
Master Cryptis
Faculté des Sciences et Techniques

123 avenue Albert Thomas
87060 Limoges Cedex, France

Thomson R&D
1 avenue de Belle Fontaine

35576 Cesson-Sévigné, France

Internship Report

Analysis and Binary
Transformation

Public version

Author:

Guillaume Bouffard

Supervisor:

Antoine Monsifrot

Academic tutor:

Jean-Louis Lanet

Universitary years: 2009–2010





Abstract

This document describes the work done during the internship for my master
degree Information Technologies Security and Cryptography at the University
of Limoges, France, carried out with Technicolor at the Technicolor Security
and Content Protection Laboratories at Rennes, France.

This internship aims to protect the sensitive piece of code of a binary exe-
cutable without application source code knowledge. A sensitive piece of code of
a binary application is a set of the most uses instructions. In order to protect
this binary part, I extracted this sensitive piece of code of the binary application
and I replaced with that provides a way to communicate to a dongle. On this
dongle, the extracted protected instructions are putted and executed. Thus, to
correctly execute a protected application, the user needs a dongle which con-
tains the missed part of the executed application.

After a short presentation of the context and the company, I will present
each step to my internship. In a first time, I will describe how to find the
sensitive binary part of an executable program. When this part is found, I will
try to translate this piece of code in another language to protect it. Next, I will
modify the binary application, without the source code, to change the protected
piece of code by a set of instructions designed to communicate to the dongle
containing the extracted piece of code. That will take us to a proof of concept.
To conclude, I will sum up the completed objectives, the possible improvements
and the difficulties I have encountered.





Acknowledgments

First, I would like to thank Antoine Monsifrot, my supervisor during these six
months, for giving me the chance to do this internship, his help, his patience,
his kindness and his confidence during each moment of this training period.

Second, I want to thank the team of Technicolor Security and Content Pro-
tect Laboratories for their welcoming, their availability, their help and their
good humour where I have done my internship on a high note.

Moreover, I would like to thank all the teaching personnel of the master
Information Technologies Security and Cryptography for their advices, lessons
and exciting projects during these two years.

I cannot forget Marion Floury, Javier Franco-Contreras and Julien Devigne,
other interns in the same laboratory as me, for their help, advices, patience and
the good times done in the interns’ office.

Finally, I would like to thank Michaël Bouygues, Christian Chung and Lu-
dovic Courgnaud for their help during my internship.

i



Contents

1 The Internship 1
1.1 Technicolor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Technicolor Security and Content Protect Laboratories . . . . . . 1
1.3 My Internship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Internship subject . . . . . . . . . . . . . . . . . . . . . . 2
1.3.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Profiling applications to find their sensitive binary part 4
2.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 OProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Valgrind . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Tests, comparison and choice . . . . . . . . . . . . . . . . . . . . 6
2.2.1 OProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Valgrind . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Comparison and Choice . . . . . . . . . . . . . . . . . . . 7

3 Translating a computer piece of code to a dongle 9
3.1 State of art of assembler to Java translator . . . . . . . . . . . . 9

3.1.1 UQBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Modification of the binary application 11
4.1 ELF Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 State of the art of binaries modifier frameworks . . . . . . . . . . 12

4.2.1 MetAsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 Diablo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Diablo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.1 How does Diablo work ? . . . . . . . . . . . . . . . . . . . 13
4.3.2 My First Hello World . . . . . . . . . . . . . . . . . . . . 15
4.3.3 The CouCou World . . . . . . . . . . . . . . . . . . . . . 18

5 Proof Of Concept 21
5.1 Java Card side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Integers multiplication on Java Card . . . . . . . . . . . . 22
5.2 Communication between binary application and the smart card . 23
5.3 Binary Modification . . . . . . . . . . . . . . . . . . . . . . . . . 24

ii



Conclusion 26
Objectives accomplished . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Difficulties encountered . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Personal impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 30

Glossary 31

List of Figures 32

List of Listings 33

Appendices 34

A Matrix Product 35

B Profiling matrix product results 38
B.1 OProfile results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.1.1 Cost for each function . . . . . . . . . . . . . . . . . . . . 38
B.1.2 Cost for each instructions . . . . . . . . . . . . . . . . . . 38

B.2 Valgrind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.2.1 Valgrind Callgrind tool result . . . . . . . . . . . . . . . . 39
B.2.2 Valgrind BBV tool . . . . . . . . . . . . . . . . . . . . . . 41

iii



Preface

At the end of my Master of Sciences in Information Technology Security, I need
to make an internship to validate my degree. This training period must be made
in a company or a laboratory during four to six months. This work experience
allows me to discover, for the first time, the world of work.

I rather wanted to make my internship in a laboratory. After my university
formation, I wanted work in a research and development laboratory to computer
science because I wished to contribute to the computer science theory. Doing
my internship in the Technicolor Security and Content Protection Laboratories
was a way to discover, with a research subject, if this career path was suitable
for me.

iv



Chapter 1

The Internship

1.1 Technicolor

With more than 95 years of experience in entertainment innovation, Technicolor
serves as international base of entertainment, software, and gaming customers.
The company is a leading provider in production, postproduction, and distri-
bution services to content creators, network service providers and broadcasters.
Technicolor is one of the world’s largest film processors; the largest independent
manufacturer and DvDs distributor (including Blu-ray Disc); and a leading
global supplier of set-top boxes and gateways. The company also operates an
Intellectual Property and Licensing business unit. Technicolor Rennes makes
its substantial contribution to the Thomson portfolio.

Technicolor Rennes (Thomson R&D France) is the largest technology Center
of Technicolor. The Rennes center designs and develops innovative solutions for
the Communication, Media and Entertainment Industries. Technicolor Rennes
studies new technologies in the fields of compression, security, protection, trans-
mission, production and management of high definition contents. The Rennes
Center prepares the future generation of digital cable, satellite and IP equip-
ment and associated services for broadband network operators.

Established in Rennes for nearly 30 years and located within the Rennes Ata-
lante Science Park, Technicolor Rennes has built partnerships with top academic
institutions, public institutes, and industrial partners throughout Europe.The
centre is involved in all French and European research programs and is a co-
founder of the Media and Networks global Competitiveness Cluster, in Brittany
and Pays de la Loire.

1.2 Technicolor Security and Content Protect

Laboratories

Technicolor Security Laboratories is formed with 30 security experts and one
PhD student split between Rennes (France) and Hanover (Germany). The Lab-
oratories work on:

1



• Cryptography

• Signal processing for security

• DRM - content protection

• Network security

• Tamper resistance

It is within this surprising and interesting environment that I did my intern-
ship.

1.3 My Internship

1.3.1 Context

For software and game manufacturers in particular, illegal software duplica-
tion and intellectual property theft are two important problems without any
acceptable solution. So far according to the Japan’s Computer Entertainment
Suppliers Association (CESA) video game piracy for portable consoles like the
Nintendo DS and PSP around the world costs the gaming industry at least
$44.15 billion between 2004 and 2009 [1].

Unlike hardware protection, software protections are user friendly (as there
is no need to take care about a hardware token) and provide renewable security.
However, software protection could be analyzed and broken without expensive
equipment. It just requires skills and time. Therefore, software protections are
a lot more subject to attacks.

In this context, the use of hardware component seems to be interesting.
Some solutions like dongles already exist and are used to prevent illegal copies.
However, all the solutions we have found just verify the presence of the don-
gle. The verification of this presence only relies on software protection and by
consequence is no more robust than software protection.

1.3.2 Internship subject

This internship aims to find a robust solution to the problem previously stated.
This subject can divided in three parts (figure 1.1):

• First step, we need to find the interesting piece of code which can be
executed in a dongle. This piece of code needs a comprise between its
instructions size and how many times this piece of code is executed.

• Second step, when the piece of code to be protected is found, we need
to proceed to a binary transformation (computer assembler to a language
understood by a dongle).

• Finally, in the third step, we need to modify, statically, the application to
be protected, in order to replace the protected instructions by communi-
cation with the dongle. This step also provides a binary for the dongle
which contains the extracted pieces of code.

2



Binary executable
without source code

Search sensitive part of
the binary application

in a generic way

Extract the sensi-
tive piece of code

Translate the sen-
sitive piece of code

Protect the piece
of code in a dongle

Insert instructions to
communicate to a dongle

Modify binary
executable without

sensitive part

Figure 1.1: Internship objectives

1.3.3 Motivations

Every step during my formation, I discovered a new stage in the process of cre-
ating a clean and optimized application, through some development tricks, and
also pragmatism. Over the last 2 years, I had the occasion to work with smart
cards, Java cards, binary files [2] and hacked into some applications in order to
improve my understanding of inside story of computer sciences.

Nonetheless, until this internship, I never really worked at the compilation
stage of an application nor an executable structure. Thus, this training period
allowed me to discover a brand new unknown world, the beautiful world of
compilation.

1.3.4 Organisation

Like I explained in the subsection 1.3.2, my internship was split in three parts.
Each part did not take me a same amount of time to realize. Thus, the study
of the profile applications and the translate steps took me about a fourth of
internship time. The modification of the binary application took about four
mouths. The last weeks were reserved to made a proof of concept.

3



Chapter 2

Profiling applications to

find their sensitive binary

part

Dark, profound it was, and

cloudy, so that though I fixed my

sight on the bottom I did not

discern anything there.

Canto IV: First Circle

Dante’s Inferno

In order to dynamically find the application sensitive binary part with an
automatic mean, I realized, in a first time, a state of the art, where, I explain,
for each profiling applications, its characteristics. In a second time, I performed
a few tests in order to find the better profiling application.

2.1 State of the Art

2.1.1 Objective

The sensitive part of a binary application is a set of the most uses Basic Blocks
(BB). To found this piece of code, I need to dynamically check for each instruc-
tion how many times is it executed. To perform this step, I should to use a
profiler. A profiler reports each event do by a specific application. Thus, a
profiling application measures each instruction and resource used during this
execution.

In my case, I need to count for each instruction how many times did they
executed.

To find the best profiling application, this profiler can detect, with a finest
granularity, each executed assembler instructions. Moreover, this profiler does
not need any special compilation parameters.

4



Now, I describe two profiling applications (OProfile [3] and Valgrind [4] with
two different tools, Callgrind and BBV).

2.1.2 OProfile

OProfile is a profiler using a client/server architecture. A dæmon running in
the background, in kernel land, to analyse each action doing by the profiled
application and its external components. On other hand, a “client” dialog with
this dæmon to get the report of analysed application. According to OProfile
website [3]:

• Profiling application do not need any special recompilation,

• OProfile dynamically creates Control Flow Graph (CFG),

• The OProfile overhead is 1-8% in comparison to normal application over-
head,

• The profile data can be produced on the function-level or instruction-level
detail.

2.1.3 Valgrind

Valgrind [4] is a famous dynamic analysis tool. Now, it provides many features
like a memory error detector, two thread error detectors, a cache and branch-
prediction profiler, a call-graph generating cache profiler and a heap profiler.
Also, there are two experimental tools: a heap/stack/global array overburn de-
tector and the SimPoint [5] basic block generator.

To dynamically find sensitive binary part, I will describe Callgrind, a call-
graph generating cache profiler, and BBV, the SimPoint basic blocks generator.

Valgrind Callgrind tool

Callgrind [4] provides a simulation of the I1, D1 and L2 caches memory refer-
ences and instructions executed for each line of source code, with per-function,
per-module and whole-program summaries, and more information about Con-
trol Flow Graph. In opposition to OProfile, Callgrind execute programs about
20–100x slower than normal.

Valgrind BBV tool

BBV is a Valgrind experimental tool [6]. It analyses an application during its
execution and provides a list of basic blocks. Each BB is linked to its function
and its address in two files, a bb and a pc file. On one hand, a bb file contains
every basic block and, on the other hand, a pc file holds, for each BB, the begin
addresses, instructions number and the function name where it is contained.
These files use the SimPoint [5] file structure. This file organization is simple,
documented [6] and it is easy to automatically parse these files.

5



2.2 Tests, comparison and choice

In order to test each application, I used a simple modulus operandi. First,
I implemented a simple, and unoptimized, square 1024 matrix product in C
language (available on appendix A). Second, I profiled my matrix product with
each profiler and the best profiling application can detect, without source code
and not special compilation options, the most used basic block. Now, looking
what really makes each application.

2.2.1 OProfile

For test OProfile, I set it up with the commands describe in the listing 2.1. In
a first time, I ran a dæmon in the background. Next, I execute the program to
analyse. Finally, I recover the profiling report in order to found the most used
instructions.

# opcontrol --no -vmlinux \

--separate=all # Set -up OProfile

# opcontrol --start # Daemon started

/* Run application to analyse */

# opcontrol --stop # Daemon stopped

# opcontrol --dump # Check every things are doing

# for application was ran

$ opreport -l <ANALYSED_APPLICATION_NAME > \

--merge=all # Profiling report

$ opannotate --assembly <ANALYSED_APPLICATION_NAME > \

--merge=all # Get a profiling in assembler

# instruction level

# opcontrol --reset # Delete all profiling data

# opcontrol --shutdown # Daemon killed

Listing 2.1: OProfile commands

When the matrix product was profiled, I was able to read two types of
OProfile report. The first provides a report with the cost, in percentage and
its numbers of call, for each function (appendix B.1.1). The second type (ap-
pendix B.1.2) describes for each instruction, its cost on call number and per-
centage. Moreover these files are human readable.

2.2.2 Valgrind

Valgrind Callgrind tool

In order to test Callgrind tool of Valgrind, I used the explained parameters in
the listing 2.2.

At the end of the profiling step, Callgrind provides a report file. The file
format is described in the Valgrind documentation [7]. The used grammar is
more complex than OProfile report, I need to analyse statically the analysed
binary executable in order to determine correctly the sensitive piece of code.

6



valgrind --tool=callgrind \ # Tools to create application

# call graph

--dump -line=no \

--dump -instr=yes \ # Analyse each application

# instructions

--simulate -cache=yes \ # Simulate a cache

--collect -jumps=yes \ # Save every jumps applications

ApplicationToAnalyse # Binary to analyse

Listing 2.2: Valgrind configuration for Callgrind

Valgrind BBV tool

Finally, in order to test this tool, I used the parameters described in the list-
ing 2.3.

valgrind --tool=exp -bbv \ # Tools to create application

# basic block vector

--bb -out -file=bb.out \ # Output basic block vector file

--pc -out -file=pc.out \ # This file holds program counter

# addresses and function name

info

# for the various basic blocks

--interval -size=5 \ # Size of the interval to use

# (in instruction number)

ApplicationToAnalyse # Binary to analyse

Listing 2.3: Valgrind configuration for BBV

Profile with this tool needs a long time (few days to profile my matrix prod-
uct) and many storage space (report files need at least 2 gigabytes).

2.2.3 Comparison and Choice

To compare each profiler application, I measured the amount of time necessary
to run my matrix product (available on appendix A) with the same precision.
The table 2.1 shows the results.

Profiler Amount time to profile the matrix product
Without profiler 16 seconds
OProfile 18 seconds
Valgrind - Callgrind 26 minutes and 02 seconds
Valgrind - BBV 3 days 5 hours 15 minutes and 45 seconds

Table 2.1: Comparative of each profiler application.

With this table, OProfile is the quickest profiler. Moreover, with its dæmon
running in the background, the profiling step is invisible for the analysed appli-
cation.

The OProfile report (appendix B.1.1 and B.1.2) has a same granularity than
Valgrind BBV tool. It provides a same objdump disassembler output extend

7



with profiling information (for each instruction, its number of execution, etc.).

Each profiling tools monitored each external libraries uses by the profiled
application. In the internship goal, I need not this information.

Thus, I chose OProfile because of:

• Quicker profiling

• Invisible for the analysed application

• Report with a one instruction precision

• Finest granularity

Now, I have a way to determine the sensitive piece of code of a binary
application. In order to protect this set of instructions, I need to translate this
piece of code to execute this content on a dongle.

8



Chapter 3

Translating a computer

piece of code to a dongle

Nothing lost, nothing is created,

everything is transformed

Antoine Lavoisier

In the chapter 2, I found a mean to decide the sensitive part of a binary
executable. If I can extract a piece of code of a binary application, I need to
find a way to protect this part in an external component. Usually, this kind of
component has less resources than a computer (less memory, capacities, etc.).
Thus, this translation step should take into account the dongle technical capac-
ities.

In the interest of keeping a simple test system, I have used a smart card
like a dongle. In the world of smart card, the Java Card has been the most
used. This success comes from an easily development environment, very similar
to Java with a hardware abstraction and security. Thus, a Java Card Applet
can be run on a different Java Card. Moreover, a Cap File, a file containing
an Applet for Java Card, is normalized in a specification. You can modify, and
add a translated piece of code, with a generic means, before sending this file to
the smart card. There is a CapFileManipulator [2] can add piece of code, and
guarantee the file coherence.

3.1 State of art of assembler to Java translator

Automatically translating a language (here assembler) to another (Java) can be
provided by some frameworks. This conversion is a way to execute the protected
binary part in the smart card. Thus, the application cannot work without the
smart card containing the missing piece of code.

I found some language translators, but only one can translate assembler
instructions to another language. Most of these language translators convert C

9



language to another language.

3.1.1 UQBT

UQBT [8, 9], for a Resourceable and Retargetable Binary Translator, can trans-
late a specific architecture binary executable to another (figure 3.1).

Figure 3.1: UQBT generated target binary.

In order to improve UQBT, Cristina Cifuentes and her team [8] added a
Java Backend for GNU Compiler Collection (GCC). Based to egcs, an ancestor
of GCC, this project converts a piece of binary application to a Java .class

file using Jasmin. Jasmin is assembler for the Java Virtual Machine (JVM). It
takes as input a text description of Java classes, written in a simple assembler
JVM instructions. It converts them to a binary class files, loading by the JVM.

Unfortunately, I could not use UQBT and the Java Backend. The main
problem came from an incompatibility between egcs and the UQBT patch. Af-
ter an unsuccessfull researching step to resolve this trouble, I had to to suspend
this part in order to concentrate on the modification of the binary executable.

10



Chapter 4

Modification of the binary

application

Any sufficiently advanced

technology is indistinguishable

from magic.

Arthur C. Clarke

With the chapter 2, I can find an application sensitive part with a profiling
step. Now, I want a clean way to take the most important instructions of a
binary application in order to change it by a piece of code which provides a
smart card communication.

I will quickly explain how Executable and Linking Format (ELF) is used,
by GNU/Linux, to structure binary applications. Next, I will be doing a state
of art of binary modifier frameworks which will lead to the choice of the best
framework. Finally, I will explain how to use it with few simple examples.

4.1 ELF Format

Since 1995 [10], in the GNU/Linux kernel, ELF specification [11] is used to
describe object files, shared libraries and binary executables. If you look at
figure 4.1, you can see there are many connected sections (or segments), but ELF
files have undetermined and unordering sections. The main sections are [10]:

• ELF header containing informations which explains how to read this file,

• Program Header Table: this section, gives informations for Operating
System (OS) application loader. A binary executable must have it.

• .text section containing the program instructions,

• .rodata section is the place where constant data (strings value, etc.) are
saved,

• .data section hold all initialized data here by default.

11



• Section Header Table (SHT) locates all sections in the ELF file.

...

.data

.rodata

.text

Program header table

ELF header

Section header table

{

{

Figure 4.1: An ELF executable example [12].

You can see, on the figure 4.1, there are dependencies with each section.
Thus, if you want modify one section, you should correctly link sections (section
sizes, offsets, addresses, etc.). In order to easily modify an ELF file, I need to
use a framework.

4.2 State of the art of binaries modifier frame-

works

4.2.1 MetAsm

MetAsm [13] is a binary manipulator suite written in Ruby language.

Advantages

• MetAsm supports a lot of architectures (x86 (16/32/64bits), MIPS, PPC),

• MetAsm supports many executable format (Raw, MZ and PE/COFF (32
and 64 bits), ELF (32 and 64 bits), Mach-O (incomplete) and Universal-
Binary, a few other (a.out, xcoff, nds)),

• MetAms has advance features like live process manipulation, GCC/Microsoft
Visual Studio-compatible preprocessor, automatic backtracking in the dis-

12



assembler, C headers shrinking, linux/windows/remote debugging API in-
terface, a C compiler/decompiler, a gdb-server compatible debugger, and
various advanced features.

Drawback

• Framework implemented in pure Ruby language.

4.2.2 Diablo

Diablo [14] is a framework, developed in C language that provided binary ELF
modifications for lot of architectures.

Advantages

Diablo has three main advantages:

• Diablo is a rewriting linker: it takes object files and libraries from which
the modified program is built

• Diablo is safe: the extra informations is available at link time (in particular
relocation information), it is possible to correctly interpret the complete
binary, something is that not always possible without this information,

• Diablo is retargetable. Now, it supports many architectures (ARM, Alpha,
IA64, MIPS, PowerPC (32 & 64 bits), i386 and amd64)

Drawbacks

• Diablo only works on statically linked programs, need special compilation
parameter (-static for GCC),

• Diablo needs more informations about a standard compilation program.
In order to obtains this extra informations, we need to use the patched
GCC, glibc and binutils version.

Due to a lack of time, I just tested Diablo because it provides the features
than I need.

4.3 Diablo

In order to understand how Diablo works, I needed to discover, by some example,
this framework. Because of the lake of documentation, this step took me a long
time.

4.3.1 How does Diablo work ?

The figure 4.2 describes Diablo process, I can cut it in three parts. First, in
the blue zone, this framework parse at least one statically linked executable
and your map file, which contains formation about program’s global symbols,
disassemble the application and analyse statically each input file in order to
build internal structures. These internal elements, stored as an oriented graph,
are:

13



Parser

Disassemble

Flowgraph

Object files (.o)Map files (.map)Linked program

Some modifications

Disflowgraph

Assemble Modified binary

Figure 4.2: Diablo working explication.

• An object which contains a group of parsed binary files (Diablo input(s)),

• A set of ELF sections (see section 4.1),

• CFG is a set of functions, basic blocks, and instructions of Diablo input
file(s). All components are statically decided. For each information, its
successor and predecessor are defined like a double linked list,

• A set of functions contains basic blocks and its instructions,

• A set of basic blocks,

• A set of instructions,

• A set of Operation Code (opcode) with its parameters.

In the second part, the red part, when the internal structures are loaded,
We can interact with any instructions, basic blocks and/or functions. Diablo
provides some functions to:

14



• search a function, basic block or instruction by type, name or address,

• modify an Opcode and its parameters,

• add functions, basic blocks or instructions. . .

• . . . or delete it.

Finally, in the green part, Diablo reconstruct the binary program with our
modifications.

4.3.2 My First Hello World

In order to discover Diablo in-depth, I implemented a simple hello world program
in C language in the listing 4.1.

#include <stdio.h>

int main ( int argc , char **argv ) {

printf("hello world\n");

return EXIT_SUCCESS ;

}

Listing 4.1: My Hello World in C language

In the subsection 4.3.1, I explained that Diablo needs special compilation
options. Indeed, with that, and a patched toolchain [14], I can have some extra
information needed by Diablo (information added in the built binary and a
needing linked map file). To build correctly my “hello world”, I need to build
and link my application like in the listing 4.2.

# hello.c contains My Hello World code

gcc -c hello.c # We obtains hello.o

gcc -static -Wl ,-Map ,hello.map -o hello hello.o

Listing 4.2: Compilation steps

When the “hello world” binary is created, I disassemble it to see this assem-
bler instructions. To disassemble a binary executable, I used objdump [15] with
Intel syntax mode. In the listing 4.3, We have the disassemble version of the
main function.

080481 f0 <main >:

80481 f0: 55 push ebp

80481 f1: 89 e5 mov ebp ,esp

80481 f3: 83 ec 08 sub esp ,0x8

80481 f6: 83 e4 f0 and esp ,0 xfffffff0

80481 f9: b8 00 00 00 00 mov eax ,0x0

80481 fe: 29 c4 sub esp ,eax

8048200: c7 04 24 88 61 09 08 mov DWORD PTR [esp],0x8096188 ;

push "Hello World"

return 0 ;

8048207: e8 b4 04 00 00 call 80486 c0 <_IO_printf > ; call

printf

804820c: b8 00 00 00 00 mov eax ,0x0 ; push 0x0

8048211: c9 leave ; ready to stop application

8048212: c3 ret ; return eax (0 x00) and stop

Listing 4.3: My built and linked Hello World

15



The assembler version of the main function (listing 4.3), instructions, at
0x 08048200 (stack up “Hello World”) and 0x 08048207 (call printf function),
are the most important. To try to discover the Diablo potential, I want to
modify printf call by a file opening, write “Hello World” in the opened file,
and close it.

bbl  a t  0x80481f0 ( in  main a t  0x80481f0)

0x80481f0 :   pushl   %ebp

0x80481f1 :   movl    %esp,%ebp

0x80481f3 :   subl    $8,%esp

0x80481f6 :   andl    $-16,%esp

0x80481f9 :   movl    $0,%eax

0x80481fe :   subl    %eax,%esp

0x8048200 :   movl    $134832520, (%esp)

0x8048207 :   ca l l    80486c0

bbl  a t  0x804820c ( in  main a t  0x80481f0)

0x804820c :   movl    $0,%eax

0x8048211 :   leave   

0x8048212 :   re t     

_IO_printf (0x80486c0)

RETURN

EXIT HELL

HELL

(a) Original Hello World

bbl  a t  0x804822c ( in  main  a t  0x804822c)

0x804822c :   pushl   %ebp

0x804822d :   movl    %esp,%ebp

0x804822f :   subl    $8,%esp

0x8048232 :   andl    $-16 ,%esp

0x8048235 :   movl    $0 ,%eax

0x804823a :   subl    %eax,%esp

0x804823c :   movl    $134832529,(%esp)

0x8048243 :   cal l    80481f0

bbl  a t  0x8048248 ( in  main  a t  0x804822c)

0x8048248 :   movl    $0 ,%eax

0x804824d :   leave  

0x804824e  :   re t     

MyFunction (0x80481f0)

RETURN

EXIT HELL

HELL

(b) My File Handling

Figure 4.3: CFG of each binary file main function

In order to do these modifications, Diablo offers two possibilities: you can
insert, one by one, each assembler instruction or import a function or a set of
functions contained by an external object file. I have chosen the second solution
because it is the most simple, and, a quicker solution. So, I have implemented
a simple C file handling.

In the listing 4.4, I used two functions:

• the main function to have a working executable,

• the function MyFunction which created a file “output”, write the msg pa-
rameter in the opened file, and closed it. This function will replace the
printf call.

16



#include <stdio.h>

void MyFunction ( char * msg )

{

FILE * file = fopen ( "output" , "w" );

fprintf(file , msg);

fclose(file);

}

int main ( int argc , char **argv )

{

MyFunction ( "Congratulation !\n" );

return EXIT_SUCCESS ;

}

Listing 4.4: A Simple write data in C language

Usually, the function parameters are stacked up before the function is called
(like figure 4.3). Thus, if I just modify the call instruction, the called function
has same parameters on the stack. Diablo provides this feature and it can re-
solve the dependencies of the new inserted instructions.

If you remember the figure 4.2, Diablo parses your executable before disas-
sembling it. Between these two steps, you can to add extra object files in order
to add some extra functions in the input binary application.

1 /*

2 * Create an object with relocation information by

3 * emulating the link of the object.

4 */

5 obj = LinkEmulate (

6 /* relative address of the original executable to modify it */

7 "HelloWorld" ,

8 true // Reads the debug informations

9 );

10 LinkObjectFileNew ( /* Link in an extra file */

11 obj , // Defined original executable

12 "./ file_handling.o" , // Link in file name

13 SYMBOL_PREFIX , // Defines the prefix

14 TRUE , // Reads the debug informations

15 FALSE // Don ’t prefix undefined symbols

16 );

17 ObjectDisassemble (obj); /* disassemble */

Listing 4.5: Add extra binary file with Diablo

In the listing 4.5, We can see the Diablo function (line 10) to add an extra
binary file. After having linked an object file, I can use all imported functions
(here, MyFunction and main). Next, I just redirect the incoming and outgoing
edges which linked to called function by our inserted function. In this example,
and in order to redirect the edges, I deleted the outgoing edge of IO printf

calling basic block, listing 4.6, and the incoming edges of last basic block (list-
ing 4.7).

17



while

(BBL_SUC_FIRST (outgoing_bbl))

{

/*

* Get me the first

* outgoing edge

*/

t_cfg_edge * outgoing_edge =

BBL_SUC_FIRST(input_bbl);

/*

* Deleting first

* outgoing edge

*/

CfgEdgeKill

(BBL_PRED_FIRST

(input_bbl)) ;

}

Listing 4.6: Diablo instructions to
delete outgoing edges of a basic block

while

(BBL_PRED_FIRST (incoming_bbl))

{

/*

* Get me the first

* incoming edge

*/

t_cfg_edge * incoming_edge =

BBL_PRED_FIRST (output_bbl);

/*

* Deleting first

* incoming edge

*/

CfgEdgeKill

(BBL_PRED_FIRST

(output_bbl)) ;

}

Listing 4.7: Diablo instructions to
delete incoming edges of a basic block

Finally, I recreate (listing 4.8), incoming and outgoing edges linked to the
inserted function between each basic block.

CfgEdgeCreateCall(

/* cfg = OBJECT_CFG (obj); <= obtains Diablo Flowgraph step */

cfg ,

/* Representing the call site */

input_bbl ,

/* Representing the first block of the called function */

FUNCTION_BBL_FIRST(MyFunction),

/* Representing the return site (can be NULL) */

outpout_bbl ,

/* Representing the exit block of the called function (can be

NULL) */

FunctionGetExitBlock(MyFunction)

);

Listing 4.8: Diablo instructions to delete incoming edges of a basic block

With this modification, Diablo provides the modified binary with “Hello
World” written in a file instead of printing on the standard output.

4.3.3 The CouCou World

Previously, I explained how to modify a classic “Hello World” changing an in-
struction (printf call) by a call to our inserted function. Now, I will replace
“Hello World” printf parameter by “CouCou World” message. In the sec-
tion 4.1, I explained that the constant data are saved in the .rodata section.

In the following part, I use the modifications made in the previous subsection.

In order to modify data pushed on the stack before the function is called, I
need to add a new message in the .rodata section. Next, I need to stack up
this new data before the function is called.

18



First, I need to add the message “CouCou World” in the .rodata section.
With Diablo, I can add data on each section contents by the input binary
executable.

1 t_section* AddData2Rodata

2 ( t_cfg * cfg ,

3 char * data , // Data to add in .rodata section

4 t_uint32 data_size , // Size of data to add

5 char * data_name ) // Data name

6 {

7 // Initialisation step

8 ...

9 /* Give me .rodata section please */

10 srodata = SectionGetFromObjectByName (CFG_OBJECT(cfg),".rodata");

11 /* Create a Linker to my binary program */

12 linker = ObjectGetLinkerSubObject (CFG_OBJECT(cfg) );

13 /* Create a .rodata child section to add our new data */

14 MyData = SectionCreateForObject

15 ( linker , // Linker to the original object

16 RODATA_SECTION , // Section type

17 srodata , // Parent section

18 AddressNew32(data_size) , // Data size

19 data_name );// Section name

20
21 /* Copy data in the new .rodata child section */

22 memcpy(SECTION_DATA(MyData), data , data_size*sizeof(char));

23 return MyData;

24 }

Listing 4.9: Diablo instructions to add data in .rodata section

To add new data in the .rodata section, see listing 4.9, I need to follow four
steps:

• First, in the line 10, Diablo gives a pointer to the .rodata section.

• Second, I need a link to my original object, line 12.

• Third, line 14, I created a subsection of .rodata section in order to save
my new data.

• Finally, I copied, line 22, the new data in the new subsection.

Now, our message is saved in the .rodata section. It remains to stack up
this data before call the inserted function (MyFunction). Here, I would like to
change the “Hello World” address, such as function parameter, on a esp register.
Thus, I have, like on the listing 4.3, at the assembler instruction 0x 08048200:

mov DWORD PTR [esp] , 0x8096188

In this example, I pushed the value at the address 0x 08096188 on the esp

register. The stack up value corresponds to the “Hello World” address on the
binary executable.

In this case, I would like to modify this instruction, but Diablo does not
know the “CouCou World” address during the modification step. In order to
modify with the correct address, I need to declare, explicitly, the second mov

instruction parameter like relocatable for Diablo. For this, I need to use the
RelocTableAddRelocToRelocatable function.

19



reloc = RelocTableAddRelocToRelocatable

( OBJECT_RELOC_TABLE(CFG_OBJECT(cfg)),

/* relocate offset value */

AddressNew32 ( 0 ) ,

/* Instruction to modify */

T_RELOCATABLE ( mov ) ,

/* Address position to modify */

AddressNew32 ( 3 ) ,

/* it points to your message */

T_RELOCATABLE ( msg ) ,

/* the message is at offset 0 in the subsection you created */

AddressNew32 ( 0 ) ,

/* not a relocation to hell

* (hell = "it might point anywhere ")

*/

FALSE ,

/* not related to an edge of the control flow graph */

NULL ,

/* this parameter is no longer used and should be removed */

NULL ,

/* we don ’t need a symbol in the address calculation of our */

NULL ,

/* Calculation of the value */

"R00A00+" "\\" WRITE_32

);

/* force relocate mov instruction */

I386_OP_FLAGS(I386_INS_SOURCE1(mov)) = OPFLAG_ISRELOCATED;

Listing 4.10: Diablo instruction to relocate data address

The actual calculation of the value, for the last function argument, to be
written at this place:

• take the address of relocatable (R00 = msg; mov is the “from” relocatable
and hence not counted in this list),

• add the value of addend 0 (A00+),

• and then write the resulting 32 bits.

When Diablo has made this modification, the output binary application
write the message “CouCou World” in a file.

Diablo is complex, powerful, but poorly documented. Now, with my explica-
tions, I can, at least, add a external function, and new data, and change a call

instruction and these values stacked up before it. With these modifications, I
have enough knowledge to create a proof of concept.

20



Chapter 5

Proof Of Concept

Never trust anything that can

think for itself if you can’t see

where it keeps its brain.

Harry Potter and the Chamber of

Secrets

J.K. Rowling

Because of a lack time, I made the choice to create a simple proof of concept.
This proof aims to modify each multiplication instructions, in a 1024 square ma-
trix, in order to calculate these operations by our Java Card.

This proof of concept is realised on a x86 (32-bit) computer architecture. In
this architecture, an integer is stored on 32 bits. Most multiplication instructions
use, at least, two 32-bit registers. For the following, I use an integer number is
the same to 32-bit number.

5.1 Java Card side

The JCOP 31/36k v2.2 uses Java Card 2.2.1. In this version, I can only make
multiplication operations with byte (8-bit) and short (16-bit) numbers. More-
over, Java Card API 2.2.2 [16] specifies a math.BigNumber class which provides
elementary operations on a n-byte numbers (all implementations must support
at least 8-byte length internal representation capacity). Unfortunately, this class
is not present in our smart card Java Card Virtual Machine.

In the security laboratory, there is an implementation of a integer library
for Java Card with few elementary operations for 32-bit numbers. This class
provides only integers addition and subtraction but not integers multiplication.
Try to implement it!

21



5.1.1 Integers multiplication on Java Card

I have two 32-bit numbers a and b which can be written like:
{

a = a3x
3 + a2x

2 + a1x+ a0

b = b3x
3 + b2x

2 + b1x+ b0

So

a =
3

∑

i=0

aix
i and b =

3
∑

j=0

bjx
j

Then

a× b =
3

∑

i=0

aix
i ×

3
∑

j=0

bjx
j =

6
∑

k=0

Ckx
k

with Ck =

3
∑

i+j=k

aibj =

k
∑

i=0

aibk−i

With a computer point of view, a and b sent by a APDU request and received
by the smart card such as a 4-byte array. Thus, I can store these values like:

a = [a3, a2, a1, a0] and b = [b3, b2, b1, b0]

After I have selected my multiplication applet, and the card received the cor-
rect parameters, the smart card makes a classic and unoptimised multiplication
(algorithm 1).

Algorithm 1: Integers multiplication on Java Card

Input: a and b: unsigned numbers stored in a 4-byte array each
Data: ret: an array of byte with 7 elements
Result: a× b mod 232 in a 4-byte array
begin

temp←− 0 // This variable is a 16-bit number

arrayF ill(ret, 0)
for i = (Lenght(a)− 1) to 0 do

for j = (Lenght(b)− 1) to 0 do
temp←− ai × bi
ret[i+ j]←− LowPart(temp)
if HighPart(temp) 6= 0 then // carry propagation

if (i+ j) 6= 0 then
ret[i+ j − 1]←− HighPart(temp)

end

end

end

end
return ret

end

Now, the smart card can receive two 32-bit numbers and return their mul-
tiplication. For the next step, I need to find a way to send, at the smart card,
the 32-bit numbers to multiply, and receive the result.

22



5.2 Communication between binary application

and the smart card

The Java Card implements the ISO7816 specification. The ISO7816 is a stan-
dard describes a protocol which provides a structure to the APDU request.

There is an open source library, libpcsc-lite [17], providing low level func-
tions to communicate with a smart card. In order to use the Java Card func-
tions, it provides a complex C++ classes, implemented libpcsc-lite, and add
many features (multi management of smart card, cryptographic functions, etc.).

Of course, for our proof of concept, this kind of library is complex, and I
need just a function to select the multiplication applet, send 32-bit numbers to
multiply and receive the multiplication result.

Smart Card Manager Smart Card

Smart card connected

Select multiplication applet

Multiplication applet selected

Send numbers to multiply

Get multiplication result

Deselect multiplication applet

Multiplication applet deselected

msc

Figure 5.1: Communication between Smart Card Manager and the Smart Card.

To communicate with the Java Card, and our multiplication applet, I need
to follow this simple protocol (figure 5.1):

23



• Select multiplication applet

• Send 32-bit numbers to multiply to the multiplication applet

• Receive the multiplication result

• Deselect multiplication applet

Once this protocol is implemented, I can change, with Diablo, each multi-
plication instruction by a call to the Smart Cart Manager.

5.3 Binary Modification

The first solution to communicate with the smart card is not conclusive because
of Diablo cannot parses correctly the object files results from C++-language
source compilation. In order to have a working proof of concept, I implemented
a simple smart card manager in C-language which respects the protocol define
in the figure 5.1 using only libpcsc-lite dependency.

Modified application Smart Card Manager Smart Card

Get stacked up values

Smart card connected

Select multiplication applet

Multiplication applet selected

Send numbers to multiply

Get multiplication result

Deselect multiplication applet

Multiplication applet deselected

Stack up the result

msc

Figure 5.2: Communication between the modified application and the smart
card contains multiplication operation.

24



Now, the main idea is to change each multiplication instruction in my matrix
product (appendix A) by the function for communicate to the smart card. In
order to modify the binary application, I should to follow the protocol define in
the figure 5.2.

These modifications are very similar to these described for Diablo in the
subsection 4.3.2 and 4.3.3. Unfortunately, when I am writing these lines, Diablo
cannot parse the libpcsc-lite. I sent an email to the Diablo developers to
find a solution. Now, the problem is always here. . .

25



Conclusion

First, I describe the objectives accomplished this internship. Next, I explained
my difficulties. After, I suggest eventual perspectives for this work and to finish
I will make a personal conclusion about this internship.

Objectives accomplished

At the end of my internship, I can to profile binary application with a tool like
OProfile without program source code. This profiling application dynamically
described the cost of each executed instructions. Thus, with this information,
I will can determinate with the specific heuristics, the sensitive piece of code.
Theses heuristics will should study in another work.

Next, to translate the extracted sensitive piece of code in order to protect it
in a dongle, I tried to use UQBT. An external component cannot understand
the sensitive instructions. Because of the problems due to the age of UQBT,
this step has allowed to study a way for execute the sensitive set of instructions
on the dongle.

Finally, with Diablo, I can modify a piece of code in a binary executable
but this step needs at least the mapping files of the application to modify.
Thus, I can to find a set of instructions (the sensitive piece of code) in order to
replace that by the instructions to communicate to the dongle which contains
the protected piece of code. So as to give this modification consistent, the used
registers value should be sent to the dongle in order to the protect piece of code
does correctly executed.

Difficulties encountered

The main difficulty was my English level. During each step of my university
formation, I neglected to learn it. When I began my internship, I need to im-
prove himself the knowledges in this language. In order to take the tiger by the
tail, I practiced with emails exchange to Diablo developers later, reported the
conference sum up in English and, as you will see, I wrote my internship report
in the Shakespeare language.

Before this project, I did not really try to discover how binary executables
do was in an operating system. During I progressed my internship, I can under-

26



stand in-depth this side when I cannot to modify correctly a binary application.
Moreover, these difficulties allowed me to acquire how each compilation steps
do work.

Finally, Diablo is an undocumented framework. This lack off information
forced me by a trial and error method to discover how its working. Thus, with
progressive difficulty binary modification, and the helps of Diablo developers,
I succeed to understand Diablo working. Unfortunately, I cannot successful to
make the proof of concept because of Diablo cannot to parse the libpcsc-lite.
Now, this problem is persisted.

Possible improvements

In order to combine the advantages to Java Card Security and Java development
facilities, I had chose a Java Card such as a dongle to protect the sensitive piece
of code. This support is weak at the side channel attack. The works described
in [18] and [19] explains that executed instructions in a Java Card 2.2 and Java
Card 3 can be determined by a correlation attack. A strong type of dongle of
this attack should be used to protect the sensitive piece of code executed.

Next, in order to measure the cost of this protection, a complete proof of
concept should be implemented. Thus, with a knew application, you can test
each protection step (profiling, extraction of the sensitive piece of code, trans-
lation of the extracted instructions and the binary modification) for having a
global view. So, you can to determine the viability and the constraints of this
type of protection.

Finally, in order to improve the security, we should obfuscate the piece of
code that communicate with the dongle. You can obfuscate too the APDU
requests. Moreover, Diablo uses a older toolchain for make the binary modifi-
cations. Now, Diablo need a patched GCC-3.3 (GCC-4.5 is yet used). The used
version provides a security flaw on the generated binary. After a mail exchange
with the Diablo developers, the GCC-4.5 specifications managed by Diablo need
to a long time modification. Now, the developers preferred to improved the dif-
ferent architectures support.

Personal impact

During my internship, I discovered the aspects of a research final year project in
laboratory. This training period is the first time in a private laboratory. Thus,
I assessed the different dynamic than a public research center. The public labo-
ratory bases your researches on a thematic which that unnecessary linked with
the Companies needs. On the contrary, in a private lab, the researches are going
to the Company objectives and a project have to aims to be final product. I
liked contribute to the begin step of this project.

With this internship, I can discovered the reality of this subject type. Thus,
in a research, you preferred found a generic solution instead an only working

27



solution for the same problem. The second approach, the engineer method, is
the hander solution. Unlike that, the first approach provides the main line of
the future engineer works.

At the end of my studies, I would like to contribute to the computer science
theory with an innovative project. Thus, I am searching a thesis in order to
involve, on a research way, to the future computer science project.

28



Bibliography

[1] CESA. Piracy cost game industry over 3.8 trillion Yen. http://www.

andriasang.com/e/blog/2010/06/04/cesa_piracy_report/, June 2010.

[2] A.C. Noubissi, A.A.K. Séré, J. Iguchi-Cartigny, J.L. Lanet, G. Bouffard,
and J. Boutet. Cartes à puce: Attaques et contremesures. In MajecSTIC.
University of Limoges – XLim, November 2009.

[3] OProfile. http://oprofile.sourceforge.net.

[4] Valgrind. http://valgrind.org.

[5] SimPoint. http://cseweb.ucsd.edu/~calder/simpoint/.

[6] BBV: an experimental basic block vector generation tool. http://

valgrind.org/docs/manual/bbv-manual.html.

[7] Callgrind Format Specification. http://valgrind.org/docs/manual/

cl-format.html.

[8] Cristina Cifuentes, Mike Van Emmerik, Norman Ramsey, and Brian Lewis.
a retargetable static binary translation framework. Technical report, Uni-
versity of Queensland, 2002.

[9] Cristina Cifuentes, Mike Van Emmerik, and Norman Ramsey. Uqbt: A
resourceable and retargetable binary translator. http://www.itee.uq.

edu.au/~cristina/uqbt.html.

[10] Thomas Garnier. Introduction au format elf. http://www.

supinfo-projects.com/fr/2005/introduction_elf_fr/, Janvier 2005.

[11] ATT. System V Application Binary Interface. http://www.sco.com/

developers/devspecs/gabi41.pdf, March 1997.

[12] Wikipedia. Executable and linkable format. https://secure.wikimedia.
org/wikipedia/en/wiki/Executable_and_Linkable_Format, Juin 2010.

[13] Yoann Guillot and Julien Tinnes. The metasm assembly manipulation
suite. http://metasm.cr0.org/.

[14] PARIS research group, ELIS department, and Ghent University. Diablo is
a better link-time optimizer. https://diablo.elis.ugent.be/.

[15] The GNU binutils. http://www.gnu.org/software/binutils/.

29

http://www.andriasang.com/e/blog/2010/06/04/cesa_piracy_report/
http://www.andriasang.com/e/blog/2010/06/04/cesa_piracy_report/
http://oprofile.sourceforge.net
http://valgrind.org
http://cseweb.ucsd.edu/~calder/simpoint/
http://valgrind.org/docs/manual/bbv-manual.html
http://valgrind.org/docs/manual/bbv-manual.html
http://valgrind.org/docs/manual/cl-format.html
http://valgrind.org/docs/manual/cl-format.html
http://www.itee.uq.edu.au/~cristina/uqbt.html
http://www.itee.uq.edu.au/~cristina/uqbt.html
http://www.supinfo-projects.com/fr/2005/introduction_elf_fr/
http://www.supinfo-projects.com/fr/2005/introduction_elf_fr/
http://www.sco.com/developers/devspecs/gabi41.pdf
http://www.sco.com/developers/devspecs/gabi41.pdf
https://secure.wikimedia.org/wikipedia/en/wiki/Executable_and_Linkable_Format
https://secure.wikimedia.org/wikipedia/en/wiki/Executable_and_Linkable_Format
http://metasm.cr0.org/
https://diablo.elis.ugent.be/
http://www.gnu.org/software/binutils/


[16] Oracle. Java card 2.2.2 api. http://www.win.tue.nl/pinpasjc/docs/

apis/jc222/index.html.

[17] Pcsc-lite. http://pcsclite.alioth.debian.org/.

[18] Dennis Vermoen, Marc Witteman, and Georgi N. Gaydadjiev. Reverse en-
gineering java card applets using power analysis. InWISTP’07: Proceedings
of the 1st IFIP TC6 /WG8.8 /WG11.2 international conference on Infor-
mation security theory and practices, pages 138–149, Berlin, Heidelberg,
2007. Springer-Verlag.

[19] G. Barbu, H. Thiebeauld, and V. Guerin. Attacks on Java Card 3.0 Com-
bining Fault and Logical Attacks. Smart Card Research and Advanced
Application, pages 148–163, 2010.

[20] Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[21] J. Caballero, N.M. Johnson, S. McCamant, and D. Song. Binary code
extraction and interface identification for security applications. In Network
and Distributed Systems Symposium (NDSS), 2010.

[22] A. Maña, J. Lopez, J.J. Ortega, E. Pimentel, and J.M. Troya. A frame-
work for secure execution of software. International Journal of Information
Security, 3(2):99–112, 2004.

[23] Chenxi Wang. A security architecture for survivability mechanisms. PhD
thesis, University of Virginia, Charlottesville, VA, USA, 2001. Adviser-
Knight, John.

[24] Èric Petit. Vers un partitionnement automatique d’applications en codelets
spéculatifs pour les systèmes hétérogènes à mémoires distribuées. PhD the-
sis, University of Rennes 1, Rennes, France, 2009.

[25] Wikipedia. Basic block. https://secure.wikimedia.org/wikipedia/

en/wiki/Basic_block.

[26] Wikipedia. Opcode. https://secure.wikimedia.org/wikipedia/en/

wiki/Opcode.

[27] Wikipedia. Apdu. https://secure.wikimedia.org/wikipedia/en/

wiki/Apdu.

30

http://www.win.tue.nl/pinpasjc/docs/apis/jc222/index.html
http://www.win.tue.nl/pinpasjc/docs/apis/jc222/index.html
http://pcsclite.alioth.debian.org/
https://secure.wikimedia.org/wikipedia/en/wiki/Basic_block
https://secure.wikimedia.org/wikipedia/en/wiki/Basic_block
https://secure.wikimedia.org/wikipedia/en/wiki/Opcode
https://secure.wikimedia.org/wikipedia/en/wiki/Opcode
https://secure.wikimedia.org/wikipedia/en/wiki/Apdu
https://secure.wikimedia.org/wikipedia/en/wiki/Apdu


Glossary

APDU
The Application Protocol Data Unit (APDU) is the communication unit
between a smartcard reader and a smartcard. The structure of an APDU
is primarily defined by ISO/IEC 7816-4 [27] . 22, 23, 27

basic block
A basic block (BB) is a sequence of instructions with ony one entry point
and only one exit point [25] . 4–6, 14, 15, 17, 18

Control Flow Graph
A Control Flow Graph is a graph representation of the all paths can that
be used by a program. 5, 14

Diablo
Diablo is a retargetable link-time binary rewriting framework. A full de-
scription is giving in the chapter 4, section 4.2.2 . 13–20, 24–27

ELF
The Executable and Linkable Format is a common standard file format
for executables, object code, shared libraries, and core dumps [12]. 11, 12,
14

GCC
The GNU Compiler Collection is a collection of compilation system sup-
porting various programming language and provided by GNU project. 10,
12, 13, 27

Opcode
An operation code is the portion of a machine instruction that specifies
the operation to be performed [26] . 14, 15

31



List of Figures

1.1 Internship objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 UQBT generated target binary. . . . . . . . . . . . . . . . . . . . 10

4.1 An ELF executable example [12]. . . . . . . . . . . . . . . . . . . 12
4.2 Diablo working explication. . . . . . . . . . . . . . . . . . . . . . 14
4.3 CFG of each binary file main function . . . . . . . . . . . . . . . 16

5.1 Communication between Smart Card Manager and the Smart Card. 23
5.2 Communication between the modified application and the smart

card contains multiplication operation. . . . . . . . . . . . . . . . 24

32



List of Listings

2.1 OProfile commands . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Valgrind configuration for Callgrind . . . . . . . . . . . . . . . . 7
2.3 Valgrind configuration for BBV . . . . . . . . . . . . . . . . . . . 7
4.1 My Hello World in C language . . . . . . . . . . . . . . . . . . . 15
4.2 Compilation steps . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 My built and linked Hello World . . . . . . . . . . . . . . . . . . 15
4.4 A Simple write data in C language . . . . . . . . . . . . . . . . . 17
4.5 Add extra binary file with Diablo . . . . . . . . . . . . . . . . . . 17
4.6 Diablo instructions to delete outgoing edges of a basic block . . . 18
4.7 Diablo instructions to delete incoming edges of a basic block . . . 18
4.8 Diablo instructions to delete incoming edges of a basic block . . . 18
4.9 Diablo instructions to add data in .rodata section . . . . . . . . 19
4.10 Diablo instruction to relocate data address . . . . . . . . . . . . 20
A.1 matrix product.c . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.1 OProfile result – cost for each function version . . . . . . . . . . 38
B.2 OProfile result – Cost for each assembler instruction version . . . 38
B.3 Callgrind result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.4 Valgrind BBV tool result – BB out file . . . . . . . . . . . . . . . 41
B.5 Valgrind BBV tool result – PC out file . . . . . . . . . . . . . . . 42

33



Appendices

34



Appendix A

Matrix Product

Listing A.1: matrix product.c

/*

* =======================================================

*

* Filename: matrice_product .c

*

* Description : An unoptimised matrix multiplication

*

* Version: 1.0

* Created: 03/04/2010 04:12:16 PM

* Revision: 08/10/2010 11:24:53 AM

* Compiler: gcc

*

* Author: Guillaume Bouffard

* Mail: guillaume. bouffard@technicolor .com

* Company: Technicolor

*

* =======================================================

*/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#define SIZE_MATRIX 1024

/*

* {{{ Matrix initialisation

* \param matrix Matrix to allocate

* \param m Number of lines

* \param n Number of rows

* \return New created matrix

*/

int **

initialisation (int **matrix , size_t m, size_t n)

{

size_t i = 0; int **t = NULL;

matrix = (int **) malloc (m * sizeof (int *));

if (matrix == NULL)

{

perror ("Matrix not allocated");

exit (errno);

35



}

t = matrix;

for (i = 0; i < m; ++i)

{

*t = (int *) calloc (n, sizeof (int));

if (*t == NULL)

{

perror ("Matrix not allocated");

exit (errno);

}

++t;

}

return matrix;

}

/* }}} */

/*

* {{{ Delete a matrix

* \param matrix Matrix to delete

* \param m Number of lines

*/

void

delete_matrix (int **matrix , size_t m)

{

int **t = matrix; int i = 0;

for (i = 0; i < m; ++i)

{

free (*t);

++t;

}

free (matrix);

}

/* }}} */

/*

* {{{ Multiply two matrices

* \param m1 Matrix 1

* \param m2 Matrix 2

* \param m Number of matrix 1 lines

* \param n Number of matrix 2 rows

* \param p Number of matrix 1 rows == Number of matrix 2 lines

* \return Product of matrix 1 & 2

*/

int **

matrix_multiplication (int **m1 , int **m2 , size_t m, size_t n,

size_t p)

{

size_t i, j, k ; int ** multiplication ;

if (! initialisation (multiplication , m, p)) return NULL;

for (i = 0; i < m; ++i)

for (j = 0; j < p; ++j)

for (k = 0; k < n; ++k)

multiplication[i][j] += m1[i][k] * m2[k][j];

return multiplication;

}

/* }}} */

/*

* {{{ Randomize a matrix contents

* \param m1 Matrix to randomize

* \param m Number of matrix lines

* \param p Number of matrix rows

36



* \return Matrix randomized

*/

int **

randomize_matrix (int **matrix , size_t m, size_t p)

{

int i, j;

srandom (random ());

for (i = 0; i < m; ++i)

{

for (j = 0; j < p; ++j)

{

matrix[i][j] = random ();

}

}

return matrix;

}

/* }}} */

/*

* {{{ Main function

*/

int

main (int argc , char **argv)

{

int **m1 = NULL , **m2 = NULL , ** multi = NULL;

m1 = initialisation (m1 , SIZE_MATRIX , SIZE_MATRIX);

if (m1 == NULL)

{

perror ("M1 Created");

exit (1);

}

m2 = initialisation (m2 , SIZE_MATRIX , SIZE_MATRIX);

if (m2 == NULL)

{

perror ("M2 Created");

delete_matrix (m1 , SIZE_MATRIX);

exit (1);

}

randomize_matrix (m1 , SIZE_MATRIX , SIZE_MATRIX);

randomize_matrix (m2 , SIZE_MATRIX , SIZE_MATRIX);

multi = matrix_multiplication (m1 , m2 ,

SIZE_MATRIX ,

SIZE_MATRIX ,

SIZE_MATRIX );

if (multi == NULL)

{

perror ("Multiplication done");

exit (2);

}

delete_matrix (m1 , SIZE_MATRIX);

delete_matrix (m2 , SIZE_MATRIX);

delete_matrix (multi , SIZE_MATRIX);

return 0;

}

/* }}} */

37



Appendix B

Profiling matrix product

results

B.1 OProfile results

B.1.1 Cost for each function

opreport -l Produit_Matrice --merge=all

CPU: Core 2, speed 2600 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted)

with a unit mask of 0x00 (Unhalted core cycles) count 400000

samples % app name symbol name

106009 99.2594 Produit_Matrice matrix_multiplication

553 0.5178 no -vmlinux /no -vmlinux

77 0.0721 libc -2.11.1. so random_r

72 0.0674 libc -2.11.1. so random

52 0.0487 Produit_Matrice randomize_matrix

26 0.0243 libc -2.11.1. so __i686.get_pc_thunk.bx

3 0.0028 libc -2.11.1. so __memset_ia32

2 0.0019 libc -2.11.1. so _int_free

2 0.0019 libc -2.11.1. so _int_malloc

1 9.4e-04 Produit_Matrice initialisation

1 9.4e-04 ld -2.11.1. so _dl_fixup

1 9.4e-04 ld -2.11.1. so do_lookup_x

1 9.4e-04 libc -2.11.1. so calloc

B.1.2 Cost for each instructions

/*

* Command line: opannotate -a -t 50 Produit_Matrice --merge=all

*

* Interpretation of command line:

* Output annotated assembly listing with samples

*

* CPU: Core 2, speed 2600 MHz (estimated)

* Counted CPU_CLK_UNHALTED events (Clock cycles when not halted)

* with a unit mask of 0x00 (Unhalted core cycles) count 400000

*/

[...]

:

08048642 <matrix_multiplication >: /* matrix_multiplication

total: 106009 99.2594 */

38



samples %

[...]

: 804867d: jmp 804870b <matrix_multiplication +0xc9 >

: 8048682: movl $0x0 ,0 xfffffff0 (%ebp)

: 8048689: jmp 80486 ff <matrix_multiplication +0xbd >

2 0.0019 : 804868b: movl $0x0 ,0 xffffffec (%ebp)

: 8048692: jmp 80486 f3 <matrix_multiplication +0xb1 >

2744 2.5693 : 8048694: mov 0xfffffff4 (%ebp) ,%eax

29 0.0272 : 8048697: shl $0x2 ,%eax

2 0.0019 : 804869a: add 0xffffffe8 (%ebp) ,%eax

32 0.0300 : 804869d: mov (%eax) ,%eax

2845 2.6639 : 804869f: mov 0xfffffff0 (%ebp) ,%edx

18 0.0169 : 80486 a2: shl $0x2 ,%edx

2 0.0019 : 80486 a5: lea (%eax ,%edx ,1) ,%edx

24 0.0225 : 80486 a8: mov 0xfffffff4 (%ebp) ,%eax

2626 2.4588 : 80486 ab: shl $0x2 ,%eax

1 9.4e-04 : 80486 ae: add 0xffffffe8 (%ebp) ,%eax

: 80486 b1: mov (%eax) ,%eax

151 0.1414 : 80486 b3: mov 0xfffffff0 (%ebp) ,%ecx

2631 2.4635 : 80486 b6: shl $0x2 ,%ecx

: 80486 b9: add %ecx ,%eax

54 0.0506 : 80486 bb: mov (%eax) ,%ecx

1276 1.1948 : 80486 bd: mov 0xfffffff4 (%ebp) ,%eax

2213 2.0721 : 80486 c0: shl $0x2 ,%eax

: 80486 c3: add 0x8(%ebp) ,%eax

25 0.0234 : 80486 c6: mov (%eax) ,%eax

633 0.5927 : 80486 c8: mov 0xffffffec (%ebp) ,%ebx

2021 1.8923 : 80486 cb: shl $0x2 ,%ebx

: 80486 ce: add %ebx ,%eax

74 0.0693 : 80486 d0: mov (%eax) ,%ebx

1787 1.6732 : 80486 d2: mov 0xffffffec (%ebp) ,%eax

2057 1.9260 : 80486 d5: shl $0x2 ,%eax

: 80486 d8: add 0xc(%ebp) ,%eax

12 0.0112 : 80486 db: mov (%eax) ,%eax

862 0.8071 : 80486 dd: mov 0xfffffff0 (%ebp) ,%esi

1975 1.8493 : 80486 e0: shl $0x2 ,%esi

2 0.0019 : 80486 e3: add %esi ,%eax

135 0.1264 : 80486 e5: mov (%eax) ,%eax

64249 60.1582 : 80486 e7: imul %ebx ,%eax

7855 7.3549 : 80486 ea: lea (%ecx ,%eax ,1) ,%eax

2585 2.4204 : 80486 ed: mov %eax ,(% edx)

3876 3.6292 : 80486 ef: addl $0x1 ,0 xffffffec (%ebp)

3021 2.8287 : 80486 f3: mov 0xffffffec (%ebp) ,%eax

14 0.0131 : 80486 f6: cmp 0x14(%ebp) ,%eax

134 0.1255 : 80486 f9: jb 8048694 <matrix_multiplication +0x52 >

1 9.4e-04 : 80486 fb: addl $0x1 ,0 xfffffff0 (%ebp)

29 0.0272 : 80486 ff: mov 0xfffffff0 (%ebp) ,%eax

8 0.0075 : 8048702: cmp 0x18(%ebp) ,%eax

4 0.0037 : 8048705: jb 804868b <matrix_multiplication +0x49 >

[...]

B.2 Valgrind

B.2.1 Valgrind Callgrind tool result

version: 1

creator: callgrind -3.6.0.SVN -Debian

pid: 23048

cmd: ./ Produit_Matrice

part: 1

39



desc: I1 cache: 32768 B, 64 B, 8-way associative

desc: D1 cache: 32768 B, 64 B, 8-way associative

desc: L2 cache: 2097152 B, 64 B, 8-way associative

desc: Timerange: Basic block 0 - 1118197422

desc: Trigger: Program termination

positions: instr

events: Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw

summary: 41001103990 22624609395 2199170632 806 1209805220 327135

800 67376142 327037

[...]

cob =(5) /home/bouffardg/stage/test_Profiling/Programmes_tests/

Produit_Matrice/Produit_Matrice

cfi =(58) ???

cfn =(374) 0x080484d0

calls =1 0x80484d0

* 18 5 3 0 1

+5 1 1

+1 1 1

+1 1 1

+1 1 1

fn =(190) 0x0401f31c

0x401f31c 1 0 1 1

+1 1

+2 1 0 1

+1 1

+3 1

+6 1

+6 1 1

+6 1

+2 1

jcnd =1/1 +7

*

+7 1 0 1 1 0 0 1

cob =(3) /usr/lib/valgrind/vgpreload_core -x86 -linux.so

cfi =(42) ???

cfn =(194) 0x00000410

calls =1 0x410

* 15 6 3 2 0 0 2

ob=(4)

fl =(63)

fn =(298)

0xc6715 1

+6 1 0 1

+1 1

+2 1 1

+1 1 1

+6 1 1

+3 1

+5 1

+2 1

+3 1 1

[...]

fl =(37)

fn =(134)

40



0x15ff0 5 0 5 1 0 0 1

+1 5 5

+4 5 5

+4 5 5

+4 5

+5 5

+2 5 5

+1 5

+5 5

+2 5 5

fn =(178)

0x15fb0 1

+2 1 1

+4 1 1

+4 1

+5 1

+2 1

+2 1

+5 1

+2 1 1

totals: 41001104082 22624609211 2199170540 990 1209805220 327135

800 67376142 327037

B.2.2 Valgrind BBV tool

BB out file

[...]

T:1941:2 :1942:3

T:1943:2 :1944:3

T:1945:2 :1946:3

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

T:1947:5

[...]

41



PC out file

:ID:basic block address:function name

[...]

F:1627:8048554: initialisation

F:1777:8048576: initialisation

F:1778:804859a:initialisation

F:1780:80485 a9:initialisation

F:1810:80485 bc:initialisation

F:1811:80485 e7:initialisation

F:1779:80485 ef:initialisation

F:1821:80485 f7:initialisation

F:1926:8048642: matrix_multiplicati

F:1940:8048663: matrix_multiplicati

F:1941:8048676: matrix_multiplicati

F:1943:8048682: matrix_multiplicati

F:1945:804868b:matrix_multiplicati

F:1947:8048694: matrix_multiplicati

F:1946:80486 f3:matrix_multiplicati

F:1948:80486 fb:matrix_multiplicati

F:1944:80486 ff:matrix_multiplicati

F:1949:8048707: matrix_multiplicati

F:1942:804870b:matrix_multiplicati

F:1873:8048721: randomize_matrix

F:1889:804872d:randomize_matrix

F:1916:8048735: randomize_matrix

F:1918:804873e:randomize_matrix

F:1920:8048747: randomize_matrix

F:1921:8048760: randomize_matrix

F:1919:8048766: randomize_matrix

F:1922:804876e:randomize_matrix

F:1917:8048772: randomize_matrix

F:1923:804877a:randomize_matrix

F:1626:8048783: main

F:1822:80487 c0:main

F:1823:80487 e3:main

F:1871:80487 ff:main

F:1872:8048836: main

F:1924:8048852: main

F:1925:804886e:main

F:1607:8048910: __libc_csu_init

F:1609:804891b:__libc_csu_init

F:1618:8048929: __libc_csu_init

F:1619:8048962: __libc_csu_init

F:1608:804896a:

F:1615:8048970:

F:1616:8048994:

42


	The Internship
	Technicolor
	Technicolor Security and Content Protect Laboratories
	My Internship
	Context
	Internship subject
	Motivations
	Organisation


	Profiling applications to find their sensitive binary part
	State of the Art
	Objective
	OProfile
	Valgrind

	Tests, comparison and choice
	OProfile
	Valgrind
	Comparison and Choice


	Translating a computer piece of code to a dongle
	State of art of assembler to Java translator
	UQBT


	Modification of the binary application
	ELF Format
	State of the art of binaries modifier frameworks
	MetAsm
	Diablo

	Diablo
	How does Diablo work ?
	My First Hello World
	The CouCou World


	Proof Of Concept
	Java Card side
	Integers multiplication on Java Card

	Communication between binary application and the smart card
	Binary Modification

	Conclusion
	Objectives accomplished
	Difficulties encountered
	Possible improvements
	Personal impact

	Bibliography
	Glossary
	List of Figures
	List of Listings
	Appendices
	Matrix Product
	Profiling matrix product results
	OProfile results
	Cost for each function
	Cost for each instructions

	Valgrind
	Valgrind Callgrind tool result
	Valgrind BBV tool



