
A Generic Approach for Protecting Java CardTM

Smart Card Against Software Attacks

Guillaume BOUFFARD

Smart Secure Devices (SSD) Team
XLIM/University of Limoges

PhD Defence

10th of October, 2014

i nst i tut de recherche

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 1/55

1/55

Outline

Introduction
Smart Card
Java Card Technology
Attacks on Java Card

Contribution
Fault Tree Analysis
Smart Card Vulnerability Analysis using Fault Tree Analysis
Corrupting the Java Card’s Control Flow
Security Automatons to Protect the Java Card Control Flow

Experimental Results
Corrupting the Execution Flow
The Security Automatons

Conclusion and Future Works

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 2/55

2/55

Outline

Introduction
Smart Card
Java Card Technology
Attacks on Java Card

Contribution
Fault Tree Analysis
Smart Card Vulnerability Analysis using Fault Tree Analysis
Corrupting the Java Card’s Control Flow
Security Automatons to Protect the Java Card Control Flow

Experimental Results
Corrupting the Execution Flow
The Security Automatons

Conclusion and Future Works

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 3/55

3/55

The Smart Card

◮ Tamper-Resistant Computer;

◮ Securely stores and processes information;

◮ Used in our everyday life:

◦ Credit Card;
◦ (U)SIM Card;
◦ Health Card (French Vitale card);
◦ Pay TV;
◦ . . .

◮ Most of the smart cards are based on Java
Card technology.

This device contains sensitive data

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 4/55

4/55

Java Card Technology

◮ Created by Schlumberger in 1996;

◮ Specified by Oracle;

◮ Provide a friendly environment to develop
secure Java-applications.

[From B. Basquin’s presentation at

Cartes ASIA 2014]

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 5/55

5/55

Java Card Technology (Cont.)

Applet 1 Applet 2

Java Card standard
API & vendors’ APIs

Native API
Java Card Virtual
Machine (JCVM)

Card Operating System

Hardware layers

GlobalPlatform
API &

Applet Manager Java Card
Runtime

Enviromnent
(JCRE)

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 6/55

6/55

Java Card Security Model

◮ Off-card security

Java Class Files Java Card Files

Byte Code Converter Byte Code Verifier (BCV) Byte Code Signer

◮ On-card security

Java
Card
Files

BCV
Installed
applet

Firewall

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 7/55

7/55

Java Card Attacks

Physical attacks

◮ Side Channel attacks (timing
attacks, power analysis attack,
etc.);

◮ Fault attacks (electromagnetic
injection, laser beam injection,
etc.).

Logical attacks

◮ Execution of malicious Java
Card byte codes.

Combined attacks

◮ Mix of physical and logical
attacks.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 8/55

8/55

Problematic

◮ Inductive Approach:

◦ 1 attack = 1 countermeasure;
◦ Bottom-up approach.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 9/55

9/55

Problematic

◮ Inductive Approach:

◦ 1 attack = 1 countermeasure;
◦ Bottom-up approach.

◮ Thesis Objectives:

◦ Find and prevent each undesirable events;
◦ Global vision to protect the smart card’s assets;
◦ Design a top-down analytic approach.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 9/55

9/55

Outline

Introduction
Smart Card
Java Card Technology
Attacks on Java Card

Contribution
Fault Tree Analysis
Smart Card Vulnerability Analysis using Fault Tree Analysis
Corrupting the Java Card’s Control Flow
Security Automatons to Protect the Java Card Control Flow

Experimental Results
Corrupting the Execution Flow
The Security Automatons

Conclusion and Future Works

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 10/55

10/55

The Fault Tree Analysis (FTA)

Root unde-
sirable event

Intermediate
undesir-

able event

Effect 3Effect 2

E1

Effect 1

E1

◮ Undesirable events;

◮ Initial causes;

◮ Gate connectors.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 11/55

11/55

The Fault Tree Analysis (FTA)

Root unde-
sirable event

Intermediate
undesir-

able event

Effect 3Effect 2

E1

Effect 1

E1

◮ Undesirable events;

◮ Initial causes;

◮ Gate connectors.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 11/55

11/55

The Fault Tree Analysis (FTA)

Root unde-
sirable event

Intermediate
undesir-

able event

Effect 3Effect 2

E1

Effect 1

E1

◮ Undesirable events;

◮ Initial causes;

◮ Gate connectors.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 11/55

11/55

The Fault Tree Analysis (FTA)

Root unde-
sirable event

Intermediate
undesir-

able event

Effect 3Effect 2

E1

Effect 1

E1

◮ Undesirable events;

◮ Initial causes;

◮ Gate connectors.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 11/55

11/55

Smart Card’s Assets

◮ The smart card’s assets are the code and the data;

◮ Security properties:

◦ Integrity;
◦ Confidentiality;

◮ Undesirable events can affect:

◦ Code integrity;
◦ Data integrity;
◦ Code confidentiality;
◦ Data confidentiality;

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 12/55

12/55

Smart Card’s Assets

◮ The smart card’s assets are the code and the data;

◮ Security properties:

◦ Integrity;
◦ Confidentiality;

◮ Undesirable events can affect:

◦ Code integrity;
◦ Data integrity;
◦ Code confidentiality;
◦ Data confidentiality;

An attack offers the execution of a malicious byte code.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 12/55

12/55

Code Integrity’s Fault Tree

Code integrity’s
corruption

Executed code is
not the stored one

Executed code is
not the loaded one

Execution of a
malicious code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 13/55

13/55

Code Integrity’s Fault Tree

Code integrity’s
corruption

Executed code is
not the stored one

Executed code is
not the loaded one

Execution of a
malicious code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 13/55

13/55

Execution of a malicious code
Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Corrupting
finally-

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame
Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

◮ Published in [Bouffard et al., SAFECOMP 2013];

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 14/55

14/55

Execution of a malicious code
Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Corrupting
finally-

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame
Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

◮ Published in [Bouffard et al., SAFECOMP 2013];

◮ For this presentation, two vulnerabilities will be introduced:

◦ Modifying the method’s return address;
◦ Corrupting the finally-clause.

◮ Thanks to minimal cut set, a countermeasure to protect the
execution flow was developed: the security automatons.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 14/55

14/55

Execution of a malicious code
Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Corrupting
finally-

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame
Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

◮ Published in [Bouffard et al., SAFECOMP 2013];

◮ For this presentation, two vulnerabilities will be introduced:

◦ Modifying the method’s return address;
◦ Corrupting the finally-clause.

◮ Thanks to minimal cut set, a countermeasure to protect the
execution flow was developed: the security automatons.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 14/55

14/55

Execution of a malicious code
Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Corrupting
finally-

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame
Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

◮ Published in [Bouffard et al., SAFECOMP 2013];

◮ For this presentation, two vulnerabilities will be introduced:

◦ Modifying the method’s return address;
◦ Corrupting the finally-clause.

◮ Thanks to minimal cut set, a countermeasure to protect the
execution flow was developed: the security automatons.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 14/55

14/55

Execution of a malicious code
Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Corrupting
finally-

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame
Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

Security
Automatons

◮ Published in [Bouffard et al., SAFECOMP 2013];
◮ For this presentation, two vulnerabilities will be introduced:
◦ Modifying the method’s return address;
◦ Corrupting the finally-clause.

◮ Thanks to minimal cut set, a countermeasure to protect the
execution flow was developed: the security automatons.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 14/55

14/55

The Java Method Return

“ The current frame is used in this case to restore the state of

the invoker, including its local variables and operand stack,
with the program counter of the invoker appropriately
incremented to skip past the method invocation instruction.
Execution then continues normally in the invoking method’s
frame with the returned value (if any) pushed onto the operand
stack of that frame. (source: Java 8 Virtual Machine Specification)

”
◮ A frame header may include:
◦ Previous frame’s size;
◦ Program counter of the invoker;
◦ Security context of the invoker.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 15/55

15/55

Java Card Stack

public void caller (short l1) {

// The function callee is called

short l2 = l1 +

this.callee(l1);

}

void caller (short l1) {

sload 1

aload 0

sload 1

invokevirtual @callee

sadd

sstore 2

return

}

public void callee (short l1) {

short l2 = l1;

short l3 = (short) 0xCAFE;

return l3;

}

void callee (short l1) {

sload 1

sstore 2

sspush 0xCAFE

sstore 3

sload 3

sreturn

}
Java code Java Card byte code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 16/55

16/55

Java Card Stack

public void caller (short l1) {

// The function callee is called

short l2 = l1 +

this.callee(l1);

}

void caller (short l1) {

sload 1

aload 0

sload 1

invokevirtual @callee

sadd

sstore 2

return

}

public void callee (short l1) {

short l2 = l1;

short l3 = (short) 0xCAFE;

return l3;

}

void callee (short l1) {

sload 1

sstore 2

sspush 0xCAFE

sstore 3

sload 3

sreturn

}
Java code Java Card byte code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 16/55

16/55

Java Card Stack

public void caller (short l1) {

// The function callee is called

short l2 = l1 +

this.callee(l1);

}

void caller (short l1) {

sload 1

aload 0

sload 1

invokevirtual @callee

sadd

sstore 2

return

}

public void callee (short l1) {

short l2 = l1;

short l3 = (short) 0xCAFE;

return l3;

}

void callee (short l1) {

sload 1

sstore 2

sspush 0xCAFE

sstore 3

sload 3

sreturn

}
Java code Java Card byte code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 16/55

16/55

Java Card Stack

public void caller (short l1) {

// The function callee is called

short l2 = l1 +

this.callee(l1);

}

void caller (short l1) {

sload 1

aload 0

sload 1

invokevirtual @callee

sadd

sstore 2

return

}

public void callee (short l1) {

short l2 = l1;

short l3 = (short) 0xCAFE;

return l3;

}

void callee (short l1) {

sload 1

sstore 2

sspush 0xCAFE

sstore 3

sload 3

sreturn

}
Java code Java Card byte code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 16/55

16/55

Java Card Stack

public void caller (short l1) {

// The function callee is called

short l2 = l1 +

this.callee(l1);

}

void caller (short l1) {

sload 1

aload 0

sload 1

invokevirtual @callee

sadd

sstore 2

return

}

public void callee (short l1) {

short l2 = l1;

short l3 = (short) 0xCAFE;

return l3;

}

void callee (short l1) {

sload 1

sstore 2

sspush 0xCAFE

sstore 3

sload 3

sreturn

}
Java code Java Card byte code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 16/55

16/55

Java Card Stack

public void caller (short l1) {

// The function callee is called

short l2 = l1 +

this.callee(l1);

}

void caller (short l1) {

sload 1

aload 0

sload 1

invokevirtual @callee

sadd

sstore 2

return

}

public void callee (short l1) {

short l2 = l1;

short l3 = (short) 0xCAFE;

return l3;

}

void callee (short l1) {

sload 1

sstore 2

sspush 0xCAFE

sstore 3

sload 3

sreturn

}
Java code Java Card byte code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 16/55

16/55

Java Card Stack

public void caller (short l1) {

// The function callee is called

short l2 = l1 +

this.callee(l1);

}

void caller (short l1) {

sload 1

aload 0

sload 1

invokevirtual @callee

sadd

sstore 2

return

}

public void callee (short l1) {

short l2 = l1;

short l3 = (short) 0xCAFE;

return l3;

}

void callee (short l1) {

sload 1

sstore 2

sspush 0xCAFE

sstore 3

sload 3

sreturn

}
Java code Java Card byte code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 16/55

16/55

Java Card Stack

public void caller (short l1) {

// The function callee is called

short l2 = l1 +

this.callee(l1);

}

void caller (short l1) {

sload 1

aload 0

sload 1

invokevirtual @callee

sadd

sstore 2

return

}

public void callee (short l1) {

short l2 = l1;

short l3 = (short) 0xCAFE;

return l3;

}

void callee (short l1) {

sload 1

sstore 2

sspush 0xCAFE

sstore 3

sload 3

sreturn

}
Java code Java Card byte code

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 16/55

16/55

Java Card Stack: Pushing a Frame

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 17/55

17/55

Java Card Stack: Pushing a Frame

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

content of l1

Header data

short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 2 // Storing to l2
sspush 0xCAFE

sstore 3 // Storing to l3
sload 3 // pushing l3
sreturn

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 17/55

17/55

Java Card Stack: Popping a Frame

short l3

Header data

short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 2 // Storing to l2
sspush 0xCAFE

sstore 3 // Storing to l3
sload 3 // pushing l3
sreturn

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 18/55

18/55

Java Card Stack: Popping a Frame

short l3

Header data

short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 2 // Storing to l2
sspush 0xCAFE

sstore 3 // Storing to l3
sload 3 // pushing l3
sreturn

callee’s return

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 18/55

18/55

EMAN2: A Ghost In the Stack

◮ Modifying the return address;

Return address
modification

ill-formed code

Code modification

Fault
Injection

No frame
check

No BCV

Override the
return address

Underflow from
the operand

stack [Faugeron,

CARDIS 2013]

Overflow from
the local variable

[Bouffard et al.,

CARDIS 2011]

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 19/55

19/55

EMAN2: A Ghost In the Stack

◮ Presented in [Bouffard et al., CARDIS 2011];
◮ Overflow from the local variables area.

short l1

Header data

short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 2 // Saving to l2
sspush 0xCAFE

sstore 3 // Saving to l3
sload 3 // Pushing l3
sreturn

callee’s return

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 19/55

19/55

EMAN2: A Ghost In the Stack

◮ Presented in [Bouffard et al., CARDIS 2011];
◮ Overflow from the local variables area.

short l1

Header data

short l3

short l2
short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 2 // Saving to l2
sspush 0xCAFE

sstore 3 // Saving to l3
sload 3 // Pushing l3
sreturn

callee’s return

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 19/55

19/55

EMAN2: A Ghost In the Stack

◮ Presented in [Bouffard et al., CARDIS 2011];
◮ Overflow from the local variables area.

short l1

Header data

short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 4 // Saving to l4
sspush 0xCAFE

sstore 3 // Saving to l3
sload 3 // Pushing l3
sreturn

callee’s return

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 19/55

19/55

EMAN2: A Ghost In the Stack

◮ Presented in [Bouffard et al., CARDIS 2011];
◮ Overflow from the local variables area.

short l1

Caller frame size

Security context

Return address

short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 4 // Saving to l4
sspush 0xCAFE

sstore 3 // Saving to l3
sload 3 // Pushing l3
sreturn

callee’s return

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 19/55

19/55

EMAN2: A Ghost In the Stack

◮ Presented in [Bouffard et al., CARDIS 2011];
◮ Overflow from the local variables area.

short l1

Caller frame size

Security context

Return address

short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 4 // Saving to l4
sspush 0xCAFE

sstore 3 // Saving to l3
sload 3 // Pushing l3
sreturn

callee’s return

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 19/55

19/55

EMAN2: A Ghost In the Stack

◮ Presented in [Bouffard et al., CARDIS 2011];
◮ Overflow from the local variables area.

short l1

Caller frame size

Security context

Content of l1
short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 4 // Saving to l4
sspush 0xCAFE

sstore 3 // Saving to l3
sload 3 // Pushing l3
sreturn

callee’s return

short l1

Header data

short l2

short l1

Object @this SH
ELL

C
O

D
E

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 19/55

19/55

EMAN2: A Ghost In the Stack

◮ Presented in [Bouffard et al., CARDIS 2011];
◮ Overflow from the local variables area.

short l1

Caller frame size

Security context

Content of l1
short l3

short l2

short l1

Object @this

short l1

Header data

short l2

short l1

Object @this

sload 1 // Pushing l1
aload 0 // Pushing @this
sload 1 // Pushing l1
invokevirtual @callee

sadd

sstore 2 // Saving to l2
return

sload 1 // Pushing l1
sstore 4 // Saving to l4
sspush 0xCAFE

sstore 3 // Saving to l3
sload 3 // Pushing l3
sreturn

callee’s return

short l1

Header data

short l2

short l1

Object @this SH
ELL

C
O

D
E

◮ Countermeasures from the literature:
◦ Checking the integrity of the frame’s header data;
◦ Verifying each access to the frame’s areas [Lackner et al., CARDIS 2012];
◦ Scrambling the memory [Barbu’s PhD Thesis, 2012] [Razafindralambo et al.,

SNDS 2012].
Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 19/55

19/55

EMAN2 and Its Avatars

◮ Stack overflow from the local variables [Bouffard et al., CARDIS 2011]

◦ sstore, sinc, etc.;

◮ Stack underflow from the operand stack [Faugeron, CARDIS 2013]

◦ dup_x, swap_x, etc.;

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 20/55

20/55

EMAN2 and Its Avatars

◮ Stack overflow from the local variables [Bouffard et al., CARDIS 2011]

◦ sstore, sinc, etc.;

◮ Stack underflow from the operand stack [Faugeron, CARDIS 2013]

◦ dup_x, swap_x, etc.;

◮ This attack modifies the Java Program Counter value upon the
return address register. New smart cards embed countermeasures
against this attack! . . . only the path is protected;

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 20/55

20/55

The finally-Clause

◮ A finally-statement used the jsr (“jump to subroutine”) and
ret (“return from subroutine”) instructions (deprecated since

Java 6) ;

◮ The jsr pushes the address of the instruction immediately
following it (typed as ReturnAddress);

◮ Saves the return value (if any) in a local variable;

◮ The ret instruction continues the execution from the value saved
in the local variable.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 21/55

21/55

Compiling finally-Clause

void tryCatchFinally() {

try {

tryItOut();

} finally {

wrapItUp();

}

}

Exception table:
From To Target Type

0 4 8 any

Method void tryFinally()

0 aload_0 // Beginning of try block

1 invokevirtual tryItOut()

4 jsr 14 // Call finally block

7 return // End of try block

8 astore_1 // Beginning of handler

// for any throw

9 jsr 14 // Call finally block

12 aload_1 // Push thrown value

13 athrow // ... and rethrow value

// to the invoker

14 astore_2 // Beginning of finally block

15 aload_0 // Push this

16 invokevirtual wrapItUp()

19 ret 2 // Return from finally block

Illustration inspired from the Java 8 Virtual Machine Specification

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 22/55

22/55

Compiling finally-Clause

void tryCatchFinally() {

try {

tryItOut();

} finally {

wrapItUp();

}

}

Exception table:
From To Target Type

0 4 8 any

Method void tryFinally()

0 aload_0 // Beginning of try block

1 invokevirtual tryItOut()

4 jsr 14 // Call finally block

7 return // End of try block

8 astore_1 // Beginning of handler

// for any throw

9 jsr 14 // Call finally block

12 aload_1 // Push thrown value

13 athrow // ... and rethrow value

// to the invoker

14 astore_2 // Beginning of finally block

15 aload_0 // Push this

16 invokevirtual wrapItUp()

19 ret 2 // Return from finally block

Illustration inspired from the Java 8 Virtual Machine Specification

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 22/55

22/55

Compiling finally-Clause

void tryCatchFinally() {

try {

tryItOut();

} finally {

wrapItUp();

}

}

Exception table:
From To Target Type

0 4 8 any

Method void tryFinally()

0 aload_0 // Beginning of try block

1 invokevirtual tryItOut()

4 jsr 14 // Call finally block

7 return // End of try block

8 astore_1 // Beginning of handler

// for any throw

9 jsr 14 // Call finally block

12 aload_1 // Push thrown value

13 athrow // ... and rethrow value

// to the invoker

14 astore_2 // Beginning of finally block

15 aload_0 // Push this

16 invokevirtual wrapItUp()

19 ret 2 // Return from finally block

Illustration inspired from the Java 8 Virtual Machine Specification

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 22/55

22/55

Compiling finally-Clause

void tryCatchFinally() {

try {

tryItOut();

} finally {

wrapItUp();

}

}

Exception table:
From To Target Type

0 4 8 any

Method void tryFinally()

0 aload_0 // Beginning of try block

1 invokevirtual tryItOut()

4 jsr 14 // Call finally block

7 return // End of try block

8 astore_1 // Beginning of handler

// for any throw

9 jsr 14 // Call finally block

12 aload_1 // Push thrown value

13 athrow // ... and rethrow value

// to the invoker

14 astore_2 // Beginning of finally block

15 aload_0 // Push this

16 invokevirtual wrapItUp()

19 ret 2 // Return from finally block

Illustration inspired from the Java 8 Virtual Machine Specification

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 22/55

22/55

Compiling finally-Clause

void tryCatchFinally() {

try {

tryItOut();

} finally {

wrapItUp();

}

}

Exception table:
From To Target Type

0 4 8 any

Method void tryFinally()

0 aload_0 // Beginning of try block

1 invokevirtual tryItOut()

4 jsr 14 // Call finally block

7 return // End of try block

8 astore_1 // Beginning of handler

// for any throw

9 jsr 14 // Call finally block

12 aload_1 // Push thrown value

13 athrow // ... and rethrow value

// to the invoker

14 astore_2 // Beginning of finally block

15 aload_0 // Push this

16 invokevirtual wrapItUp()

19 ret 2 // Return from finally block

Illustration inspired from the Java 8 Virtual Machine Specification

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 22/55

22/55

Executing a finally-Clause

method_info [2] // @0051 = {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ L2: astore_1

/*0x5B*/ ret 0x1 // -> L1

}

PC = 0x53

⇒

Header data

@this (Applet)

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 23/55

23/55

Executing a finally-Clause

method_info [2] // @0051 = {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ L2: astore_1

/*0x5B*/ ret 0x1 // -> L1

}

PC = 0x5A

⇒

0x56 (Return Address)

Header data

@this (Applet)

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 23/55

23/55

Executing a finally-Clause

method_info [2] // @0051 = {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ L2: astore_1

/*0x5B*/ ret 0x1 // -> L1

}

PC = 0x5B

⇒

Header data

0x56 (ReturnAddress)

@this (Applet)

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 23/55

23/55

Executing a finally-Clause

method_info [2] // @0051 = {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ L2: astore_1

/*0x5B*/ ret 0x1 // -> L1

}

PC = 0x56

⇒
Header data

0x56 (ReturnAddress)

@this (Applet)

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 23/55

23/55

Executing a finally-Clause

method_info [2] // @0051 = {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ L2: astore_1

/*0x5B*/ ret 0x1 // -> L1

}

PC = 0x59

⇒

0xCAFE (short)

Header data

0x56 (ReturnAddress)

@this (Applet)

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 23/55

23/55

Corrupting the finally-Clause
Corrupting

finally-clause

Malicious code

Code modification

Fault InjectionType confusion

No typed heap
[Bouffard et al.,

CARDIS 2014]

No typed stack

No BCV

Setting a creepy
ReturnAddress

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 24/55

24/55

How to Exploit the jsr instruction?

◮ Hypothesis:
◦ No verified by a BCV
◦ No typed stack

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L2: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L1

}

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 25/55

25/55

How to Exploit the jsr instruction?

◮ Hypothesis:
◦ No verified by a BCV
◦ No typed stack

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L2: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L1

}

Type confusion

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 25/55

25/55

Cheating the BCV component

◮ The BCV checks the structure and the semantics of the application;

◮ To verify the byte code semantics, the BCV starts its analyse from
an entry point;

◮ Unreachable code has no entry point ⇒ B it is not checked by
the BCV!

◮ A malicious byte code can be hidden through the BCV verification!

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 26/55

26/55

An Unreachable Code. . .

void cheatingBCV () {

04 // flags: 0 max_stack : 4

03 // nargs: 0 max_locals: 3

/*0x05B*/ L0: jsr L1

// ...

/*0x066*/ L1: astore_3

L2: ... // Set of instructions

/*0x163*/ if_scmpeq_w 0xFF05 // -> L2

/*0x166*/ return

/*0x167*/ sinc 0x3, 0x4

/*0x16A*/ ret 0x3

}

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 27/55

27/55

An Unreachable Code. . .

void cheatingBCV () {

04 // flags: 0 max_stack : 4

03 // nargs: 0 max_locals: 3

/*0x05B*/ L0: jsr L1

// ...

/*0x066*/ L1: astore_3

L2: ... // Set of instructions

/*0x163*/ if_scmpeq_w 0xFF05 // -> L2

/*0x166*/ return

/*0x167*/ sinc 0x3, 0x4

/*0x16A*/ ret 0x3

}

Checked by the BCV

Unchecked by the BCV

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 27/55

27/55

An Unreachable Code. . .

void cheatingBCV () {

04 // flags: 0 max_stack : 4

03 // nargs: 0 max_locals: 3

/*0x05B*/ L0: jsr L1

// ...

/*0x066*/ L1: astore_3

L2: ... // Set of instructions

/*0x163*/ if_scmpeq_w 0xFF05 // -> L2

/*0x166*/ return

/*0x167*/ sinc 0x3, 0x4

/*0x16A*/ ret 0x3

}

Checked by the BCV

Unchecked by the BCV

verifycap api_export_files/**/*.exp maliciousCAPFile.cap

[INFO:] Verifier [v3.0.4]

[INFO:] Copyright (c) 2011, Oracle and/or its affiliates.

All rights reserved.

[INFO:] Verifying CAP file maliciousCAPFile.cap

[INFO:] Verification completed with 0 warnings and 0 errors.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 27/55

27/55

. . . Can Be Executed

◮ EMAN4 [Bouffard et al., CARDIS 2011] introduced a way to change an
instruction’s parameter upon a laser beam injection;

◦ This attack focuses on wide instructions;
◦ goto_w, if_*_w, . . .

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 28/55

28/55

. . . Can Be Executed

◮ EMAN4 [Bouffard et al., CARDIS 2011] introduced a way to change an
instruction’s parameter upon a laser beam injection;

◦ This attack focuses on wide instructions;
◦ goto_w, if_*_w, . . .

◮ if_scmpeq_w 0xFF05

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 28/55

28/55

. . . Can Be Executed

◮ EMAN4 [Bouffard et al., CARDIS 2011] introduced a way to change an
instruction’s parameter upon a laser beam injection;

◦ This attack focuses on wide instructions;
◦ goto_w, if_*_w, . . .

◮ if_scmpeq_w 0xFF05 ⇒ if_scmpeq_w 0x0005

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 28/55

28/55

. . . Can Be Executed

◮ EMAN4 [Bouffard et al., CARDIS 2011] introduced a way to change an
instruction’s parameter upon a laser beam injection;

◦ This attack focuses on wide instructions;
◦ goto_w, if_*_w, . . .

◮ if_scmpeq_w 0xFF05 ⇒ if_scmpeq_w 0x0005

◮ That can be viewed as a logical attack enabler.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 28/55

28/55

An Unreachable Code. . . Becomes Reachable

void cheatingBCV () {

04 // flags: 0 max_stack : 4

03 // nargs: 0 max_locals: 3

/*0x85B*/ L0: jsr L1

// ...

/*0x866*/ L1: astore_3

L2: ... // Set of instructions

/*0x963*/ if_scmpeq_w 0x0005 // -> L3

/*0x966*/ return

/*0x967*/ L3: sinc 0x3, 0x4

/*0x96A*/ ret 0x3

}

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 29/55

29/55

Preventing any finally-clause Corruption

◮ The Java 8 Virtual Machine specification defines basic ideas:

◦ Each instruction keeps track of the list of jsr targets needed to
reach that instruction.

◦ When executing the ret instruction, there must be only one possible

subroutine from which the instruction can be returning.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 30/55

30/55

Preventing any finally-clause Corruption

◮ The Java 8 Virtual Machine specification defines basic ideas:

◦ Each instruction keeps track of the list of jsr targets needed to
reach that instruction.

◦ When executing the ret instruction, there must be only one possible

subroutine from which the instruction can be returning.

◮ How to include that in the JCVM?

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 30/55

30/55

Preventing any finally-clause Corruption

◮ The Java 8 Virtual Machine specification defines basic ideas:

◦ Each instruction keeps track of the list of jsr targets needed to
reach that instruction.

◦ When executing the ret instruction, there must be only one possible

subroutine from which the instruction can be returning.

◮ How to include that in the JCVM?

◮ Solution: a jsr value stack.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 30/55

30/55

Preventing any finally-clause Corruption (Cont.)

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L2: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L1

}

PC = 0x53

⇒

Header data

@this (Applet)

jsr value stack

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 31/55

31/55

Preventing any finally-clause Corruption (Cont.)

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L2: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L1

}

PC = 0x5E

⇒

0x56 (Return Address)

Header data

@this (Applet)

0x56 jsr value stack

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 31/55

31/55

Preventing any finally-clause Corruption (Cont.)

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L2: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L1

}

PC = 0x5F

⇒

Header data

0x56 (ReturnAddress)

@this (Applet)

0x56 jsr value stack

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 31/55

31/55

Preventing any finally-clause Corruption (Cont.)

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L2: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L1

}

PC = 0x62

⇒

Header data

0x59 (ReturnAddress)

@this (Applet)

0x56 jsr value stack

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 31/55

31/55

Preventing any finally-clause Corruption (Cont.)

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L2: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L1

}

PC = 0x62

⇒

Header data

0x59 (ReturnAddress)

@this (Applet)

0x56 jsr value stack

←− TOS

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 31/55

31/55

Preventing any finally-clause Corruption (Cont.)

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L2

/*0x56*/ L1: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L2: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L1

}

PC = 0x62

⇒

Header data

0x59 (ReturnAddress)

@this (Applet)

0x56 jsr value stack

←− TOS

Attack detected!

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 31/55

31/55

How to Protect the Execution Flow?

◮ Presented attacks:

◦ EMAN2: cheating the return address;
◦ finally-clause corruption: direct modification of the program

counter;

◮ Each of them sets up the Java program counter;

◮ How to ensure the execution flow?

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 32/55

32/55

Protecting the Execution Flow

◮ Direct modification:

◦ Integrity → can be bypassed when the JPC is updated by the JCVM;

◮ Transient fault:

◦ Executing twice the same piece of code;
◦ It is a very expensive solution;

◮ Solution: dynamically check the applet’s CFG:

◦ Séré’s countermeasures [Séré’s PhD thesis, 2010] based on Field of bits,
Basic block method or Path check technique;

◦ This kind of countermeasure can be computed in the card?

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 33/55

33/55

Security Automatons and Execution Monitor
Principle

◮ Detecting a deviant behaviour ⇒ safety property “nothing bad
happens”;

◮ Preventing some attacks: several partial traces of events are
defined:

◦ Property can be encoded by a finite state automaton;

◮ Schneider automatons: (Q, q0, δ), where Q is a set of states, qo is
the initial state and δ is a transition function (Q · I)→ 2Q);

◮ The CFG can be computed during the loading process;

◮ When interpreting a byte code, the monitor checks:

◦ If the transition generates an authorized partial trace;
◦ If not, it takes an appropriate countermeasure.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 34/55

34/55

Security Automatons and Execution Monitor (Cont.)
Principle

q0start

q1

q2

δ3

δ1

δ2

δ4

δ5

Security automaton
(computed inside the card)

State q0 q1 q2

q0 δ1 δ3

q1 δ2

q2 δ5 δ4

State matrix (binary implementation

of the security automaton)

◮ [Bouffard et al., SSCC 2013], [Bouffard et al., SAR-SSI 2013] and extended in
[Bouffard et al., IJTMCC 2014].

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 35/55

35/55

Security Automaton in Practice

protected Protocolpayment (byte[] buffer, short offset, byte length) {

A[0] = 0; // initialisation of array A

for (byte j = 0; j < buffer[(byte)(offset+12)]; j++) {

D[j] = 0; // initialisation of array D

}

pin = new OwnerPIN((byte) TRY_LIMIT, (byte) MAX_PIN_SIZE);

// Initialisation of pin

pin.update(myPin, (short) START_OFFSET, (byte) myPin.length);

register(); // registering this instance

} // source: (Girard et al., CRiSIS 2010)

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 36/55

36/55

Security Automaton in Practice

protected Protocolpayment (byte[] buffer, short offset, byte length) {

A[0] = 0; // initialisation of array A

for (byte j = 0; j < buffer[(byte)(offset+12)]; j++) {

D[j] = 0; // initialisation of array D

}

pin = new OwnerPIN((byte) TRY_LIMIT, (byte) MAX_PIN_SIZE);

// Initialisation of pin

pin.update(myPin, (short) START_OFFSET, (byte) myPin.length);

register(); // registering this instance

} // source: (Girard et al., CRiSIS 2010)

◮ To create the security automaton:

◦ Local view of the method’s CFG;
◦ The set S contains the element of a language which expresses the

control flow integrity policy:

• ifeq, ifne, goto, invoke, return, etc.;

• plus the dummy instruction join representing any other instruction

pointed by a label.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 36/55

36/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM

/*0x03*/ L0: aload_0

/*0x04*/ invokespecial 6

/*0x2E*/ goto L2

/*0x3A*/ L2: sload_3

...

/*0x42*/ if_scmplt L1

/*0x30*/ L1: getfield_a_this 1

...

/*0x39*/ sstore_3

/*0x4A*/ L3: aload_0

...

/*0x4B*/ invokespecial 5

...

/*0x56*/ invokevirtual 7

...

/*0x5A*/ invokevirtual 8

/*0x5D*/ return

0start 2

1

3
goto

if_scmplt join

!if_scmplt

The trace recognised would be:
(goto, (if_scmplt, join)*,!if_scmplt, return)

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 37/55

37/55

Security Automaton included in the JCVM (Cont.)

0start

1 2

3

4

5 6

7 8

invokespecial 6

goto

if_scmplt join

!if_scmplt

invokespecial 5

invokevirtual 7

invokevirtual 8

return

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 38/55

38/55

Security Automaton included in the JCVM (Cont.)

❍
❍

❍
❍
❍❍

δ
q

q0 q1 q2 q3 q4 q5 q6 q7

invokespecial 6 q1

goto q2

join q2

if_scmplt q3,4

invokespecial 5 q5

invokevirtual 7 q6

invokevirtual 8 q7

return +

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 39/55

39/55

The Security Automaton

◮ The execution flow is checked by the security automaton upon a
finite state machine;

◮ Each transition is verified by the execution monitor;

◮ The CFG can be automatically computed by the loading process;

◮ The CFG can be encoded upon a sparse matrix → optimised solution

to store the CFG

◮ The JCVM and the loader should be modified to handle
automatons.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 40/55

40/55

Outline

Introduction
Smart Card
Java Card Technology
Attacks on Java Card

Contribution
Fault Tree Analysis
Smart Card Vulnerability Analysis using Fault Tree Analysis
Corrupting the Java Card’s Control Flow
Security Automatons to Protect the Java Card Control Flow

Experimental Results
Corrupting the Execution Flow
The Security Automatons

Conclusion and Future Works

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 41/55

41/55

Experimental Results

Reference Java Card GP Characteristics

a-21a 2.1.1 2.0.1 256 kB EEPROM, SIM card

a-21b 2.1.1 2.0.1 Same as a-21a plus RSA

a-22a 2.2 2.1 64 kB EEPROM, RSA

a-22b 2.1.1 2.0.1 32 kB EEPROM, dual interface, RSA

a-22c 2.2.1 2.1.1 36 kB EEPROM,

b-21a 2.1.1 2.1.2 16 kB EEPROM, dual interface

b-22a 2.1.1 2.0.1 16 kB EEPROM, hardware DES

b-22b 2.2.1 2.1.1 72 kB EEPROM, dual interface

c-22a 2.1.1 2.0.1 64 kB EEPROM, RSA

c-22b 2.2 2.1.1 64 kB EEPROM, dual interface, RSA

c-22c 2.2 2.1.1 72 kB EEPROM, dual interface, RSA

d-21 2.1 2.0.1 32 kB EEPROM, RSA

d-22 2.2.1 2.1.1 16 kB EEPROM

e-22 2.2 2.1 72 kB EEPROM, RSA

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 42/55

42/55

Developed Tools

◮ CapMap

◦ Java-framework;
◦ Provides reading and modification of CAP files;
◦ Correcting CAP file interdependencies.

◮ OPAL

◦ Java-Library and GUI;
◦ Supports Global Platform 2.x specification;
◦ Open-source project (available on Bitbutcket)

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 43/55

43/55

Experimental Results: EMAN2
Characterisation of the Stack Implementation

Operand stack

Header data

Local variables

→

Operand stack

?

Local variables

Reference Header size Return Address

a-21a 2 entries +2

a-21b 2 entries +2

a-22a 2 entries +2

a-22b 3 entries +1

a-22c 3 entries +1

d-22 ✗ ✗

e-22 ✗ ✗

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 44/55

44/55

Experimental Results: EMAN2
Characterisation of the Stack Implementation

Operand stack

Header data

Local variables

→

Operand stack

Return Address

Local variables

Reference Header size Return Address

a-21a 2 entries +2

a-21b 2 entries +2

a-22a 2 entries +2

a-22b 3 entries +1

a-22c 3 entries +1

d-22 ✗ ✗

e-22 ✗ ✗

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 44/55

44/55

Experimental Results: EMAN2
Characterisation of the Stack Implementation

Operand stack

Header data

Local variables

→

Operand stack

Return Address

Local variables

Reference Header size Return Address

a-21a 2 entries +2

a-21b 2 entries +2

a-22a 2 entries +2

a-22b 3 entries +1

a-22c 3 entries +1

d-22 ✗ ✗

e-22 ✗ ✗

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 44/55

44/55

Experimental Results: EMAN2
The Attack

short setReturnAddress(short new_address) {

01 // flags: 2 max_stack : 1

20 // nargs: 2 max_locals: 0

aload_1 // pushing the new_address value

sstore Y // Overwriting the return address

// with the new_address parameter

return // jumping to the shellcode ;-)

}

Reference Header size Y (Return Address) EMAN2

a-21a 2 entries nargs+max_locals+2 ✓

a-21b 2 entries nargs+max_locals+2 ✓

a-22a 2 entries nargs+max_locals+2 ✓

a-22b 3 entries nargs+max_locals+1 ✓

a-22c 3 entries nargs+max_locals+1 ✓

d-22 ✗ ✗ ✗

e-22 ✗ ✗ ✗

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 45/55

45/55

Experimental Results: finally-Clause Corruption

short jsrAttack () {

01 // flags: 0 max_stack : 1

11 // nargs: 1 max_locals: 1

/*0x53*/ L0: jsr L1

/*0x56*/ L2: sspush 0xCAFE

/*0x59*/ sreturn

/*0x5A*/ L3: sspush 0xBEEF

/*0x5D*/ sreturn

/*0x5E*/ L1: astore_1

/*0x5F*/ sinc 0x1, 0x4

/*0x62*/ ret 1 // -> L3

}

Reference Result

a-21a ✓

a-21b ✓

a-22a ✓

a-22b ✓

a-22c ✓

b-21a ✓

b-22a ✓

b-22b ✓

c-22a ✓

c-22b ✓

c-22c ✓

d-21 ✓

d-22 ✓

e-22 ✓

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 46/55

46/55

Experimental Results: Comparison

Reference EMAN2 finally-Clause Corruption

a-21a ✓ ✓

a-21b ✓ ✓

a-22a ✓ ✓

a-22b ✓ ✓

a-22c ✓ ✓

b-21a - ✓

b-22a - ✓

b-22b - ✓

c-22a - ✓

c-22b - ✓

c-22c - ✓

d-21 - ✓

d-22 ✗ ✓

e-22 ✗ ✓

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 47/55

47/55

Experimental Results: The Security Automatons

◮ A modification of the JCVM is required;

◮ The loading process computes the state matrix:

◦ Processing time depends on the CFG granularity;
◦ The state matrix is stored in the EEPROM;

◮ During the execution, the execution monitor checks the transition:

◦ if_scmplt: 21%
◦ General case: 5,13%

• 45 on 184 instructions are overloaded

◦ Real case: 1,58%

• 7 on 93 instructions are overloaded

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 48/55

48/55

Outline

Introduction
Smart Card
Java Card Technology
Attacks on Java Card

Contribution
Fault Tree Analysis
Smart Card Vulnerability Analysis using Fault Tree Analysis
Corrupting the Java Card’s Control Flow
Security Automatons to Protect the Java Card Control Flow

Experimental Results
Corrupting the Execution Flow
The Security Automatons

Conclusion and Future Works

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 49/55

49/55

Conclusion

◮ This thesis aimed at designing efficient and affordable

countermeasure using a top-down approach;

◮ It is based on the Fault Tree Analysis which this approach aims at
being generic;

◮ We identified major undesirable events:

◦ We discovered new attack paths, someones are generic;
◦ And introduced high level-countermeasures.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 50/55

50/55

Conclusion (Cont.)

◮ We focused on the code integrity:

◦ Modification of the control flow;
◦ Corruption of the Java Card Linker [Hamadouche et al., SAR-SSI 2012],

[Razafindralambo et al., SNDS 2012] and [Bouffard et al., CRiSIS 2013];

◮ Each evaluated attacks succeeded on different cards

◦ Bottom-up approach ?
◦ We wear a white hat;

◮ Our approach aims at helping card manufacturers to clearly identify
the assets to protect.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 51/55

51/55

Common Criteria and the Fault Tree Analysis

Owners

Countermeasures

Vulnerabilities

Threat agents Risk

Threats Assets

impose

value

wish to minimise

that may

possess

to reduce

that may be

reduced by

to

may be aware of

give rise to

wish to abuse and/or may damage

to

that

increase

leading to
that

exploit

Common Criteria for Information Technology Security Evaluation

ISO/IEC 15048: Evaluation criteria for IT security – Part 1: Introduction and general model

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 52/55

52/55

Common Criteria and the Fault Tree Analysis
Code integrity’s

corruption

Executed code is
not the stored one

Executed code is
not the loaded one

Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Modifying
finally

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

Owners

Countermeasures

Vulnerabilities

Threat agents Risk

Threats Assets

impose

value

wish to minimise

that may

possess

to reduce

that may be

reduced by

to

may be aware of

give rise to

wish to abuse and/or may damage

to

that

increase

leading to
that

exploit

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 52/55

52/55

Common Criteria and the Fault Tree Analysis
Code integrity’s

corruption

Executed code is
not the stored one

Executed code is
not the loaded one

Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Modifying
finally

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

Owners

Countermeasures

Vulnerabilities

Threat agents Risk

Threats Assets

impose

value

wish to minimise

that may

possess

to reduce

that may be

reduced by

to

may be aware of

give rise to

wish to abuse and/or may damage

to

that

increase

leading to
that

exploit

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 52/55

52/55

Common Criteria and the Fault Tree Analysis
Code integrity’s

corruption

Executed code is
not the stored one

Executed code is
not the loaded one

Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Modifying
finally

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

Owners

Countermeasures

Vulnerabilities

Threat agents Risk

Threats Assets

impose

value

wish to minimise

that may

possess

to reduce

that may be

reduced by

to

may be aware of

give rise to

wish to abuse and/or may damage

to

that

increase

leading to
that

exploit

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 52/55

52/55

Common Criteria and the Fault Tree Analysis
Code integrity’s

corruption

Executed code is
not the stored one

Executed code is
not the loaded one

Execution of a
malicious code

Control flow
corruption

Type
confusion

Invoking an
unexpected

function

Fooling
the

exception
mechanism

Modifying
finally

clause

Faulty
table

jumping
operations

Corrupting
the

branching
instructions

RA

Frame Corruption

Confusing
invoker’s

state

Context
corruption

Return
address

modification

Code desynchronisation

RA

Owners

Countermeasures

Vulnerabilities

Threat agents Risk

Threats Assets

impose

value

wish to minimise

that may

possess

to reduce

that may be

reduced by

to

may be aware of

give rise to

wish to abuse and/or may damage

to

that

increase

leading to
that

exploit

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 52/55

52/55

Common Criteria and the Fault Tree Analysis
Code integrity’s

corruption

Executed code
is not the
stored one

Executed code
is not the
loaded one

Execution of a
malicious code

Control flow
corruption

Code desyn-
chronisation

Frame
Corruption

Security
Automatons

Owners

Countermeasures

Vulnerabilities

Threat agents Risk

Threats Assets

impose

value

wish to minimise

that may

possess

to reduce

that may be

reduced by

to

may be aware of

give rise to

wish to abuse and/or may damage

to

that

increase

leading to
that

exploit

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 52/55

52/55

Future Works

◮ The dissertation focused on How to execute ill-formed code? ;

◦ To do: checking the installation process;

◮ Analysing the code data integrity tree and the code and data
confidentiality trees;

◮ Designing dynamic FTA to take into account events’ order;

◮ Considering quantification of the probability for an attacker to
reach his objective:

◦ Given time or overall mean time for the attack to overcome it;
◦ On-going work based on Boolean logic Driven Markov Process.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 53/55

53/55

Thank you for your attention!
Questions?

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 54/55

54/55

Publications

During my PhD thesis, I have co-written 25 publications:

◮ 2 book chapters;

◮ 4 journal articles and 1 in the reviewing process;

◮ 3 invited conferences;

◮ 10 articles in international conferences with review and proceedings;

◮ 4 articles in national conferences with review and proceedings;

◮ 1 articles in national conferences with review and without
proceeding;

◮ 1 posters.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 55/55

55/55

Scrambling the memory

inshidden = ins⊕Kbytecode [Barbu’s PhD Thesis, 2012]

inshidden = ins⊕Kbytecode ⊕ JPC [Razafindralambo et al., SNDS 2012]

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 1/4

1/4

Scrambling the memory

inshidden = ins⊕Kbytecode [Barbu’s PhD Thesis, 2012]

inshidden = ins⊕Kbytecode ⊕ JPC [Razafindralambo et al., SNDS 2012]

0x8068: 0x00 nop

0x8069: 0x02 sconst_1

0x806A: 0x02 sconst_1

0x806B: 0x3C pop2

0x806C: 0x04 sconst_1

0x806D: 0x3B pop

Original code

0x8068: 0x42 nop

0x8069: 0x40 sconst_1

0x806A: 0x40 sconst_1

0x806B: 0x7E pop2

0x806C: 0x46 sconst_1

0x806D: 0x79 pop

[Barbu’s PhD Thesis, 2012] with
Kbytecode = 0x42

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 1/4

1/4

Scrambling the memory

inshidden = ins⊕Kbytecode [Barbu’s PhD Thesis, 2012]

inshidden = ins⊕Kbytecode ⊕ JPC [Razafindralambo et al., SNDS 2012]

0x8068: 0x42 nop

0x8069: 0x40 sconst_1

0x806A: 0x40 sconst_1

0x806B: 0x7E pop2

0x806C: 0x46 sconst_1

0x806D: 0x79 pop

[Barbu’s PhD Thesis, 2012] with
Kbytecode = 0x42

0x8068: 0x2A nop

0x8069: 0x29 sconst_1

0x806A: 0x2A sconst_1

0x806B: 0x15 pop2

0x806C: 0x2D sconst_1

0x806D: 0x12 pop

[Razafindralambo et al., SNDS

2012] with Kbytecode = 0x42

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 1/4

1/4

Chip Extraction

Acetone solution in a ultrasonic tank.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 2/4

2/4

How to remove the resin?

Solution to extract:

◮ Oxygenated water or

◮ 50/50 vol/vol
methanol/chloroform

Simmer during 3 hours in a
ultrasonic tank.

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 3/4

3/4

Chips Analysed with a Scanning Electron Microscope

Guillaume BOUFFARD A Generic Approach for Protecting Java CardTM Smart Card Against Software Attacks 4/4

4/4

	Introduction
	Contribution
	Experimental Results
	Conclusion and Future Works
	Appendix

