrustZone. (99% of the deployed mobile CPUs [Kin24])

[Glo20] GlobalPlatform. TEE Protection Profile. GPD_SPE_021. Version 1.3. July 2020 (https://globalplatform.org/specs-
library/tee-protection-profile-v1-3/).
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TEE Architecture on Arm Application CPUs

Arm
Application
multi-cores

CPU

Secure monitor

TEE REE

Impact analysis of hardware attacks on application CPU:

Prior work confirmed side-channel threats on application
CPUs [Bal+15; Lon+15].
Mid-2010s, the exploitability of fault injection was still debated.

Unlike SEs, application CPU complexity hinders analysis.
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Fault Effects Characterization

Software-level characterizationHardware-level characterization

Intructions setMicro-
architecture

Logic Program

�

Signal
perturbation

Bad fetch
Register corruption

Data/Instruction
corruption

Control flow
hijacking

Fault effects analysis
from ISA point of view.

[Trouchkine’s Ph.D., 2021]

inspired from [YSW18]

[YSW18] “Fault Attacks on Secure Embedded Software: Threats, Design, and Evaluation”, JHSS 2018.
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Fault Effects Analysis from ISA Point of View Trouchkine’s Ph.D., 2021

[ITB23] “Pew Pew, I’m root! De la caractérisation à l’exploitation: un voyage plein d’embûches”, JAIF 2023.
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Fault Effects Analysis from ISA Point of View Trouchkine’s Ph.D., 2021

Observed effects (ISA)

Underlying causes
(µArch)

Faulted program

Faulted instruction

Pipeline

Decode Execute Register
writeback

Memory
access

Faulted data

Memory RegistersFetch

[TBC19] “Fault Injection Characterization on Modern CPUs”, WISTP 2019.
[Tro+21] “Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault models”, JCEN 2021.
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Fault Effects Analysis from ISA Point of View Trouchkine’s Ph.D., 2021

Architecture-agnostic
approach [TBC21]

[TBC21] “EM Fault Model Characterization on SoCs: From Different Architectures to the Same Fault Model”, FDTC 2021.
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Synthesis of Trouchkine’s Ph.D. thesis Trouchkine’s Ph.D., 2021

Key findings
1 Defined an architecture-agnostic approach to measure fault effects [TBC19] on
microarchitecture blocks [Tro+21] from the ISA level;

analysis of faults disturbing the MMU and cache management [Tro+21].
2 Applied the methodology on Arm and Intel CPUs embedding TEE [TBC21].

Demonstrated that faults directly affect execution in simple software contexts.

[TBC19] “Fault Injection Characterization on Modern CPUs”, WISTP 2019.
[Tro+21] “Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault models”, JCEN 2021.
[TBC21] “EM Fault Model Characterization on SoCs: From Different Architectures to the Same Fault Model”, FDTC 2021.
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Fault Effects Characterization (cont.)
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Fault effects analysis
from instruction set to
complex apps [ITB23]

inspired from [YSW18]

[Trouchkine’s Ph.D., 2021] “System-on-Chip Physical Security Evaluation”, Université Grenoble Alpes.
[YSW18] “Fault Attacks on Secure Embedded Software: Threats, Design, and Evaluation”, JHSS 2018.
23/09/2025 28 / 53



Fault Effects Characterization (cont.)

Software-level characterizationHardware-level characterization

Intructions setMicro-
architecture

Logic Program

�

Signal
perturbation

Bad fetch
Register corruption

Data/Instruction
corruption

Control flow
hijacking

Fault effects analy-
sis on electronic logic.
[Marotta’s Ph.D., 2025]

Fault effects analysis
from ISA point of view.

[Trouchkine’s Ph.D., 2021]

Fault effects analysis
from instruction set to
complex apps [ITB23]

inspired from [YSW18]

[ITB23] “Pew Pew, I’m root! De la caractérisation à l’exploitation: un voyage plein d’embûches”, JAIF 2023.
[Trouchkine’s Ph.D., 2021] “System-on-Chip Physical Security Evaluation”, Université Grenoble Alpes.
[YSW18] “Fault Attacks on Secure Embedded Software: Threats, Design, and Evaluation”, JHSS 2018.
23/09/2025 28 / 53



Fault Effects Characterization (cont.)
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Fault Effects Analysis on Electronic Logic Marotta’s Ph.D., 2025
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Electromagnetic Fault Injection Impact on Logic Marotta’s Ph.D., 2025

Electromagnetic Fault Injection (EMFI) attack: [CB19; Yua+12]
Perturbs the clock distribution⇒ Phase-Locked Loop (PLL);
Results in unintended glitches on the clock signal.

Observation:
Fault effects comparable to controlled clock glitches; (injectable by TRAITOR [Cla+21])

The observed fault model does not match with the litterature [Deh+12; DLM21;
Nab+23].

TRAITOR

PLL

E
clk_ref clk

Synchronous Clock Glitch

[CB19] “Microcontroller Sensitivity to Fault-Injection Induced by Near-Field Electromagnetic Interference”, EMC 2019.
[Yua+12] “Electromagnetic interference analysis using an embedded phase-lock loop”, APEMC 2012.
23/09/2025 30 / 53



Electromagnetic Fault Injection Impact on Logic Marotta’s Ph.D., 2025

Electromagnetic Fault Injection (EMFI) attack: [CB19; Yua+12]
Perturbs the clock distribution⇒ Phase-Locked Loop (PLL);
Results in unintended glitches on the clock signal.

Observation:
Fault effects comparable to controlled clock glitches; (injectable by TRAITOR [Cla+21])

The observed fault model does not match with the litterature [Deh+12; DLM21;
Nab+23].

TRAITOR

PLL

E
clk_ref clk

Synchronous Clock Glitch

[Cla+21] “TRAITOR: A Low-Cost Evaluation Platform for Multifault Injection”, AsiaCCS 2021.
[Deh+12] “Electromagnetic Transient Faults Injection on a Hardware and a Software Implementations of AES”, FDTC 2012.
[DLM21] “Modeling and Simulating Electromagnetic Fault Injection”, TCAD 2021.
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23/09/2025 30 / 53



Fault Effects at Logic Marotta’s Ph.D., 2025

Method:
Target: LFSR implemented with flip-flops (FF) embedded in an FPGA;
FPGA experiments with controlled clock glitches using TRAITOR [Cla+21];
Complemented with transistor-level simulations.

Findings: [Mar+24]
Introduced the Energy-Threshold Fault Model;

fault sensitivity depends on intrinsic (manufacturing variability, routing) and extrinsic factors
(cross-talk, neighboring activity);

Voltage amplitude is more significant than glitch width in determining correct
sampling.

[Cla+21] “TRAITOR: A Low-Cost Evaluation Platform for Multifault Injection”, AsiaCCS 2021.
[Mar+24] “Characterizing and Modeling Synchronous Clock-Glitch Fault Injection”, COSADE 2024.
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Synthesis of Marotta’s Ph.D. thesis Marotta’s Ph.D., 2025

Key findings
1 Proposed an approach to simulate EMFI at the logic level [Mar+24]; (based on TRAITOR)

discovered a new Energy-Threshold Fault Model.
2 Transposed this model to study and explain fault effects on
microcontrollers [Mar25].

Showed that the study was limited to a single latch type,
not fully reflecting complex designs.

[Mar+24] “Characterizing and Modeling Synchronous Clock-Glitch Fault Injection”, COSADE 2024.
[Marotta’s Ph.D., 2025] “Effects of synchronous clock glitch on the security of integrated circuits”, Université de Rennes.
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Research Question 2: Summary of Contributions

Trusted Execution
Environment (TEE)

Hardware Root
of Trust (RoT)

Rich Execution
Environment

(REE)

Small attack surface Large attack surface

High trust level Low trust level

Local and platform
security functions Business security functions Business logic without

security functions

Research question 1 Research question 2 Research question 3

Research question 2:
How to achieve high security in TEEs for business security
functions?

TEEs = secure environments within application CPUs, but exposed to hardware attacks.

Research focus: fault injection characterization at multiple abstraction levels.
1 From ISA-level analysis of closed CPUs implementation; (Arm TrustZone)

2 To logic-level analysis of known implementations. (flip-flops on FPGA/ASIC)

Identified the need for dedicated countermeasures for application CPUs
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3. My Research Activities
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Research question 3:
How can sensitive apps run securely in the REE?
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REE: Requirements and Challenges

The REE is a high-performance, feature-rich environment

where apps’ security relies:
On general-purposemitigations; (MMU, ASLR, CFI, sandboxing)

On services offloaded to TEE/hardware RoT.

REE reality:
Untrusted by design; (user-controlled, multi-users, third-party apps)

No formal Common Criteria evaluation of the full stack;
Diverse threats:

kernel/driver bugs, supply-chain & update issues, malware/rooting, ….

In this work, I study how sensitive applications can run in the REE when access to TEE/RoT
is limited or unavailable. (agreements required with each smartphone vendor)
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How to Protect Sensitive Applications in the REE?

Adversary with full control of the execution.

Method: ⇒ Defense in depth
Use obfuscated apps to store and manipulate senstive assets.

New threat model: ⇒ Hardware attacks transposed into software
Fault injection via binary instrumentation [Bos+16]. (inspired by methods originally targeting SEs)

Current focus:
Protect implementations of symmetric algorithms in obfuscated apps against
software-level fault injection;
[Giraud’s Ph.D., 2024]: extend this protection to implementations of asymmetric
algorithms.
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Case Study: McEliece in White-Box Context Giraud’s Ph.D., 2024

Security Analysis [GB23]
Target: McEliece cryptosystem on Arm platforms [Pet+15];

Apply software-level fault injection on decryption:

replace EOR with RSB instruction; (1-bit instruction modification)
40–70% entropy reduction of secret key.

Mitigation: design a variant of McEliece immune to this attack.

1 uint32_t accu[1024/32] = {0};
2 for(int i = 0; i < 1024; i++) {
3 if(((vector[i/32] >> (31-(i%32))) & 0x01) != 0) {
4 for(int j = 0; j < (1024/32); j++) {
5 accu[j] =
6 accu[j] ^ matrix[i*(1024/32)+j];
7 }}}

10684 e51b300c ldr r3, [fp, #-12]
10688 e0822003 add r2, r2, r3
1068c e59f30d8 ldr r3, [pc, #216]
10690 e08f3003 add r3, pc, r3
10694 e7933102 ldr r3, [r3, r2, lsl #2]
10698 e0212003 eor r2, r1, r3
1069c e51b300c ldr r3, [fp, #-12]
106a0 e1a03103 lsl r3, r3, #2
106a4 e24b1004 sub r1, fp, #4
106a8 e0813003 add r3, r1, r3
106ac e5032024 str r2, [r3, #-36]

0 0 0 0 1 0 0 1 0 0 0 0

[ ]

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0




0 0 0 1 0 0 0 0 0 1 0 0

[ ]×

[GB23] “Faulting original McEliece’s implementations is possible”, SILM@EuroS&PW 2023.
[Pet+15] “Countermeasure against the SPA attack on an embedded McEliece cryptosystem”, MAREW 2015.
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Synthesis of Giraud’s Ph.D. thesis Giraud’s Ph.D., 2024

Key findings
1 Studied obfuscated applications in untrusted environments;

focusing on resilience against binary instrumentation attacks;
2 Applied the approach to a post-quantum asymmetric algorithm [GB23]. (McEliece)

Demonstrated that trust cannot be directly extended to REE.

[GB23] “Faulting original McEliece’s implementations is possible”, SILM@EuroS&PW 2023.
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Research Question 3: Summary of Contributions

Trusted Execution
Environment (TEE)

Hardware Root
of Trust (RoT)

Rich Execution
Environment

(REE)

Small attack surface Large attack surface

High trust level Low trust level

Local and platform
security functions Business security functions Business logic without

security functions

Research question 1 Research question 2 Research question 3

Research question 3:
How can sensitive apps run securely in the REE?

REE = open and potentially untrusted environment
Sensitive applications must be secured without strong isolation.

Research focus: protecting sensitive assets in the REE.
1 Investigated white-box security models;
2 Applied software-level fault injection;
3 Proposed obfuscation and modified designs.
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Summary of my Contributions

Analyzed the security of embedded software:
1 In SEs, focusing on risks from misused environments;
2 Characterized the impact of fault injection attacks across system levels

to better understand their consequences;
3 Work mainly based on closed implementations

limiting internal visibility but reflecting real-world constraints;
4 Measured the limits of existing solutions

highlighting the need for dedicated countermeasures in performance-oriented
implementations.

What comes next
Contribute to the design of secure and performance-oriented implementations;
Propose hardware attack-resistant solutions for future TEE platforms.
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4. Perspectives
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[Kim+14] “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”, ISCA
2014.
[Cam+18] “Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers”, ACM CCS 2018.
[TSS17] “CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management”, USENIX Security 2017.
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2014 (https://www.commoncriteriaportal.org/files/ppfiles/pp0084b_pdf.pdf).
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Toward Hardware-Resilient TEEs on Application SoCs

How can the TEE be secured against hardware attacks in application SoCs?

Research directions:
1 Understand security design in modern SE hardware;
2 Analyze the specificities of application SoCs;

(shared modules, application central processing units (CPUs), complex interconnects)

3 Scale SEs protections to secure TEEs against hardware attacks.

Trusted Execution
Environment

Hardware
Root of Trust (RoT)

Rich Execution
Environment

(REE)

Small attack surface Large attack surface

High trust level Low trust level

Local and platform
security functions Business security functions Business logic without

security functions

Research question 1 Research question 2 Research question 3
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Step 1: Understand Security Design in Modern SE Hardware

Deployed SEs are based on a closed architecture. (Arm SecurCore SC300)

RISC-V as an opportunity!

Analysis of secure-oriented open-source implementations:
Github OpenTitan (open-source SE) driven by LowRisc;

early work conducted within the PEPR Arsene funding project [Bikou’s Internship, 2024].
Github CV32E40S (open-source CPU) supported by OpenHW;

early work carried out in joint collaboration with CEA/List [Silva Araújo’s Internship,
2024].

An increasing number of ASICs are based on open-source implementations [SO25].
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Step 1: Security Analysis at Every Stage of Hardware RoT Design

Simulation
RTL / Netlist

Joint work with CEA
Bikou and Silva Araújo’s internship

Gap between models and reality
[Alle Monne’s Ph.D., 2027]

Experimentation
FPGA/ASIC silicon

Marotta & Trouchkine’s Ph.D.

[Bikou’s Internship, 2024] “Analysis of an Open-Source Secure Component Architecture”, Sorbonne Université.
[Marotta’s Ph.D., 2025] “Effects of synchronous clock glitch on the security of integrated circuits”, Université de Rennes.
[Silva Araújo’s Internship, 2024] “Security analysis of open-source RISC-V processors”, École des Mines de Saint-Étienne.
[Trouchkine’s Ph.D., 2021] “System-on-Chip Physical Security Evaluation”, Université Grenoble Alpes.
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Step 2: Addressing Application SoC-Specific Threats

Challenge: TEE runs on an application CPU without dedicated protections.

Secure and performance-oriented apps must consider hardware-level vulnerabilities.

Application
CPU

Application
CPU

Hardware
accelerators

Power
management

[TSS17]

Memories
[Kim+14]

Input/Output
memory

management
unit

Wire
interfaces

(PHY)

Wireless
interfaces
(modem)
[Cam+18]

Multi-layer AXI/AHB/APB Bus & Cache Coherent Interconnection

TEE REE

CPU with
hardware
attack

protections

Hardware RoT

[Gonidec’s Ph.D., 2026]:
Power management units as attack vectors;
Survey of TEE threats induced by power management
units [Gon+25].
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Step 3: Secure TEEs against Hardware Attacks

Builds on Step 1: understand countermeasures in SE;
Builds on Step 2: analyze threats specific to application SoCs.

Transpose and adapt SE protections to secure dedicated CPUs for TEE.

This work is at an early stage:
1 Identify which SE protections can scale to TEE context;

how to adapt the Secure Sub-System in SoC PP [Eur22] to application processors?
2 Propose dedicated countermeasures against hardware attacks:

PTCC FORWARD project: countermeasures for application CPU against hardware attacks.

[Eur22] Eurosmart. Secure Sub-System in System-on-Chip Protection Profile. BSI-CC-PP-0117. Version 1.5. Mar. 2022
(https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte/ReportePP/pp0117a_pdf).
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From Security-oriented CoT …

The CoT is not only a foundation for securing sensitive apps …
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…to Safety-Critical CoT

… it can also be transposed to safety-critical systems,
where both safety and securitymust coexist.

Safety-Critical Systems = systems whose failure may cause harm from people, assets, or
the environment.

Deployed inmedical, industrial, and transportation sectors;
Growing connectivity⇒ stronger security requirements.

Safety constraints: functions cannot be disabled, even under attack.
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New Research Question

How can the CoTmodel be adapted to strengthen safety?

Trusted Execution
Environment

Hardware
Root of Trust (RoT)

Rich Execution
Environment

(REE)

Small attack surface Large attack surface

High trust level Low trust level

Local and platform
security functions Business security functions Business logic without

security functions

Research question 1 Research question 2 Research question 3
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Case Study: Connected Vehicles

High connectivity (Bluetooth, Wi-Fi, cellular) + sensors (cameras, LiDAR, radars);

Internal ANSSI project on a representative 2020 vehicle [TB25];
Bluetooth chosen as focus: always active, even without user connection.

the Bluetooth stack is implemented within the REE.

struct sdpServInfo[0] {
/* 0x0000 */ void * next;
/* 0x0004 */ void * prev;
/* 0x0008 */ uint8_t * ptr_pkt_data;

// ...
/* 0x0088 */ uint8_t pkt_header [5];
/* 0x008D */ uint8_t pkt_data [507];
};
struct sdpServInfo[1] {
/* 0x0288 */ void * next;
/* 0x028C */ void * prev;
/* 0x0290 */ uint8_t * ptr_pkt_data;

// ...
/* 0x0310 */ uint8_t pkt_header [5];
/* 0x0314 */ uint8_t pkt_data [507];
}; // size = 648 (0x288) bytes
// ...

Discovery of a 0-click unauthenticated RCE vulnerability.

Security Implications
Compromise of the REE ⇒ send unauthorized CAN
messages. (existing hardware RoT filters some critical CAN messages)

Highlights the need for a more complete CoT [Glo23].

[TB25] “300 secondes chrono: prise de contrôle d’un infodivertissement automobile à distance”, SSTIC 2025.
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Bluetooth chosen as focus: always active, even without user connection.

the Bluetooth stack is implemented within the REE.

struct sdpServInfo[0] {
/* 0x0000 */ void * next;
/* 0x0004 */ void * prev;
/* 0x0008 */ uint8_t * ptr_pkt_data;

// ...
/* 0x0088 */ uint8_t pkt_header [5];
/* 0x008D */ uint8_t pkt_data [507];
};
struct sdpServInfo[1] {
/* 0x0288 */ void * next;
/* 0x028C */ void * prev;
/* 0x0290 */ uint8_t * ptr_pkt_data;

// ...
/* 0x0310 */ uint8_t pkt_header [5];
/* 0x0314 */ uint8_t pkt_data [507];
}; // size = 648 (0x288) bytes
// ...

Discovery of a 0-click unauthenticated RCE vulnerability.

Security Implications
Compromise of the REE ⇒ send unauthorized CAN
messages. (existing hardware RoT filters some critical CAN messages)

Highlights the need for a more complete CoT [Glo23].

[TB25] “300 secondes chrono: prise de contrôle d’un infodivertissement automobile à distance”, SSTIC 2025.
[Glo23] GlobalPlatform. Trust & Security in Automotive Systems. Tech. rep. Oct. 2023 (https://globalplatform.org/wp-
content/uploads/2023/10/GP-Trust-for-Secure-AutoServices-White-Paper_Web_Spreads.pdf).
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Towards a Unified Perspective on Safety and Security

Objective: Improved security with functional safety in connected and critical systems.

Builds on expertise from hardware RoTs and TEEs security;
Focus on connected and autonomous vehicles:

resistance to hardware attacks [Küh+25; Mel24; OFl20; Wer+23]; (fault injection, side-channel)
integration with new infrastructures [Dud19]. (in-motion charging, connected roads)

Broader scope: medical and industrial sectors: (studied by several ANSSI teams)

where security and safety must coexist;
Advocacy for rigorous evaluation and certification of vehicle CoT [CAR21].

Propose solutions where security reinforces safety, ensuring resilience in increasingly
interconnected environments.
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5. Conclusion
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Conclusion

Research within ANSSI:
Only 33% of my time dedicated to research;
Strong link with national security missions and evaluations.

Research areas:
From hardware RoTs to TEEs and safety-critical systems;
Contributions at both academic and operational levels;

built on strong collaborations with CEA/Leti, CEA/List, DGA-MI, IETR, INRIA,
UBS/Lab-STICC, and several ANSSI teams;

Supervision of 5 Ph.D. thesis (3 defended / 2 ongoing), 9 internships and 1 apprenticeship.

Summary and Future Directions:
Understanding and securing the full Chain of Trust;
Towards bridging security and safety.
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Thank you for your Attention

Hardware
Root of Trust

Trusted Execution
Environment

Rich Execution
Environment

BOOK Fault injection effects
characterization from logic
to micro-architecture
blocks [Mar+24].

BOOK Security analysis of TEE
implementations against
hardware attacks [Gon+25].

BOOK Fault injection effects
characterization from
software to
micro-architecture
blocks [TBC19; TBC21;
Tro+21].

BOOK Fault injection
transposition on
obfuscated binaries [GB23].

BOOK Security Analysis of an
in-vehicle infotainment
system [TB25].

SCHOOL Design of a state-of-the-art
JCVM [Gas17; Gir19; Tro17].

MICROSCOPE+SCHOOL Security analysis of
ISO-7816 stack [Mal22;
Sim20].

SCHOOL Analysis of a secure
software environment for
RoT [Ros21].

SCHOOL Security analysis of an
open-source hardware
RoT [Bik24].

User-Graduate Design of an application
processor running a TEE
with built-in
countermeasures against
hardware attacks.

User-Graduate Understanding fault
injection attacks from
logic [Mar25].

SCHOOL+User-Graduate Formal analysis of
countermeasures against
fault injection attacks on
open-source CPUs [All27;
Sil24].

User-Graduate Security evaluation of
COTS applicative CPUs
against hardware
attacks [Tro21].

Activities covering all research
questions.

User-Graduate Analyzing the risk of embedded
power management on application
SoC security [Gon26].

User-Graduate Security in a safety-critical
environment.

Research question 1 Research question 2 Research question 3

Local and platform security functions Business security functions Business logic without security functions

Legend:
BOOK Publications;
SCHOOL Internships;
MICROSCOPE Apprenticeships;
User-Graduate Completed Ph.D. theses;
User-Graduate Ongoing Ph.D. supervisions;
User-Graduate Planned Ph.D. supervisions.

BOOK Security analysis of Java
Card mechanisms [DB21;
Idr+17; LB15; LB16].

BOOK Design of a secure-oriented
JCVM [BG18; BGG21].

SCHOOL Authenticated Disk
Encryption [Bel20].

User-Graduate Applications’ security on
uncontrolled
systems [Gir24].
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