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Abstract: Smartcards are small electronic devices capable of processing and
storing informations in a secure and tamper-resistant way. They are equipped
with cutting-edge technologies to provide strong authentication and act as root-
of-trust in bigger systems. These devices are ruling important and diverse inter-
actions in our daily modern life by being for example involved in banking sys-
tems, telecommunications, public transportation and access control. In order to
make sure those devices security mechanisms and countermeasures stay at the
state-of-the-art, many governmental, industrial and academic research teams
are working on this subject. In this internship a new method is proposed to
asses the security and to benchmark the quality of the ISO7816 communication
interfaces implemented as software executed on the card. This report describes
a way to apply existing fuzz testing tools and methods to the smartcard specific
case.

Mots clés: Cybersécurité, fuzzing, cartes à puce, ISO7816, développement
sur cible embarquée, test logiciel

Résumé: Les cartes à puce sont des composants électroniques miniaturisés
capables de traiter de l’information de maniere sécurisée. Ses caractéristiques
en font une racine de confiance pour construire la sécurité à l’échelle d’un sys-
tème complet, les rendant ainsi incontournables dans notre monde moderne et
connecté. Nous pouvons mentionner, pour exemple, son utilisation dans les
transactions bancaires, les télécommunications, les transports en commun et le
contrôle d’accès.

Pour améliorer la sécurité de celles-ci, les cartes à puce alimentent de nom-
breux travaux de recherche. C’est dans ce cadre que ce projet propose une
nouvelle méthodologie, sur la base des techniques de fuzzing, pour évaluer la sé-
curité des implémentations logicielles des interfaces de communication ISO7816
de ces cartes. Dans ce rapport, nous présentons une manière d’appliquer des
outils de fuzzing existants et éprouvés au cas particulier des cartes à puce.
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Chapter 1

Project definition and goals

1.1 Introduction

This report is closing a three years period of education at the Grenoble na-
tional institute of technology and of apprenticeship at the national cybersecurity
agency of France to obtain the engineering degree. This document goes back on
three years of skills upgrading about the smartcards subject and presents the
final internship project consisting in fuzzing smartcards communication inter-
faces.

First chapters of this report aim to explain project stakes and context and to
settle all the necessary background information to understand the problematic
and proposed solutions. Especially, it will bring a particular attention to the
definition of a smartcard and its communication protocols. In a similar way it
will go through the concept of fuzzing, explain why this methodology is relevant
to the given situation. Subsequent chapters demonstrate the technical solutions
developed during the internship to apply fuzzing discipline to smartcards and
finally, results are presented and next steps for further work are identified.

1.2 The French national cybersecurity agency and
its research facilities

The two latest defence white papers ordered in 2008[3] and 2013[4] by the French
presidents Nicolas Sarkozy and Francois Hollande are both mentioning the stra-
tegic aspects around cybersecurity. It is clearly stated as a priority in the next
years for the sovereignty and security of the nation. The politics and decision
makers are advised to invest the resources to develop the trust, reliability and
the security in the systems of informations. As a result of these politics the Na-
tional Cybersecurity Agency of France (ANSSI ) was created in 2009 and was
given a great power to coordinate all the efforts in cybersecurity on a country-
wide scale.

ANSSI is part of the General Secretariat for Defence and National Security
(SGDSN ), an interministerial body placed under the authority of the French
Prime Minister which "assists the head of government in designing and imple-
menting security and defence policies"[2]. The agency was given various missions

6



Internship Feedback Fuzzing ISO7816-3

including anticipation of the threats against systems of information, defence of
governmental infrastructures and networks, protection of the vital operators
(OIV ), pro-active response to cybersecurity issues, coordination between state
entities, enhancing security awareness and education[6].

The internship takes place in the expertise department (SDE ) of the agency.
It is mainly structured as an aggregation of research laboratories. The goal is to
have teams of researchers who are permanently at the state-of-the-art on crit-
ical designated subjects to be able to provide expertise to other departments
or entities. They are also given the mission to stimulate and orient the aca-
demic and industrial research in their respective areas at the scale of France
and international community. The research efforts led by the agency are often
published in academic conferences and journals which enables peer reviews by
the international scientific community, thus reinforcing the scientific grounding
and credibility of the work accomplished by the agency. This also provides sci-
entific references to the industrial partners[5] and helps to improve the overall
security by making the informations widespread and publicly available.

More precisely, the internship takes place in the hardware security lab (LSC )
whose work aims to improve the security of hardware components like crypto-
graphic accelerators, secure elements and processors against a wide range of
physical attacks like side-channel and fault attacks and keep protected critical
assets like encryption keys.

1.3 Interest for smartcards and goals

Smartcards are small physical components with the ability to communicate,
store and process data. They usually aim to provide secure and tamper-resistant
storage to protect cryptographic assets and strong security primitives like cryp-
tographic accelerators. As they are designed solely for this purpose, they are
often part of a bigger system and act as a root of trust. Smartcard character-
istics are going to be discussed in depth in Section 2. Given its wide spread, its
critical position inside systems and its hardware nature, it naturally falls in the
field of interest of the hardware security research lab (LSC ).

This project is focused on the communication ability of the device. It is the
natural way to interact with the card, to execute commands on the card and
to access informations. Thus, it could be one of the biggest and most straight-
forward entry-point for a potential attacker, its implementation has to be very
secure, robust and the protocol specifications have to be strictly followed. This
research project aims to find new ways to asses the security level of the software
implementations of the communications drivers in current card implementations.

1.4 The functional needs

The smartcards have several standardized ways to communicate with the outside
world. The two most popular ones are the wireless protocol defined by the
ISO14443[9] using a close to NFC technology and the second one, the most
deployed one is the wired protocol defined by the ISO7816[12] standard. In this
project, we focus on the ISO7816 protocol detailed in Section 2.

The goal is to develop a methodology and tools to be able to assert the quality

16th June 2020 7 Page 7/59



Internship Feedback Fuzzing ISO7816-3

of the software implementation of the ISO7816 protocol of any smartcard. The
approach has to be automatable and reproducible. The developed tool has
to stress the implementation of the protocol to asses how well it is compliant
with the specifications and especially how well it defends itself against atypical
and malformed inputs. The tool has to produce reliable, interpretable and
comparable metrics in order to be able to take decisions about the quality of
the driver. It is also expected to detect when an input produces unexpected
behaviour and gather all the necessary diagnostic informations to reproduce it
and fix it.

1.5 The attacker model

When dealing with security, it is often important to make a model of the op-
ponent, especially how powerful he is, how much resources he can invest, how
much informations about the target he can access. The goal is to identify and
categorize its abilities. This model is then used to design the system and to
introduce the proper countermeasures. A very common way to categorize an
attacker is focusing on how well he is informed about the target. How much
information he can have about the design of the target and how much inform-
ations he can access during the runtime of the device. People mainly agree on
three categories.

The first one is the white-box model with the highest assumptions on the
opponent. In this scenario, the attacker has all the informations he wants about
the target, he has access to all the datasheets and he can instrument the target,
gather a lot of informations about its internals during the runtime of the target
device. The attacker has a clear view of the design and of what is happening
inside the target. As the assumptions are the highest, the attacks considered
in this model are potentially the most sophisticated and powerful and they give
the best appreciation of the security level.

The second one is the black-box model with the lowest assumptions about the
knowledge of the attacker. It is assumed that the attacker has no informations
about the design and about what is going on inside the target. He is only aware
of the input applied to the "black-box" and its output.

There is an intermediate grey-box model. In this case, the attacker is sup-
posed to have partial informations about the design and he is able to obtain
some intermediate computation results or measure some side-effects.

Nowadays from a designer point of view, in extension to the Kerckhoffs
rules[13], the approach is usually to make the higher assumptions about the
attacker and to design the security as if the attacker knew everything about the
target. The system is then called "secured by design", the developer does as
if the design was publicly available, the security is brought by a smart design
itself rather than by opacity. This is a relatively new approach in hardware
design and it is opposed (and has proven to be better) to the old scheme of
security by opacity where security is broken from the moment the attacker access
critical informations (through social engineering for example), thus breaking the
designers assumptions about the attacker.

From the attacker point of view, the tendency is rather to make less assump-
tions about the information it can access, thus he can make his attack scenario
more general and less dependent on sometimes hard to get or expensive inform-
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ation. Given the very limited access to smartcards applications and operating
system and the very restricted access to documentation, the black-box model
was naturally chosen in order to stay coherent with the open-sourcing goal. This
is a way to check the results an attacker could obtain even if he knows nothing
about the target.

1.6 Discussing the open-source nature of the pro-
ject

The project is meant to be open-sourced. The long-term goal is to make the
code, the documentation, the design and the tools freely and widely available to
the academic community, the industrials, the citizens and the certification and
governmental bodies. Everyone has to be able to build the tool, use it, modify it
and contribute. Thus, this project will contribute to improve the academic state-
of-the-art in this discipline, it provides tools to the designers and certifications
bodies to stress the security of their implementations. It enables the clients to
tests on their own the quality of the products they are buying and it compels
the industrials to produce devices which are resilient to state-of-the-art attacks
with publicly available tools. From the overall point of view and from the citizen
point of view, it brings more transparency and a greater trust into the targeted
systems.

From a project management point of view, open-sourcing is a way to leverage
more resources by interesting other people in order to contribute and make the
project go further. It ensures more sustainability by having more people working
on it from several entities and companies. It is not dependent on a single team
or a single person who can leave the company. It also introduces a way of
working proper to collaborative open-sources projects like rigorous methods of
versioning and of documentation writing.
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Chapter 2

Introduction to smartcards

and their communication

protocols

2.1 The need for a secure elements and a root of
trust

Before giving the functional and physical definition of a smartcard in Section 2.2,
they are several examples to explain how came the need for such components.
This helps to understand the criticality of those devices and the reason why the
LSC is focusing on this important field of research. The purpose of this section is
to go through the examples of the mobile telephony and of the banking systems
in order to make the reader to understand the role the smartcards are playing
in overall systems.

In the early 1980s, one of the first mobile phone systems was in use in the
United Kingdom. It was called TACS standing for "Total Access Communica-
tion System"[8] and it was a pretty good achievement with the technologies of
its time so the focus was not really on the security and the confidentiality. The
authentication of the user on the network was quite simple. The mobile hand-
set was storing two numbers in its internal memory. The first one, the Mobile
Station ISDN number (MSISDN ) is more or less equivalent to nowadays phone
number, it is used to dial with a specific user. The second one, the Electronic
Serial Number (ESN ), is a unique identifier for the handset. During the authen-
tication process, the phone was sending over the network the two numbers, the
network was then comparing the received pair with the ones stored in its central
database. If the ESN serial number of the phone was matching the MSISDN
number it is supposed to be attached to, then the access was granted and the
handset authenticated over the network. The security stopped so far. There was
no encryption process to ensure the confidentiality of the MSISDN and ESN
identifiers being sent on the network and no software or hardware mechanism to
prevent somebody (not being the service provider) from re-writing those num-
bers in the internal memory. It was then possible for a third-party to eavesdrop
the authentication process, to steal the two numbers and write them inside their
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own phone and then usurp the identity of the victim and do phone calls for free.
In the previously described case, there are several noticeable issues : the user of
the handset can not be trusted, there is a need to have a secure piece of memory
with read and write operations protected from an unauthorized person. It has
to be protected against physical means and software attacks. There is also a
need for cryptographic primitives to provide encryption. Those observations
conducted to the usage of SIM cards which are smartcards. In the banking
environment, similar situation are encountered with the credit cards. There is
a need to securely store the customer identifiers and prevent a third-party to
steal and copy signature keys. Globally, there is a need for a secure component
providing security primitive in order to build an overall trust in the system.

2.2 What is a smartcard ? Definition and de-
scription

As the form-factor of a smartcard can vary, its functional definition is more
relevant in the case of this project. In [8], it is defined as an object which :

1. can participate in an automated electronic transaction

2. is used primarly to add security

3. it is not easily forged or copied

4. can store data securely

5. can host/run a range of security algorithms and functions

Every computer system is built with multiple levels of abstraction and gen-
erally, higher layers must trust lower layers. The initial source of trust is called
the root of trust[15]. The Trusted Computing Group (TCG) encourage building
secure systems with a "physically secure trusted component that can be used
as a foundation upon which trust in the rest of the system can be built"[8,
p. 157]. All the entities in the overall system interact with this secure module
and can thus be given a good level of insurance that it is behaving as expected.
The smartcards, with the functional description aforementioned, are designed
to provide this root of trust.

A smartcard is typically composed of a few square milimeter large piece of
silicon embodied in a piece of plastic shaped as a card as depicted in Figure 2.1.
It contains a microcontroller able to process information, cryptographic accel-
erators, TRNG and memories like ROM , NVM and RAM . It is also provided
with metallic connectors to be able to communicate with an external card reader
via the ISO7816 protocol described further in Sections 2.6 and 2.7. It eventu-
ally embodies an antenna for NFC communication using the ISO14443 protocol.
The shape and physical characteristics of the card are standardized in ISO7816-
2[11]. When dealing with the wired communication, the electrical characteristics
and low level communication protocols are defined in the ISO7816-3[12]. Then,
the ISO7816-4 standard gives a functional description of the application level
communication protocol used both in wired and NFC communications. It is
based on the APDU s described in Section 2.5.

In both contact and contact-less modes, the card interacts with a reader
device. Its role is to provide power and clock to the card and initiate the
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Figure 2.1: Typical smartcard shape with its contacts for providing ISO7816
communication. Klipe / CC BY-SA (https://creativecommons.org/licenses/by-
sa/4.0)

transactions. It typically request the card to read or write informations and
execute actions like a cryptographic computation. The card can be compared
to a web server[1, p. 21], it reacts on requests, stores and serves the information
requested by the reader while making sure that the information are served to a
strongly authenticated user.

2.3 Electrical interface

When using the wired communication protocol, the card is connected to the
reader by the metallic contacts depicted in yellow on Figure 2.1. This connector
is composed of several pins detailed on Figure 2.2 and their purpose is defined
in the ISO7816-3 standard[12].

The pin C5 (GND) is used to share a common ground, a reference electric
potential, across the reader and the card. It is used for both the power supply
and the communication. As long as the card is powered by the reader, the
pin C1 (VCC) is used to provide power supply to the card. Depending on the
use-case it can be 1.8V, 3V or 5V. The card does not have its own clock source,
the reader is in charge of providing the common time source through the C3
(CLK) input pin. It is specified to vary and take any value between 1MHz and
5MHz. The C2 (RST) is an input pin used by the reader to send a reset signal
to the card. The C7 (I/O) pin is the data transmission line used to exchange
informations with the protocols described in Sections 2.6 and 2.7. It is both an
input and an output because the communication protocol is half-duplex. All
the other pins are reserved either for future use or for proprietary use.
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Figure 2.2: Smartcard ISO7816-3 connector pinout. Dacs, WhiteTimberwolf /
CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

2.4 Operating system structure

To provide all the functionalities described in Section 2.2, the microcontroller
inside the card is running various pieces of software. Figure 2.3 gives a top-level
view of the different software layers of abstraction on a JavaCard technology
smartcard. First of all, the chip manufacturer provides a hardware abstraction
layer (HAL) with the microcontroller. This piece of software eases the access to
the hardware resources (like for eg. the UART/ISO7816 interface). It theoretic-
ally also makes the following layers independent from the underlying hardware.
Then, on the top of the HAL, there is an operating system in charge of man-
aging the physical resources like memory and CPU time. It is also in charge of
dealing with the ISO7816-3 communication interface via a dedicated driver. It
then exposes this service to the upon applications via a system API . Depending
on the implementation, this driver is usually executed in the kernel space. It
could be partially or not isolated. This makes it critical from a security point
of view, so this is the main part of code whose security has to be stressed with
the fuzzing approach. Then, on the top of this operating system, usually runs
a Java virtual machine (JVM ) which emulates the java instruction set to run
multiple java applets and ensuring java security policies. On the top of the op-
erating system and the JVM are running one or more Java applets, computer
programs defining the behaviour of the smartcard. Depending on the use-case,
those can be loaded in by the manufacturer, the card issuer or the user.

According to the attacker model defined in Section 1.5, in the frame of this
project, there is no access to the operating system to get informations about
how the driver under test behaves, no access to any logs or internal system
administration tools. Nor is it possible to have an accomplice applet on the
target.
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Hardware

Abstraction layer

Operating system

Java virtual machine

Applet Applet Applet

ISO7816 interface

ISO7816 support

ISO7816 driver

Figure 2.3: Top-level software architecture of the smartcard using te JavaCard
technology.

2.5 The Application protocol data unit (APDU )

The communication between the reader and the card is organized upon several
layers. Each layer brings a new service and a new abstraction level. The top-level
most abstracted unit described by the ISO7816 is the Application Data Protocol
Unit (APDU ). It can be compared to the "application layer" described in the
well known OSI model[10]. It directly carries application data and operations
to be executed by the card. These can be intended to the operating systems,
for example for file system management and system administration or can be
intended as well to specific applets running on the card. It is organized as
a client-server model, where the card reader sends requests and commands to
the card whose role is to respond, serve information and execute the requested
actions.

An APDU is a well defined data structure organized as a sequence of bytes.
It can be represented as a frame like described in Figures 2.5 and 2.6. There
are two kinds of APDU s : the APDU commands and the APDU responses. As
shown in Figure 2.4, the reader is always initiating the communication asking
the card to do something by sending an APDU command. Then, the card is
supposed to give an answer in the form of an APDU response. The roles can
not be inverted.

The APDU command (illustrated in Figure 2.5) is composed of a mandatory
header and a optional body. Structure and size of the header can not vary, it is
always composed of four fields of information designated by the names : CLA,
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Reader Card

ISO7816 protocol

≈ Client ≈ Server

APDU command

APDU response

Figure 2.4: Illustration of a typical APDU transaction. The reader sends an
APDU command to the card. The card answers back with an APDU response.

INS, P1 and P2. The CLA byte carries information about the class of the
instruction. INS is a byte coding for the instruction itself, it corresponds to
the action to be executed by the operating system. For example running an
applet or getting the content of a file. P1 and P2 bytes contain the operands
and options associated to the previous INS byte. Then, the body is composed of
the Lc, Le and data bytes from Figure 2.5, they are all optional. Lc can be one
or two bytes and it encodes the number of data bytes carried in the following
data field of the APDU command. Le can also be one or two bytes, it encodes
the number of data bytes expected as a response to this command.

The APDU response illustrated in Figure 2.6 is sent by the card when it
has finished to process the previously sent command. It is first composed of
an optional body eventually containing data returned by the card. It is then
followed by a mandatory two bytes trailer. These bytes called SW1 and SW2
encode an execution code indicating the status of the card, it usually says if the
command was processed correctly or if an error has occurred.

The bytes of information composing the APDU command are not directly
pushed in the transmission line. This is only a conceptual abstract object from
the application layer, it is not understandable by the physical components in
charge of emission and reception of bits. It has to go through several intermedi-
ate steps in order to serialize the data and deal with the reality of the physical
transmission line. This is partially the purpose of the underlying link layer pro-
tocol which encapsulates the bytes of information from the APDU . Smartcards
have the particularity that the ISO7816-3 standard defines two different proto-
cols to do the same task as pictured on Figure 2.7. They are respectively called
the T=0 and T=1 protocols, they are both discussed in Section 2.6 and Section
2.7.
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APDU command

CLA INS P1 P2 [Lc] [Data Field] [Le]

Command header Command body

instruction and

its parameters

Number of bytes

expected in answer

data field

number of data bytes

in the command

Figure 2.5: Illustration of the APDU command structure

APDU response

SW1 SW2[Data Field]

Response trailerResponse body

Execution

code

Potential data

sent back by the card

Figure 2.6: Illustration of the APDU response structure
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Figure 2.7: ISO7816 protocol is built upon several abstraction layers of abstrac-
tion. The APDU objects can be carried by either the T=0 and T=1 underlying
protocols.

2.6 The ISO7816-3 T=0 communication protocol

The aim of this section is to briefly discuss T=0 protocol. This protocol can be
roughly compared to the "link layer" defined in the well known OSI model[10]
even if in practice the isolation of this layer from the other ones is not very
strong. Its purpose is to enable the transmission of the APDU abstract object
over the transmission line.

This protocol operates by decomposing the APDU object into intermediate
structures called TPDU commands. As illustrated in Figure 2.8, the TPDU
can be respresented as a sequence of bytes. Its header is a sequence of five bytes
CLA, INS, P1, P2 and P3. The four first ones are matched on CLA, INS, P1
and P2 from the related APDU structure defined in Section 2.5. P3 byte is
used to encode the number of data to be transferred during the command.

There are different scenarios depending on the Lc and Le values defined
in Section 2.5 of the APDU structure. The exchange of TPDU s between the
reader and the card is not going to be the same depending whether data have to

TPDU command structure

[data bytes]CLA INS P1 P2 P3

Command payloadCommand header

Figure 2.8: Illustration of the TPDU command structure. CLA, INS P1 and
P2 are same as the APDU defined in Section 2.5. P3 encodes the number of
data bytes.
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Case 1 No command data field No response data field
Case 2 No command data field Response data field
Case 3 Command data field No response data field
Case 4 Command data field Response data field
Case 2E No command data field Extended response data field
Case 3E Extended command data field No response data field
Case 4E Extended command data field Extended response data field

Figure 2.9: The four structures of command APDU s.

be sent to the card or not and depending whether data are going to be expected
back from the card, how many data are expected, if both entities agree on the
amount of data etc... The possible scenarios are detailed in Figure 2.9. Usually
several TPDU commands and responses are exchanged between the reader and
the card to process a single APDU . Typically in the case 4 from Figure 2.9
(where the processing of the APDU command requires to send data bytes in
the direction of the card and then to get back data bytes from the card as a
response), a first TPDU is sent with the original command described in the
related APDU (CLA, INS...), with the data bytes which have to be sent, then,
when the card is ready, the reader sends another TPDU command to request
the answer from the card. The sequence of bytes fixed by the T=0 protocol
goes through the physical layer detailled in Section 2.8.

The reader first initiates the transaction by sending the first five bytes of
the header in a row. Then it waits for the card to answer back a so called
"procedure byte". It can be one of the four subsequent possibilities :

• 0x60, is a null byte, it tells the reader device the card needs more time to
process the instruction. It resets the timeout counter.

• 0x6x or 0x9x is an APDU response SW1 byte as defined in Section 2.5.
The reader is then supposed to continue to listen to receive the subsequent
SW2 byte.

• The same INS as the previous TPDU header (as defined in Figure 2.8). It
is an ACK byte, the reader is expected to send all the TPDU data bytes
in a row.

• The same INS as the previous TPDU header xored with 0xFF is an ACK
byte. The reader is expected to send only the next byte of the data field
and then to wait for another procedure byte.

2.7 The ISO7816-3 T=1 communication protocol

The T=1 protocol was designed to replace T=0 by bringing some improvements,
however T=0 is still largely in use nowadays. T=1 protocol is designed to
fulfil the same (link layer) functional needs than T=0 (detailed in Section 2.6),
however it is designed to improve some lacks in the previous protocol, especially
the isolation between the abstraction levels of the protocol stack. It makes a
clear distinction between the physical layer, the link layer and the application
layer. It is block oriented and improves error correction capacity. For the reasons
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NAD PCB LEN [INF] CRC/LRC

T=1 block structure

Prologue field Information field Epilogue field

Figure 2.10: Illustration of a T=1 protocol block as defined in ISO7816-3[12].
The block is composed of two madatory fields : epilogue and prologue and one
optionnal field : data. NAD, PCB and LEN are one byte long each. CRC/LRC
is on or two bytes depending on the checksum algorithm. Data field is up to
254 bytes.

exposed later in Section 4.1, the security testing efforts of this project are going
to be focused on that part of the ISO7816 protocol.

T=1 protocol is block oriented, that is, the APDU structure described in
Section 2.5 is cut in few bytes pieces which are then encapsulated in T=1 block
structures illustrated in Figure 2.10. This block structure is composed of three
byte fields : the prologue field, the information field and the epilogue field. The
prologue is a three bytes long mandatory field, it carries control informations
and metadata about the content of the block. The Node Address byte (NAD)
is used in the case of several devices on the same shared bus and is an advanced
functionality of the protocol. The Protocol Control Byte (PCB) encodes inform-
ations required to control the transmission, especially the "type" of the current
block among the three following possibilities :

• I-Block, meant to carry a payload composed of data bytes corresponding
to pieces of APDU s.

• R-Block, used as acknowledgement or error signaling.

• S-Block designed to negotiate communication parameters between the
reader and the card.

The LEN byte purpose is to encode the length of the subsequent information
field between 0 and 254. The information field is designed to carry the payload
encapsulated inside the current block (upper layer protocol data). The block
finally ends with a correction code, it can be one or two bytes long depending
on the kind of error detection/correction currently in use. It can be either
Longitudinal Redundancy Code (1 byte LRC) or Cyclic Redundancy Code (2
bytes long CRC).

I-Blocks are used to carry informations and data. If the maximum size of
the block is not enough to fit all the data bytes, then several blocks have to
be sent in a so called "chaining process". For this purpose, the I-Block PCB
contains a "sequence number bit" counting (modulo two) the sequence number
of the current block. It contains as well a "more data bit" used to indicate to
the other device that there is more data to be transmitted, and so, this is not
the last I-Block. After the reception of a chained I-Block, the device uses an
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Figure 2.11: Illustration of the chaining process taken from the ISO7816-3[12]
standard. It represents the "application data" frame being split in three distinct
blocks. I(M, S) is for an I-Block with more data bit M and sequence number S.
R(S) is for an R-Block requesting the I-Block with sequence number S.

R-Block to acknowledge it and to request the next one by explicitly indicating
the requested sequence number in the R-Block structure.

R-Blocks don’t carry any information field, they are sent as a response to
a previous block. They are used to acknowledge it or to ask the next one. If
something went wrong, for example a CRC error or wrong sequence number
received, their aim is to request again the block with the expected sequence
number. In their PCB, they carry a sequence number bit for this purpose.

S-Blocks are used to re-negotiate T=1 communication parameters. There is
the four following kinds of S-Blocks and they can be sent either by the reader
and the card. Each of them exists in its request form and its response form.
One device initiates the negotiation by sending an S-Block request, then the
other device can either acknowledge it or refuse by sending back an S-Block
response. S-Blocks eventually contain a 1 byte long information field encoding
the requested value for the parameter :

• IFS request and IFS response : is used in order to negotiate the maximum
size (in number of bytes) of the I-Blocks information fields.

• WTX request and WTX response : is used in order to negotiate timeout
value in between blocks.

• RESYNCH request and RESYNCH response : after several protocol errors
(like non-acknowledgement, wrong sequence numbers etc...) a device can
request a resynchronization, the protocol state machine goes back to a
known state.

• ABORT request and ABORT response : if after several errors and resyn-
chronisation attempts there is no improvements, then a device can request
to completely abort the transaction with this block.

2.8 Transmission of characters

In the OSI model[10] the "physical layer" corresponds here to the transmission
of characters/bytes and bits on the transmission line (I/O pin C7 from Section
2.3). The ISO7816-3 standard describes how to transmit a character in the I/O
line, it is quite similar to the standard UART protocol with some differences
which are going to be discussed in this section.
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Figure 2.12: Illustration of a character frame taken from the ISO7816-3
standard[12]. It is possible to see the ten moments composing the character
frame, the guard time and the error signal.

First of all, it is not exactly asynchronous because there is a shared clock
across the two devices via the pin C3-CLK (see 2.3), the two devices agree on an
elementary time unit (ETU ) which is a multiple of the shared clock period. This
number of ETU per second is equivalent to the baudrate in UART protocol. A
character is composed of 10 moments followed by a pause time as depicted in
Figure 2.12. A moment is defined as a 1 ETU period of time where the I/O line
is either at the state high or low. The pause time is defined as a several ETU
time period where the reader remains in reception mode. The first moment is
a start bit, the I/O line should be pulled to low state by the reader. Then, the
next 8 moments are coding for the byte of data to be sent. The 10th moment
is defined to be a parity bit to enable some basic error detection. After the last
moment the reader should remain in the pause state during at least two ETU .
This pause can be used by the other device to pull the I/O line to low state to
signal an error, the character is then sent again. The standard also defines a
guard time (GT ) and a wait time (WT ) and constrains on the time precision
of the ETU s. The GT is a minimum delay to be respected between the leading
edges of two consecutive characters and WT is the maximum delay between the
leading edges of two consecutive characters. It allows to detect an unresponsive
card.

Another big difference is that the communication is half-duplex, both the
card and the reader are using the same transmission line to emit characters. It
is assumed that (because of the higher level protocols described in Section 2.6
and Section 2.7) both devices know when it is their time to emit a character,
so no collision should happen. Thus, there is no need for an medium access
management protocol.
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Chapter 3

Introduction to fuzzing

Fuzzing is a software testing discipline, meaning it is a set of methods aimed to
help increase the level of insurance that a particular piece of software is behaving
as it was specified to. These tests are not specifically security oriented, it could
be used to test performances like execution time and memory usage to identify
situations where computer resources are used in an abnormal way while other
kinds of tests aim to make sure the outputs provided by the tested software are
those specified by the functional needs. Finally, it is also used to check if the
target is resilient to malicious inputs aimed to trigger non intended behaviours.
This project is mainly focused around the two last points. Fuzzing mainly
differs from conventional testing by the fact that the test routines are not hand
written accordingly to a specification, they are rather automatically generated
and checked by an algorithm. The purpose of this section is to introduce the
reader to fuzzing methodology and to settle down the necessary vocabulary and
background information.

3.1 Terms and definitions

In the fuzzing literature and in the very numerous available tools, the involved
terms are quite diverse and heterogeneous. This Section defines the most im-
portant vocabulary to describe the fuzzing process mainly accordingly to [14].

The Program Under Test (P.U.T) is the software implementation currently
being tested, it is represented on the right side in Figure 3.1. Fuzzer is another
entity external to the P.U.T represented on the left side, it performs the fuzz
testing (or fuzzing) by interacting with the P.U.T by applying inputs. Fuzzer has
access to the program output and depending on the attacker model (discussed
in Section 3.4) it can eventually have an embedded knowledge about target
implementation or access information about program execution. Then, "Fuzzing
is the execution of the P.U.T using input(s) sampled from an input space (the
“fuzz input space”) that protrudes the expected input space of the P.U.T"[14].
This means that the "fuzz input space" is not equal to the initially specified or
expected input space. The generated inputs can be a part of the expected input
space but could also be out-of-specification, malformed and unexpected inputs
which may be processed incorrectly and may trigger unintended behaviours. A
test-case is one element taken from the "fuzz input space" which is going to be
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Fuzzer P.U.T

Test-case input

Test-case output

Measurable side-effects

Initial knowledge about the P.U.T

Figure 3.1: Illustration of the interactions between the fuzzer and the P.U.T
(Program Under Test).

applied to the P.U.T. The fuzzing algorithm detailed in Section 3.3 sequentially
chooses test-cases in the "fuzz input space", applies them to the P.U.T in a
process called a fuzz iteration. The bug oracle is the part of the fuzzer in charge
of discriminating on the basis of the feedback informations if such an unintended
behaviour happened. The fuzz configuration is a set of parameters controlling
fuzzer execution, it is mainly composed of informations and description about
the input space. Different ways of describing it are presented later in Section
3.4.

3.2 The goal of the fuzzing algorithm

Typically the fuzz input space depicted in Section 3.1 is extremely large or even
infinite. Naive fuzzer implementations randomly sample this space. It is not
really efficient because the number of fuzz iterations achievable in a reasonable
finite time is not significant compared to the space size. A smarter fuzzing
process would rather implement a strategy to bring out the most promising
test-cases and try them first. Most of state-of-the-art implementations can be
compared to an optimisation problem. First, the operator chooses a metric cor-
related with the goal he wants to achieve, it could be for example a code coverage
ratio, the number of conditional branchments looked over or the number of unit
bugs found. Then, the fuzz algorithm goal is to try to browse the fuzz input
space in such a way that it maximises or minimizes this metric. Choice of the
metric is decisive, each of them has advantages and counterparts. For example,
a lot of available fuzzing tools are using code coverage which is easy to compute
but not always relevant because it gives the same weight to benign portions
of code and to critical ones. It also easily sticks into a local maximum. Most
sophisticated fuzzers implements evolutionary algorithms[14], machine learning
and deep learning methods[7] to learn in real time how the P.U.T reacts and
which test-case should be chosen next. Quality of the metric and of the op-
timisation is directly correlated to the amount of available informations about
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P.U.T execution and to the attacker model.

3.3 A general fuzzing algorithm

1 Input: C, tlimit

2 Output: B // a finite set of bugs

3

4 B← ∅

5 C← Preprocess(C)

6

7 while telapsed < tlimit ∧Continue(C) do

8 conf ← Schedule(C, telapsed, tlimit)

9 tcs← InputGen(conf)

10 // Obug is embedded in a fuzzer

11 B′, execinfos← InputEval(conf, tcs,Obug)

12 C← ConfUpdate(C, conf, execinfos)

13 B← B ∪ B′

14

15 return B

Figure 3.2: A generalization of a fuzz testing algorithm taken from [14].

In [14] is presented a fuzzing algorithm which generalizes well most of the
existing fuzzing processes and helps to understand the method implemented in
this project. It is presented in Figure 3.2 and takes as arguments a fuzzing
configuration C, a finite time bound tlimit and outputs a set of bugs B.

The Preprocess() instruction at line 5 is in charge of preprocessing the
fuzz configuration C. Typically it analyses the description of the input space
and tries to minimize it to save execution time. Depending on the scenario and
the attacker model this instruction also instruments the code to be able in the
next steps to gather feedback information about P.U.T execution.

Then, at line 7 the fuzzing process itself starts and runs until the time
limit is reached or until the Continue() function decides on the basis of the
configuration data to stop the process. Each execution of the content of this
loop is called a fuzz iteration.

At line 8, the Schedule() function takes as parameters information about
the current fuzz iteration and the global configuration C. It outputs the config-
uration conf to be applied for the current fuzz iteration.

The InputGen() function at line 9 takes as a parameters the current fuzz
iteration configuration conf and builds tcs, the concrete test-case to be applied
as inputs to the P.U.T.

At line 11, the InputEval() function takes as parameters conf , tcs and a
bug oracle Obug and applies the test-case to the P.U.T. On the basis of Obug,
the function decides if the execution went well or not and eventually returns
found bug B

′. It is also in charge of gathering information about the current
execution : execinfos, to be able to optimize in real-time to fuzzing process.
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Finally, ConfUpdate() function at line 12 uses the gathered feedback in-
formation about the current fuzz iteration to optimize the fuzzing process, es-
pecially the input space browsing, by updating the global configuration C.

3.4 Taxonomy

There is plenty of available fuzzing tools often designed for specific situations
and, in order to ease the choice of a particular tool, they can be put into different
categories. This Section presents several common ways to categorize fuzzing
tools.

The attacker model : Many available fuzzing tools are designed for a specific
attacker model, could be white-box, black-box or grey-box, conditioning the
amount of information the attacker has access to.

In the black-box model, the fuzzer is only aware of the current input to the
P.U.T and the current output and no more. To take a decision, the bug oracle
has only access to the target answer, same for the input space optimisation
algorithms.

The white-box attacker model is the opposite one. The fuzzer has access to
information about the P.U.T internals and design to elaborate a better space
search strategy. It could for example make use of static analysis techniques and
dynamic symbolic execution to identify critical and highly promising regions
before P.U.T execution. In this model the P.U.T is instrumented, for example
with a customized compilation process adding extra instructions and the fuzzer
is able to gather a lot of informations about the target execution, especially
with the help of the operating system and process monitoring tools.

The grey-box attacker model falls in-between the two previously discussed
ones. The fuzzer does not have access to P.U.T internals, however the code could
be instrumented and some sparse side-effects could be measured and used as
metrics to be optimized thanks to the operating system and process monitoring.

The input space description : There is two main concurrent ways to de-
scribe the fuzz input space to the fuzzer. First approach is the model-based one
where the space is defined by a formal model, often in the form of a language
grammar. All the test-cases are generated according to this model. The other
way is the mutation-based approach where the space is rather described by a
single example. The fuzzer is then in charge of deriving this example sample by
applying mutations to it, for example bitwise operations, permutations etc...

The state awareness : Many fuzzer implementations do not take in consid-
eration the current state of the P.U.T internal state-machine. A state-aware
fuzzer would rather try to exploit sequences of test-cases to bring the targeted
state-machine in a particular state. This enables exploring in depth P.U.T state-
machine to reach bugs which are not in the shallow states. It improves as well
the reproducibility of the found bugs because it keeps trace of the sequence of
successive states which led to it.
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Chapter 4

Top-level engineering choices

and strategy

4.1 Fuzzing at the T=1 abstraction level

The ISO7816-3 protocol stack illustrated in Figure 2.7 is a practical top-level
view for discussing the strategic decisions which led to the fuzzer conception
work. This schematic puts in evidence the three different abstraction layers in
use by the protocol : the physical layer, the link layer and the application layer.
The driver software aimed to be tested in this project is in charge of running
the link layer, it receives application data from applets running on the card in
the form of an APDU data structure, then it slices it up and passes the correct
sequences of bytes to be sent to the physical layer. For this reason, in order to
make sure to target specifically the driver implementation and not the applica-
tion running on top of it, the decision is taken to fuzz at the link layer abstraction
layer. This means that the test-cases forged and handled by the fuzzer are T=0
or T=1 data structures and are not APDU data structures. First, it brings the
problem discussed in Section 4.2 because the smartcard readers available on the
market are providing only the ability to handle APDU s with no control over
the underlying layers. Secondly, because there is two distinct link layer proto-
cols (T=0 and T=1, see Sections 2.6 and 2.7) the developed fuzzing tool has to
be specific to each of those protocols. Previously realized projects, especially
the implementation of the reader version of the T=1 protocol showed several
interesting lacks in the protocol specification discussed in section 4.3. This led
to prioritize first the development of the T=1 version.

4.2 Interfacing the targeted card with the fuzzer

A fuzzing software is very demanding in computing resources, it needs to per-
form a lot of computations and data manipulations to derive the models, find
optimal test-cases, check the answers and log the results. This is why it has to
be run on a regular computer rather than on an embedded target. Moreover,
the very large majority of existing tools are designed to run on a computer.
The problem comes with the observation that computers do not natively have
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Computer Bridge Card

Fuzz input

Fuzz output

APDU cmd

APDU resp

UART protocol ISO7816 protocol

Fuzzer

Figure 4.1: Schematic illustration of the overall fuzzing setup. The fuzzer on the
left side running on a computer is interfaced with the smartcard by the bridge
device depicted in the middle.

an ISO7816 interface to deal with a smartcard, an intermediate interface like
depicted in Figure 4.1 has to be added between the computer and the card.
It could have been a regular USB reader from the market however those are
not satisfying because they expose solely an interface at the APDU abstraction
level and this is incompatible with the needs expressed in Section 4.1. There is
a need for a reader capable of letting full control over T=0 and T=1 protocol
flow. This could help to enforce some particular cases in the T=1 protocol
and to push its state-machine into some previously identified and interesting
states discussed in the next Section 4.3. As a consequence, it was decided to
conceive a custom reader interface explained in Chapter 5 to match this need.
As suggested in Figure 4.1, its functional role is to receive test-cases from the
fuzzer running on the computer and then to retransmit them back to the card
following the ISO7816 specification.

4.3 Identifying interesting areas to be fuzzed

Work previously done during the two first years of apprenticeship has led to
a very precise knowledge and understanding of the T=1 protocol specification.
This experience is useful to identify parts of the specified state-machine which
are prone to software development errors and also to identify un-precise areas of
the specifications which can lead to different interpretations depending on the
developer. Several of these points are discussed in this section and are used to
prioritize the test-cases with the most promising results.

The primarily targeted dysfunction in the card driver is the buffer overflow
situation which generates big security concerns. It is a famous and frequently
exploited bug where the attacker tries to mislead the program to write more data
than it is expecting at a given place in memory. This enables the opponent to
(re)write program memory in locations where it is not supposed to have access.
The attacker can then change return values of functions or change informations
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influencing the program execution flow. Typically this is achieved by inputting
more bytes than it is currently expected, when the program writes these bytes
into its own memory locations, it exceeds the initially allocated space and the
bytes are being written in memory locations which were not initially allocated
for it.

Applied to the smartcard and T=1 situation, given a naively implemented
driver without any countermeasure, this kind of attacks could be, for example,
performed by sending an information block (I-Block, see Section 2.7) with more
data bytes than indicated in the LEN field. The driver would prepare a space in
memory of the size of LEN bytes and store the LEN first received bytes at the
expected location, then the received data bytes having indexes LEN+1, LEN+2
etc ... would be written outside the initially planned location, thus overwriting
other, potentially critical, memory locations.

For these reasons it is planned to focus fuzzing efforts on the control of data
field sizes. The T=1 I-Block LEN field are one way to influence this parameter,
but it is also possible to mention the IFS S-Blocks used to negotiate maximum
data field size (see Section 2.7).

Another point of interest is about the S-Blocks behaviour. These special
blocks can be sent either by the reader or the card and are used to negoti-
ate communication parameters or to resynchronize or abort a transaction (see
Section 2.7). The resynchronization request is particularly interesting because
previous development work on the T=1 protocol has put in evidence that its
effect on the protocol state-machine is not perfectly well defined and specified.
It is not very clear which settings have to be reset which should not be. The
state where the state-machine has to come back after such a block is free to
interpretation by the developer. This might lead to potential exploitable bugs
for this project.
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Chapter 5

The bridge connector between

the fuzzer and the smartcard

For the technical and strategic reasons given in Section 4 there is a need for an
interface device connecting the card to the fuzzer running on a computer. In the
context of this project, this device is called "bridge" and is conceptually placed
in between the computer and the card as depicted in Figure 4.1. It has on its left
an interface capable of dealing with a computer (discussed in Section 5.2) and on
its right another interface able to communicate with the smartcard (discussed
in Section 5.1). The purpose of this section is to go through the characteristics
of the bridge device, explain the design choices and the implementation details.

5.1 The smartcard communication interface

The smartcard communication interface is a conceptual component of the bridge
device in charge of enabling information exchange with the card. It is currently
a full stack implementation of the ISO7816-3[12] reader protocol (including
APDU s, T=0, T=1 and physical layer, respectively detailed in Sections 2.5,
2.6, 2.7, 2.8). On Figure 4.1, it is located in the entity labelled "Bridge" and
deals with the right side of the schematic. It is also represented on Figure 5.7,
labelled as "Reader". The implementation of this piece of software was part of
this project and was preliminary coded and tested during the two first years
of apprenticeship. Those kind of devices and implementations were already ex-
isting on the market at the time, however, for the reasons exposed in Section
4.2 it was chosen to re-implement it all from scratch. Especially it enables, for
example, to deal directly with the link layer protocols when fuzzing (where the
readers from the market are only exposing an APDU interface). Functionally,
it is a piece of software which takes as an input a sequence of characters to be
sent to the card, sends them, gets back the answer for the cards and finally
serves back to answer as an output.

Using this custom reader implementation gives the possibility to have more
sophisticated interactions with the card and also to enforce some specific be-
haviours at the low layers of the protocol stack which there is no control on
from the applicative layer. This makes the fuzzing process more complete. For
example, it is possible to directly interact with the character level (explained in
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1 rv = READER_HAL_SendChar(pSettings, READER_HAL_PROTOCOL_T1, byte, TIMEOUT);

2 if(rv != READER_OK) return BRIDGE2_ERR;

3

4 rv = READER_HAL_RcvChar(pSettings, READER_HAL_PROTOCOL_T1, &byte, TIMEOUT);

5 if((rv != READER_OK) && (rv != READER_TIMEOUT)) return BRIDGE2_ERR;

Figure 5.1: Usage of the custom reader library API to deal with the physical
layer, transmitting and receiving characters.

Section 2.8) by using the API pictured in Figure 5.1.

5.2 The computer communication interface

The computer communication interface is a bridge component enabling commu-
nication between the fuzzer running on the computer and the bridge. Function-
ally it is a piece of software inside the bridge which takes as an input informations
from the fuzzer, typically a test case to be applied to the card or configuration
informations, then forwards them to the bridge state machine. It is also in
charge of sending back to the fuzzer all the necessary feedbacks.

The choice of the communication technology across computer and bridge
was tough because various technologies can perform the same task. Mainly the
possibilities across USB , Ethernet, TCP/IP and serial were discussed. The
USB technology provides great throughput and reliability however such high
performances are not needed in this case and the software development over-
head and the cost in CPU time would have been too important. Moreover, the
chosen fuzzing tool discussed in Section 6.1 does not provide natively a USB
interface. For those reasons USB was rapidly put apart. Ethernet could have
been an interesting choice but it is also slightly too complex for our purpose..
The microcontroller being used in this project (see Section 5.3) has a native
hardware support for Ethernet however, the fuzzer chosen in Section 6.1 sup-
ports natively only TCP/IP connections. So it would be necessary to implement
the TCP/IP protocol stack in software, which is an important overhead in per-
formances, development time and an important source of errors and bugs. Thus,
TCP/IP and Ethernet were put apart too. The serial connection was found to
be very promising by being very lightweight with full hardware support for the
microcontroller side and a native implementation in the selected fuzzing tool
(see Section 6.1).

5.3 The hardware running the bridge software

As specified in Sections 5.1 and 5.2, the bridge is an hardware device physically
doing the link between the computer and the card and is expected to be able
to run the software implementation of the ISO7816-3 protocol from one side
and provide a serial interface from the other side. It is also expected to have
the computing capacity to run some middleware logic in the form of a state
machine in order to make the translation across protocols and eventually to
execute actions depending on the situation. These expectations are quite low so
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Figure 5.2: Picture of the STM32F407 Discovery board provided by STMicro-
electronics taken from its user manual[17]. The main chip in the middle is the
STM32F407 microcontroller, which is surrounded by all the necessary equip-
ment to make it run while easing programming and debugging.

a basic single core microcontroller with UART hardware peripherals is sufficient.
As long as the reader library mentioned in Section 5.1 has been developed for
an STM32F407 microcontroller target, the decision was taken to keep the same
target to host the whole bridge device. Given the fact that this device is not
aimed to be industrialized, sold or distributed, the pricing difference across the
different models and references are not criteria of choice. For the same reasons
it was also decided to design the whole project on the associated prototyping
board widely provided by the STMicroelectronics company called the "discovery
board" under the STM32F407G-DISC1 reference.

This prototyping board, visible on Figure 5.2, comes with a very complete
STM32F407[16] microcontroller and all the surrounding equipment necessary
to execute programs and to ease the development. For example it provides a
regulated power source, a crystal oscillator, USB to UART conversion chips
to ease interfacing with other devices, great connectors to ease pluging and
programming and debugging hardware.

The STM32F407 is a 32 bits architecture microcontroller chip manufactured
by the STMicroelectronics company. It integrates a powerful ARM Cortex-M4
core and very numerous peripherals all interconnected with an AHB internal
bus. Especially, it comes with very configurable UART peripherals that are go-
ing to be discussed later in this report. Also, this internal AHB bus is synchron-
ized at 128MHz in this project setup, it enables to achieve a great processing
speed compared to the protocols involved in computer and card communication

16th June 2020 31 Page 31/59



Internship Feedback Fuzzing ISO7816-3

interfaces. Indeed, the magnitude order for the transmission of a character on
both sides is one millisecond. This gives the comfort of coding the middleware
logic without caring too much about the real time constraints.

Another important criteria of choice for this device were the characteristics
of its integrated UART peripherals. The aim of this logic circuitry is to handle
a whole UART character transmission without involving the CPU in order to
save CPU time. As explained in Section 2.8, the physical layer of the ISO7816-3
protocol is similar to UART process to transmit and receive characters. The
UART peripherals embedded in this microcontroller are sophisticated enough
and flexible enough to get a behaviour matching the ISO7816-3 standard. Espe-
cially, it supports half-duplex communication, precise tuning of the number of
stop-bits, introduction of guard-time in-between characters and error detection.
A fractional baudrate generator enables easy and precise clock source genera-
tion at destination of the card and the configuration registers enable to produce
frames with the right structure (start bit, 8 bits payload and parity bit). This
way, it saves time on the development of the physical layer and unloads the
CPU to save performances for dealing with the higher layers.

5.4 The first, naive, strategy

Two different approaches have been used to conceive bridges state machine. This
Section describes the approach which was used as a first shot, it advantages and
the drawbacks that led to the second approach detailed in Section 5.5.

The first approach was focused on keeping it simple and getting some exploit-
able results as fast as possible. It consisted in a simple byte repeater between
the two interfaces previously described in Sections 5.1 and 5.2. When the bridge
was receiving a character from the computer on the serial interface, it repeated
it immediately back on the ISO7816 interface and vice versa.

This has several advantages, first the implementation of the state machine is
extremely simple, thus avoiding bugs and saving development time. The second
point is that, as long as the chosen fuzzer natively supports serial interface (see
Section 6.1) there is no need to work on a plugin interface in the fuzzer side, it
is completely transparent.

This method was working well in a matter of few days, however it suffered
from several serious lacks. Some very specific cases were problematic, for ex-
ample if the card starts to answer before the fuzzer finished to send its test case
to the card, there will be an access conflict over the ISO7816 half-duplex trans-
mission line. This could easily happen in a fuzzing situation were the length field
(see Section 2.7) is typically going to be altered to a smaller value to trigger a
buffer overflow. Moreover, it would be very practical if the fuzzer could request
the reader to perform some control actions like resetting the card or changing
communication parameters and this is not possible with this design. The reset
operation is particularly important because the fuzzer chosen in Section 6.1 is
state-aware and studying which sequence of actions is leading to a bug, so it is
important to be able to replace the card state machine in a very well known
state after each test case. Being able to change physical layer communication
parameters also offers great further work perspectives by hardening the fuzzing
process by playing with the physical layer. These observations led to the method
presented in Section 5.5.
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CTRL [LEN 1] [LEN 2] [LEN 3] [DATA]∗ CHECK

Frame

Optional bytes

Figure 5.3: Illustration of the block structure of the communication protocol
implemented between the computer and the bridge.

5.5 Second approach, the implemented protocol

The solution considered to solve the issues mentioned in Section 5.4 is to im-
plement a real application layer communication protocol over the serial link to
handle properly the data interchange and control flow information. The data
to send and actions to execute are encapsulated in block structures as depicted
in Figure 5.3. These block structures can be represented as frames composed of
the following bytes sequences :

First comes the mandatory CTRL byte, it is used to encode the type of the
block being currently sent. It can be one of the following values :

• DATA_BLOCK, its purpose is to carry a data payload. Typically it
carries the data to be sent by the reader or the response from the card.

• ACK_BLOCK is used to acknowledge a previously received block.

• NACK_BLOCK is used to indicate an error at block reception.

• COLD_RST_BLOCK is a control block used to ask the reader device to
perform a cold reset operation on the card.

Then, in case of a data block, the three next bytes, LEN1, LEN2 and LEN3
are big-endian encoding the length (in number of bytes) of the subsequent data
field. They are then followed right after by the optional data bytes. Finally, the
frame ends with a mandatory CHECK byte carrying an LRC error detection
code.

The protocol operation is then quite simple, each block sent by a device
has to be acknowledged by the other device with the dedicated block. The
acknowledgement block does not need to be acknowledged. Figure 5.4 describes
how the fuzzer and the bridge are interacting over time in order to process a
fuzz iteration.

First, the computer sends to the bridge a cold reset block to tell the reader
to execute the cold reset procedure on the card. After the reception of this
information, the bridge processes it and acknowledges the correct reception of
this block by sending back to the computer an ACK block. After ACK re-
ception, the computer transmits a data block containing fuzzers payload to be
sent by the reader. If it is correctly received, the bridge sends back an ACK
block. The bridge now internally retrieves the data from the block and pass
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Computer Bridge

Reset block

ACK block

Data block

ACK block

Data block

ACK block

Applying reset

Executing APDU

Figure 5.4: Illustration of the block structure of the communication protocol
implemented between the computer and the bridge.

them to the reader interface for them to be transmitted to card. The computer
is waiting until the reader gets back the answer from the card and initiates a
new block transmission to send the response back to the computer. When done,
the computer acknowledges it back.

5.6 Protocol state machine and its specificities

The piece of software running the computer-bridge communication protocol de-
tailed in Section 5.5 was meant to be full-asynchronous, full-duplex and in-
dependent form the hardware. The asynchronous property gives the ability to
think about keeping exchanging informations and commands with the computer
while the bridge is processing a request to the card at the same time. For ex-
ample, in a further improvement, it could enable the fuzzer to request a clock
glitch (or other) while the bridge is interacting with the card. The full-duplex
property enables the bridge to send data to the computer at the same time it is
receiving. In a further improvement of the bridge it could help to push up the
performances by saving communication time. This driver is also designed to be
completely independent from the hardware, it eases the testing and portability.
The aim of this Section is to go through the details of the state machine driving
this protocol.

Because of the full-duplex property, there are two separate state-machines
running at the same time, one is for block transmission to the computer, the
other one is for block reception, respectively depicted as "Transmission SM"
and "Reception SM" in Figure 5.7. There is a double-sided arrow across these
two because even if they are independent and concurrent processes they need
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to interact together, indeed, each block transmission is followed by an ACK
reception and vice-versa. In this section we are going to focus on these two state-
machines, the interprocess communication and the critical resource sharing.

Both the transmission and reception state-machines have a very similar
structure which can be represented by Figure 5.8. In this section, unless specified
otherwise, the considered state machine is the reception one, all the explanations
are transposable to the transmission state-machine.

To achieve the concurrency and the asynchronous property the state-machines
are interruption driven. Their state is re-evaluated at each TX empty (when
UART peripheral is ready to accept a new byte to be sent) and RX not empty
(when us UART peripheral has received a byte) interruptions. The state-
machine library exposes a set of public functions, the most important ones
are :

1 SM_Status SM_EvolveStateOnByteReception(SM_Handle *pHandle, uint8_t rcvdByte);

2 SM_Status SM_ReceiveBlock(SM_Handle *pHandle, BUFF_Buffer *pBuffer);

3 SM_Status SM_BlockRecievedCallback(SM_Handle *pHandle);

Figure 5.5: A selection of the most important public functions of the reception
state-machine API .

The first one, SM_EvolveStateOnByteReception(), is probably the most
important one. It is in charge of triggering the re-evaluation of the state-machine
current state. This function is typically designed to be put by the developer into
the RX not empty (RXNE) interrupt routine. It takes as arguments a pointer
on the current communication context structure and the value of the byte that
has just been received. The source code of this function is listed in Figure 5.6,
it helps to understand how the code is structured. Most of its code is aimed to
serialize the access to the communication context protected by mutexes. The
three most important instructions are at lines 16, 19 and 22 :

• SM_ComputeNextRcvState() computes the next state to go using the cur-
rent context and the received byte.

• SM_MoveToNextRcvState() moves the state-machine current state to the
one previously computed.

• SM_ApplyRcvState() applies the actions corresponding to the current
state.

The user of the library is free to use the SM_EvolveStateOnByteReception()
function where he wants in its code, it is his own responsibility to integrate it to
the interrupt routine. The state machine library is not directly provided with
the interrupt routines to keep independence from the hardware.

The second one, SM_ReceiveBlock() function is used to start the reception
process of a new block. It basically puts the state-machine to its initial state
and checks if sometimes a reception process is not already ongoing.

The last listed function, SM_BlockRecievedCallback(), is a callback func-
tion defined with a weak attribute which is aimed to be redefined by the user of
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1 SM_Status SM_EvolveStateOnByteReception(SM_Handle *pHandle, uint8_t rcvdByte){

2 SM_Status rv;

3 SEM_Status mutexRv;

4 SM_RcvState nextState;

5

6 if((pHandle->rcvHandle.flagRcptOngoing) == 0){

7 return SM_ERR;

8 }

9

10 /* Check if SM context is already accessed by another interrupt routine */

11 mutexRv = SEM_TryLock(&(pHandle->rcvHandle.contextAccessMutex));

12 if((mutexRv != SEM_LOCKED) && (mutexRv != SEM_UNLOCKED)) return SM_ERR;

13

14 if(mutexRv == SEM_UNLOCKED){

15 /* If everything is okay we process normally the state ... */

16 rv = SM_ComputeNextRcvState(pHandle, rcvdByte, &nextState);

17 if(rv != SM_OK) return SM_ERR;

18

19 rv = SM_MoveToNextRcvState(pHandle, nextState);

20 if(rv != SM_OK) return SM_ERR;

21

22 rv = SM_ApplyRcvState(pHandle, rcvdByte);

23 if(rv != SM_OK) return SM_ERR;

24

25 mutexRv = SEM_Release(&(pHandle->rcvHandle.contextAccessMutex));

26 if(mutexRv != SEM_OK) return SM_ERR;

27 }

28 else{

29 /* If reception context is already locked by another interrupt routine */

30 return SM_BUSY;

31 }

32 return SM_OK;

33 }

Figure 5.6: C source code of the public function on charge of re-evaluating
the state-machine state at each interruption. The important operations are
located at lines 16, 19 and 22, the rest of the code is in charge of context access
serialization.
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Figure 5.7: Illustration of the block structure of the communication protocol
implemented between the computer and the bridge.

the state-machine library. This callback is then a custom function automatically
called when the block reception process is over.

The first steps of the reception state machine depicted in Figure 5.8 are
quite straigth-forward. When the reception process is triggered by a call to
the SM_ReceiveBlock() function, the state-machine is placed into its initial
state, CTRL, and the RX interruptions are enabled. In this state, the process
is waiting for the reception of the first byte of the frame of the custom protocol
described in Section 5.5, it is the control byte. If it encodes a data block, then
the state-machine moves to the branch on the right side, it proceeds to the
reception of bytes LEN1, LEN2, LEN3 and all the data bytes. If it is not, the
state-machine directly moves to the reception of the checksum byte (CHECK).

The following part is then more subtle because it handles the interaction
with the transmission state-machine. When the CHECK byte is received and
when the block content has been verified, the reception state-machine has to
ask the transmission state machine to send an acknowledgement block to the
computer. It does it by setting a flag in the transmission state-machine commu-
nication context. This reception state-machine is also capable of providing an
analogue service to the transmission state-machine (receiving ACK after block
transmission). The main challenge of this state-machine implementation rises
with the full-duplex property because both a block transmission and a block
reception can occur at the same time, thus both an ACK transmission and
reception can be asked at the same time. However, during a block reception
(or transmission), the respective communication context are locked by a mutex
structure, thus making the start a new process impossible until the previous one
has finished, inducing a very problematic deadlock.

The reader has to keep in mind that the following part of the state-machine
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Figure 5.8: Illustration of the bridge reception state-machine.
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has been designed to bring a solution to avoid this deadlock situation. The main
observation is that, when being in the CHECK state waiting for the transmission
of its own ACK block, the reception state machine is not using the reception
hardware any more (which the transmission state machine is currently waiting
for). The idea is to integrate the ACK reception (for the transmission state-
machine) in the reception state-machine when the hardware resource becomes
free. Thus avoiding the transmission state-machine to start the new block re-
ception process in order to receive its own ACK .

When being in the CHECK state, if there is no ACK reception service
to provide to the other state machine (normal situation, left branch of the
graph), the state-machine tries to initiate a new block transmission process to
send its own ACK block. If it is busy (transmission process already ongoing),
then it notifies it to the transmission state-machine with a flag that an ACK
transmission is expected. The state-machine stays in the CHECK state while
this ACK has not been transmitted. When the transmission state-machine
finally processes the ACK , it triggers a re-evaluation of the reception state-
machine state to move it to the END state.

When being in the CHECK state, if there is an ACK reception service to
provide to the other state machine (right branch of the graph), the reception
state-machine initiates its own ACK transmission process as aforementioned,
then it takes advantage of this waiting time to handle ACK reception for the
transmission state machine. It receives the control block of the expected ACK
block and its CHECK block. Then, it continues waiting for the transmission of
its own ACK block before moving the the END state.

5.7 Development framework and toolchain

For the reasons exposed in Section 5.3, the STM32F407 microcontroller based
on a ARM Cortex-m4 core was chosen for this project. The devices from ARM
and STMicroelectronics come with a very wide range of tools, compilators, IDE
and libraries issued by the integrators, the founder, specialized companies and
the open-source community. For example, it is possible to cite the Eclipse1

IDE support for STM32 and the Keil2 development environment provided by
ARM but as well the STM32Cube3 device pre-configuration tool provided by
STMicroelectronics. In order to keep maximum control and understandability
over the compilation, flashing and debugging processes, the choice was made
not to use any IDE , but rather to make each step separately by hand.

Several languages were discussed to carry the project like C, Rust, Ada
and C++. Finally the C language using the ANSI /ISO C89 standard and no
dynamic memory allocation was chosen for several reasons. First, it ensures
maximum compatibility with those embedded targets and with the available
libraries discussed further in this Section. Then, it was saving the time of
learning a new language and removing the dynamic memory allocation helps
partially bearing memory safety problems specific to C language. It also aims to
keep code simple, with a clear vision of what is going on during the compilation

1https://www.st.com/en/development-tools/sw4stm32.html
2http://www.keil.com/
3https://www.st.com/en/ecosystems/stm32cube.html
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process. The compilation is done using the open-source arm-none-eabi-gcc4

compilator initiated by the ARM company.
The microcontroller also comes with a whole ecosystem of libraries, from

various origins, in order to avoid dealing directly with hardware, improving
portability and saving development time. In this project, the choice was made
to use the CMSIS 5 hardware abstraction library for the cortex-m core provided
and open-sourced by ARM coupled with the STMicroelectronics STM32 HAL
library abstracting accesses to microcontrollers hardware peripherals. Some
other libraries with higher abstraction levels are also available like the Mbed6

framework also provided by STMicroelectronics, it was judged not necessary and
obfuscating the precise operations happening on the device. These two afore-
mentioned libraries are not provided stand-alone but are rather included in the
heavyweight IDE software mentioned above not being used in the project. For
this reason, time was invested to understand and document the compilation and
linking process of those libraries in order to write equivalent build instructions
with a makefile.

Flashing targets memory was achieved using the STLink7 tool provided by
STMicroelectronics. The on-target tools setup is presented in Section 5.8

5.8 Code verification and testing strategy

To be able to asses the quality of the bridge implementation, the respect of the
functional needs and to save on-target debugging time, the software development
was framed by rigorous testing methods in an approach close to "test driven".
The ultimate goal was to be able to check and validate the behaviour of the state-
machine described in Section 5.5 on the development machine before flashing it
on the board.

First, the Unity8 library was incorporated to the project. It provides a
powerful set of test assertions macros illustrated in Figure 5.9. This framework
was chosen mainly because it is written in pure C code following the ANSI C
standard, thus enabling compiling the tests with the same compilator options as
for the real target bringing us closer to the reality when executing tests. Also it
is conceived to be eventually run on the embedded target, providing for example
configuration options to manage memory used by the framework. It is also a
well maintained, documented and updated open-source project.

Dedicated compilation procedures have been written to build the tests to
be able to run on the development machine. It brings the capacity to run the
tests on the computer when developing, saving time consuming hardware setup.
It is also a good way to stress the code portability by running it on another
architecture.

The difficulty of embedded code testing comes when dealing with hardware
dependent functions. As long as the tests are run on the development computer,
some portions of code can not be compiled for this target, they need to be
emulated. For example, it does not make sense to run on the computer the

4https://developer.arm.com/tools-and-software/open-source-software/developer-
tools/gnu-toolchain

5https://developer.arm.com/tools-and-software/embedded/cmsis
6https://os.mbed.com/
7https://www.st.com/en/development-tools/st-link-v2.html
8http://www.throwtheswitch.org/unity
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1 void test_BUFF_Init_shouldSetInitValues(void){

2 BUFF_Buffer buffer;

3 BUFF_Status retVal;

4

5 retVal = BUFF_Init(&buffer);

6 TEST_ASSERT_TRUE(retVal == BUFF_OK);

7

8 TEST_ASSERT_EQUAL_UINT32(0x00000000, buffer.writeIndex);

9 TEST_ASSERT_EQUAL_UINT32(0x00000000, buffer.readIndex);

10 TEST_ASSERT_EQUAL_UINT32(0x00000000, buffer.currentSize);

11 }

Figure 5.9: Example of a very basic unit test using the Unity library on the
circular static circular buffer implemented in the project. In lines 6, 8, 9 and 10
Unity test assertions macros are checking that the initial values of the circular
buffer structure are correctly set after the call to BUFF_Init().

microcontroller hardware initialization code, neither the ISO7816 characters
emission and reception functions.

To overcome this problem, the CMock9 framework was added to the project.
It provides a Ruby script automatically generating function stubs from header
files. For each mocked function, it generates a set of methods to be called during
the test routine in order to configure the behaviour of the mocked function. It
is a very sophisticated and complete tool providing many ways to explicit the
expected arguments for the mocked function and the values in has to return. An
example of CMock usage is shown in Figure 5.10, it prepares the emulation of a
sequence of calls to the READER_HAL_SendChar() function. It sets the expected
arguments for each successive call to this function and the value to be returned
(READER_OK). When compiling the tests, the stubs generated by CMock are
linked instead of the real functions which are not compiled at all.

This framework was kept for the project because very few tools are doing
this job and it is very complete. The project is open-sourced, very complete,
very well documented and maintained. The stubs are generated in ANSI C
code.

In order to gather some metrics about the quality of the testing, the process
was coupled with code coverage measurement tools. The goal is to be able to
measure which proportion of the written code has been run during the execution
of the tests and also to identify other portions of code which have not been
involved at all, suggesting incomplete testing routines to be improved. This was
achieved using gcov and lcov tools provided with the GNU toolchain. The
test binaries are compiled with the -fprofile-arcs -ftest-coverage options
enabling code instrumentation at compilation time. The instrumented test code
is then run and the code coverage information are gathered and analysed next
with the lcov tool and finally processed by genhtml tool to get a visually
nice and colourized coverage feedback as depicted in Figure 5.12. This testing
method has the benefit of being completely automatic and very fast. After each
modification in the source code it is possible in a matter of seconds to check

9http://www.throwtheswitch.org/cmock
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1 void setExpectedCharFrame(uint8_t *expectedBytes, uint32_t size){

2 uint32_t timeout = 1000;

3 uint32_t i;

4

5 for(i=0; i<size; i++){

6 READER_HAL_SendChar_ExpectAndReturn(expectedBytes[i], timeout, READER_OK);

7 READER_HAL_SendChar_IgnoreArg_pSettings();

8 READER_HAL_SendChar_IgnoreArg_protocol();

9 READER_HAL_SendChar_IgnoreArg_timeout();

10 }

11 }

Figure 5.10: Example of CMock framework usage configuring the way it is going
to emulate the behaviour of the function in charge of sending a character to the
smartcard.

1 state_machine.c:38:test_SM_ReceiveDataBlockShouldWork:PASS

2 state_machine.c:39:test_SM_ReceiveEmptyDataBlockShouldWork:PASS

3 state_machine.c:40:test_SM_ReceiveControlBlockShouldWork:PASS

4 state_machine.c:41:test_SM_TwoReceiveInARow:PASS

5 state_machine.c:42:test_SM_SendDataBlockShouldWork:PASS

6 state_machine.c:43:test_SM_TwoSendInARow:PASS

7 state_machine.c:44:test_SM_SendEmptyDataBlockShouldWork:PASS

8 state_machine.c:45:test_SM_SendDataBlockWhenRcvOngoing_case01:PASS

9 state_machine.c:46:test_SM_SendDataBlockWhenRcvOngoing_case02:PASS

10 state_machine.c:47:test_SM_SendControlBlockShouldWork:PASS

11 state_machine.c:48:test_SM_SendDataBlock_anotherBlockInsteadAck:PASS

12 state_machine.c:49:test_SM_SerializationOfDataBlockSendCalls:PASS

13 state_machine.c:50:test_SM_SerializationOfNonAckedBlockSendCalls:PASS

14 state_machine.c:51:test_SM_shouldNotWaitForAckAfterBusyBlock:PASS

15 state_machine.c:52:test_SM_rcvMutexShouldWork:PASS

16 state_machine.c:53:test_SM_SendMutexShouldWork:PASS

17 state_machine.c:54:test_SM_ExtraParasitByteReceived:PASS

18 state_machine.c:55:test_SM_checkAckIsSentAfterDataRcpt:PASS

19 state_machine.c:56:test_SM_checkAckIsSentAfterCtrlRcpt:PASS

20 state_machine.c:57:test_SM_checkAckIsCorrectlyQueued:PASS

21 state_machine.c:58:test_SM_EvolveStateOnByteTransmission_shouldResetTxeWhenDone:PASS

22 state_machine.c:59:test_SM_ACK_BLOCK_ReceivedCallback_Case01:PASS

23 state_machine.c:60:test_SM_ACK_BLOCK_ReceivedCallback_Case02:PASS

24 state_machine.c:61:test_SM_ACK_BLOCK_ReceivedCallback_Case03:PASS

25

26 -----------------------

27 24 Tests 0 Failures 0 Ignored

28 OK

Figure 5.11: Terminal output after running state-machine functional tests on
the development computer. It gives a good confidence level that it is behaving
as expected.
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Figure 5.12: Screenshot of a portion of the colourized code coverage report. It
clearly puts in evidence that the test procedure never went through the line 8
of the source code.

whether there is a regression for example.
When the unit and functional tests are passed and when there is a great

level of confidence that the state machine is behaving as it was conceived to, the
program is cross-compiled for the real target and flashed in the microcontroller
memory. The program is then run and begins the on-target testing phase. Those
tests are not automatic and way more time consuming. They are performed
using a logic analyser with probes connected on the ISO7816 electrical interface
(see Section 2.3) and on the computer-bridge serial link TX and RX pins. It is
then possible to observe the characters exchanged through the wires and check
that it is compliant with the protocol detailed in Section 5.5. A tiny Python
script is running on the computer to simulate the fuzzer sending a test case to
the bridge through the serial link.

Figure 5.14 is a screenshot from the logic analyser, it demonstrates the cor-
rectness of the protocol execution flow. The first line corresponds to the probe
on the ISO7816 clock line, it is a good indicator to see if the card reboots. The
second line is the probe placed on the ISO7816 I/O line, it gives visibility on
the characters exchanged between the bridge and the card. The third line is
probed on the serial link between the computer and the bridge, it catches the
characters being sent from computer to the bridge. The last line shows the
characters being sent in the opposite direction. The following is happening :

1. The computer send to the bridge a cold reset request. The bridge acknow-
ledges it back to the computer.

2. The reader part of the bridge performs the cold reset of the card. It is
followed by the ATR from the card, indicating that the reset happened.

3. The computer sends to the bridge a data block containing a test case to
be applied to the card. After reception the bridge sends back an ACK
block to acknowledge the correct reception.
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Figure 5.13: Global code coverage report over the whole project.

Figure 5.14: Screenshot of the logic analyser output. The computer is sending
a cold reset request, the card reboots, then the computer sends a test case to
be applied to the card. The card answers and the response is sent back to the
computer through the bridge.

4. The content of the previously received data block is sent to the card
through the ISO7816 IO line. The card answers back to the bridge right
after on the same half-duplex line.

5. The bridge sends back to the computer the previously received response
from the card. It encapsulates it into a data block. The computer ac-
knowledges the reception of the card response.

Testing methods aforementioned are well suited for putting in evidence the
presence of bugs or non-conform behaviour. The challenge is then to precisely
identify the portion of code inducing the bug to be able to fix it. This brings
the need for powerful debugging tools. When the tests are run on the computer
it is a relatively easy process with well known techniques and tools. In the
project, this is achieved using the very famous command line GDB debugger.
However, once flashed on the microcontroller, new issues can rise due to the
hardware interaction and dependency. It becomes then quite more challenging
to debug in real-time on target. The set up in this project (shown on Figure
5.15) is to use the JTAG core embedded in the Cortex-m CPU . JTAG is a
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Computer

JTAG interface

Microcontroller

JTAG core

CPU

GDB client

OpenOCD tool

OpenOCD core

GDB server

Telnet interface

Figure 5.15: On-target debugging process. The angular stone is the OpenOCD
software running on the computer. From one side it connects to the target using
JTAG protocol, from the other side it exposes a GDB server interface.

debugging system and communication protocol with a tester, giving the ability
to access in real time all the memory and registers and to control the execution
flow. The computer used for debugging (on the top of the schematic) runs the
OpenOCD10 software which can monitor the CPU through the JTAG interface.
On the other hand, OpenOCD also exposes a GDB server through a telnet
interface. The GDB client used for debugging can then connect to this server
and perform all the necessary operations.

10http://openocd.org/
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Chapter 6

The fuzzing engine

6.1 Choosing the appropriate fuzzing tool

Fuzzing methods explained in Chapter 3 have quickly become a mainstream
and popular technique for testing software and assessing its security. As a con-
sequence, extremely numerous fuzzing software projects have been initiated. A
good example is the GitHub platform where more than a thousand of repositor-
ies are linked to the "fuzzing" keyword. It has not always been so famous and
historically, the first experimentations which could be designated as "fuzzing"
nowadays were not initiated by science work, but rather by many independent
people empirically and anarchically trying to improve their conventional way
of testing on their own side without coordination. This situation has led to
a very large and heterogeneous ecosystem of fuzzing software. Academic and
research work has came later, generalizing the concepts, providing a common
ground, common vocabulary and the common "fuzzing" word to group all these
techniques. This situation has made the process of choosing a fuzzing tool a
tremendously time-consuming task.

Because some of these tools exists for a long time and because the research
in this area is currently very dynamic, the fuzzing algorithms are the result
of many years of research and empirical improvements, thus making some of
them very efficient. This maturity is the reason to use an existing core and not
to develop a new one from scratch. Finally, when taking all the requirements
together very few projects were matching them and the choice was made to use
a tool named Boofuzz1.

Boofuzz is an open-source fuzzing framework under the GPL v.2 license
which makes it fit with the open-sourcing goal of this project. At the same
time, the project GitHub repository shows a great and recent activity from
its numerous maintainers and the documentation is decent in comparison to
other projects. It is also written in Python language which makes it very easy
to modify and contribute to. For example it opens the perspective to change
mutations algorithms or to adapt it to the particularities of the target being
fuzzed in this project.

Technically speaking this fuzzer is designed to be run in black-box attacker
model and is specialized in protocol testing, thus making it equipped with all the

1https://github.com/jtpereyda/boofuzz
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necessary gear to be state-aware and to explore the state-machine of the targeted
device. It is also mainly model-based for the test-cases generation and brings a
powerful and very concise syntax to define them directly in Python language.
It is capable as well to do test-cases generation from models completed with
a mutation capability. From a practical point of view it comes with a native
serial interface which is saving development time when integrating with the
bridge interface.

6.2 Boofuzz usage

Boofuzz first needs to be initialized before being used, it is the process of creating
a Boofuzz Session object. It mainly involves the preliminary creation and
initialisation of a Connection object and a Monitor object as shown in Figure
6.1 taken as parameters by Session.

The connection object is mandatory and encapsulates the communication
methods necessary for the fuzzer to send requests to the target and to receive
responses. Boofuzz framework in its original version comes with two different
connection classes : TCPSocketConnection and SerialConnection, respect-
ively enabling the fuzzer to connect via a TCP connection or via a UART link.
the connection object is then wrapped into a target object, mainly adding
logging capability.

The monitor object is not mandatory and provides monitoring and admin-
istration of the target, especially : starting a process, rebooting, getting crash
synopsis, gathering logs, detecting crash etc...

1 procmon = ProcessMonitor(target_ip, 26002)

2 connection=TCPSocketConnection(target_ip, 21)

3

4 session = Session(

5 target=Target(

6 connection=connection,

7 monitors=[procmon],

8 ),

9 sleep_time=1,

10 )

Figure 6.1: Example of Boofuzz Session initialisation code taken from Boofuzz
documentation examples. Session initialisation requires as parameters a Con-
nection Object and a Monitor object.

6.3 Plugging the bridge to the fuzzer

In its current version Boofuzz is supporting only TCP and serial connections to
the targets to be fuzzed. The main counterpart of implementing the bridge to
computer communication protocol described in Section 5.5 is the necessity to
implement this protocol state-machine in the Boofuzz tool as well. It came out
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to be very easy because Boofuzz is an open-source, completely Python scriptable
and well structured software.

The first step is to develop the Connection object (see Section 6.2) specific
to the bridge target and its custom protocol. After a Booffuzz source code ana-
lysis it turns out that all the Connection classes are implementing a common
interface named ITargetConnection specifying its functional contract as de-
picted in Figure 6.3. The operation contract specified by this interface is very
understandable, the SmartcardConnection class added to the framework has
to implement the following methods :

• open() method opens the communication interface and initializes it for
the subsequent send() and recv() operations. In the case of the Smart-
cardConnection class to be implemented it is opening the serial FIFO file
provided by the operating system and setting up communication paramet-
ers like baudrate.

• close() method closes the current connection. In the case of the Smart-
cardConnection class is closes the serial FIFO file provided by the oper-
ating system.

• send() method sends a request (as defined in Section 6.4) to the target. In
the case of the SmartcardConnection class to be implemented it runs the
transmission state-machine of the custom protocol described in Section
5.5 and sends each individual character over serial link.

• recv() method receives the response from the target. In the case of the
SmartcardConnection class to be implemented, it runs the reception state-
machine of the custom protocol described in Section 5.5.

• info() method displays informations about the current connection.

Boofuzz source code comes with a class named SerialLowLevel (represented
on Figure 6.3) grouping and isolating all the necessary primitives to interact
with the serial link, thus helping the development of the SmartcardConnection
class.

The second step to create the smartcard plug-in is to develop a Monitor
object (see Section 6.2) specific to the bridge target and its custom protocol.
To do so, it is necessary to create a new SmartcardMonitor class completing the
ProcessMonitor and NetworkMonitor classes already existing by implementing
the BaseMonitor interface as shown in Figure 6.4.

In the BaseMonitor operation contract, the most important operation for
this project is the restart_target() method. The implementation of this
operation sends a cold reset block to the bridge in order to reset the card. This
helps to get relevant and reproducible results by bringing back the targeted card
protocol state-machine to a well known state after each fuzz iteration.

Finally Boofuzz framework initialization looks like in Figure 6.2.
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1 con = SmartcardConnection(

2 port='/dev/ttyUSB0',

3 baudrate=9600,

4 timeout=10,

5 content_checker=None)

6

7 sm_monitor = SmartcardMonitor(connection=con)

8 target = Target(connection=con, monitors=[sm_monitor])

9

10 session = Session(

11 target=target,

12 restart_interval=1,

13 restart_sleep_time=0.1,

14 sleep_time=0.1,

15 check_data_received_each_request=True,

16 receive_data_after_fuzz=True)

Figure 6.2: Initialization code to establish the connection and the monitoring
with the smartcard.
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Connectors

≪interface≫
ITargetConnection

+ open()
+ close()
+ recv()
+ send()
+ info()

SerialLowLevel

+ write()
+ read()
+ open()
+ close()

SocketConnection SerialConnection SmartcardConnection

This class is not ini-
tially a part of the
Boofuzz project. It
was developed on
purpose for this pro-
ject.

This class is not ini-
tially a part of the
Boofuzz project. It
was developed on
purpose for this pro-
ject.

All the connection
objects have to im-
plement the ITarget-
Connection opera-
tion contract.

All the connection
objects have to im-
plement the ITarget-
Connection opera-
tion contract.

Boofuzz provides a
helping class to deal
with serial link.

Boofuzz provides a
helping class to deal
with serial link.

These are the two
connection objects
already provided
with Boofuzz.

These are the two
connection objects
already provided
with Boofuzz.

Figure 6.3: UML class diagram showing the associations and dependencies
across the Boofuzz framework connection objects.
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Monitors

≪interface≫
BaseMonitor

+ alive()
+ pre_send()
+ post_send()
+ post_start_target()
+ retrieve_data()
+ get_crash_synopsis()
+ start_target()
+ stop_target()
+ restart_target()

ProcessMonitor NetworkMonitor SmartcardMonitor

All the monitor ob-
jects have to im-
plement the Base-
Monitor operation
contract.

All the monitor ob-
jects have to im-
plement the Base-
Monitor operation
contract.

This class is used to
monitor processes on
the local machine.

This class is used to
monitor processes on
the local machine.

This class is used to
monitor processes
on a remote machine
using the RPC pro-
tocol.

This class is used to
monitor processes
on a remote machine
using the RPC pro-
tocol.

This class is origin-
ally not a part of
the Boofuzz tool.
It gives monitoring
capability over the
smartcard.

This class is origin-
ally not a part of
the Boofuzz tool.
It gives monitoring
capability over the
smartcard.

Figure 6.4: UML class design representing the dependencies across the monitor
objects.
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6.4 Communication protocol modelling

Boofuzz explores targets state-machine implementation by sending sequences of
requests (also called messages) rather than single messages devoid of context.
To achieve that, it maintains its own graph (initially parametrised by the user)
of requests combinations to be sent shown in Figure 6.5. In this graph, each
node corresponds to a request to be sent. Each request is defined by a formal
model of how it is supposed to look like and how to derive from it the fuzzed
messages. Each connection across nodes is a path to be tested configuring the
possible request sequences to be explored. A complete sequence of requests
going from the initial node to one of the graph leafs is called a test-case.

NODE 0

NODE 1 NODE 2

NODE 3

= Request

= Test case

Figure 6.5: Illustration of the state-awareness concept involved in the Boofuzz
tool and the associated terms.

Boofuzz is mainly a model-based fuzzer, the model definition of the requests
is directly done in Python syntax and is simple and concise in comparison to
other tools. A message is subdivided in chunks called blocks and each block is
made of primitive elements. Various primitive types are provided with Boofuzz
and new types can be created if needed. As an example it is possible to cite :

• string

• delimiter

• static

• bit field

• binary

• random

• byte

• word

Figure 6.6 presents a basic example usage of the above mentioned primitives
in the case of FTP protocol. It models the initial request sent by the client
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to the FTP server to authenticate itself with a given username. The first line
sets the unique name to identify this request model in the Boofuzz framework,
it is set to be "user". Then, the model is defined to be two strings "USER"
and "anonymous" in a row separated by a delimiter and ended by a carriage
return. The type of the primitive has a influence over the kind of mutations to
be applied.

1 s_initialize("user")

2 s_string("USER")

3 s_delim(" ")

4 s_string("anonymous")

5 s_static("\r\n")

Figure 6.6: Example of a basic model definition of message taken from Boofuzz
documentation. It defines a message named "user" composed of four primit-
ive elements : a string, a delimiter, another string and a static (non-fuzzable)
element.

These sequences of primitive elements can then be grouped as blocks to ease
performing operations on them. These operations are as various as computing a
checksum of a block for adding it to the fuzzed frame, computing a size block and
repeating a block. This concept is illustrated in Figure 6.7 giving an example
model of a T=1 protocol (see Section 2.7) I-Block frame carrying an APDU
command (see Section 2.5). There are three main blocks named "prologue-
field", "information-field" and "epilogue-field". There is also a "body" block
encapsulating the prologue field and the information field which are involved
in the frame checksum computation. This enables, on line 27 to add a byte to
the fuzzed frame containing the LRC checksum as described in ISO7816. The
"bytes" block from line 18 contains all the APDU data field bytes, it gives the
possibility to compute their length to put it into the T=1 LEN field (see Section
2.7).

16th June 2020 53 Page 53/59



Internship Feedback Fuzzing ISO7816-3

1 s_initialize(name="req0")

2

3 s_block_start("body")

4

5 s_block_start("prologue-field")

6 s_bit_field(name="NAD", value=0b00000000, endian='<', width=8, output_format='binary',

7 fuzzable=False)

8 s_bit_field(name="PCB", value=0b00000000, endian='<', width=8, output_format='binary',

9 fuzzable=False)

10 s_size(name='LEN', block_name='information-field', offset=0, length=1,

11 output_format='binary', signed=False, inclusive=False, fuzzable=False)

12 s_block_end("prologue-field")

13

14 s_block_start("information-field")

15 s_byte(name="CLA", value=0x00, output_format='binary', signed=False, fuzzable=False)

16 s_byte(name="INS", value=0xA4, output_format='binary', signed=False, fuzzable=False)

17 s_byte(name="P1", value=0x04, output_format='binary', signed=False, fuzzable=False)

18 s_byte(name="P2", value=0x00, output_format='binary', signed=False, fuzzable=False)

19

20 s_block_start("bytes")

21 s_byte(name="byte", value=0xCA, output_format='binary', signed=False, fuzzable=True)

22 s_block_end("bytes")

23 s_repeat(name='data', block_name="bytes", min_reps=0, max_reps=10, step=1, fuzzable=True)

24 s_block_end("information-field")

25

26 s_block_end("body")

27

28 s_block_start("epilogue-field")

29 s_checksum(name='check', block_name='body', algorithm=compute_lrc_check, length=1,

30 fuzzable=False)

31 s_block_end("epilogue-field")

Figure 6.7: An example model definition of the ISO7816 T=1 information block
carrying an APDU using the Boofuzz tool.

Finally, all the requests models are connected together to create a graph as
shown in Figure 6.5. It is done like in Figure 6.8 with the session.connect()

method.

1 session.connect(s_get("user", "ROOT"))

2 session.connect(s_get("user"), s_get("pass"))

3 session.connect(s_get("pass"), s_get("stor"))

4 session.connect(s_get("pass"), s_get("retr"))

Figure 6.8: An example of requests graph building taken from the Boofuzz
documentation (applied to the FTP protocol). "user", "pass", "stor" and "retr"
are requests identifiers.

6.5 Oracle definition

Oracle is a piece of software being part of the fuzzer. It is in charge of determ-
ining whether the reaction of the card to a request or a test-case is nominal or
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symptomatic of a malfunction or an error. As long as the chosen attacker model
is the black-box one, the oracle is only aware of the input provided to the target
and the answer received back from it and can not access more informations.
For example, like it is very common with grey-box fuzzing techniques there is
no access to operating system to see if the tested driver has crashed, if some
pointers have abnormally moved etc...

This module is still not developed yet, however several solutions are cur-
rently being considered. The first idea is to emulate a fully controlled card
version of the state-machine on the computer side. At each fuzz iteration, the
generated input would be injected to the target card and at the same time
it would be provided to the concurrent emulated state-machine. The oracle
would then compare the two outputs to decide if there is a deviation from a
reference implementation. Two solutions are under discussion to get this card
state-machine implementation. A solution could be to reuse the reader imple-
mentation of the ISO7816-3 protocol and doing some changes to make it behave
like a card. Another solution would be to obtain the card driver implementa-
tion from an industrial, virtualise it and make it run on computer. The later
is politically and legally more complicated and could has consequences on the
project open-source nature.

The other way is to apply a technique called "differential fuzzing". It consists
in fuzzing two cards at the same time and comparing the answers. It would
be performed with cards from different constructors having a different driver
implementation. This solution is way less time consuming than the previously
presented ones, however it could produce less reliable results, depending on the
trust in the reference card.
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Chapter 7

Results

As a result of all the previously discussed work, this project ends with a frame-
work of tools giving the ability to generate relevant test-cases, apply them to
a card and get back the response. Figure 7.1 demonstrates it by showing the
output of the terminal when running Boofuzz tool with the previously described
T=1 models.

At lines 1 and 24 it is visible that the fuzzer resets the card with the smart-
card monitor detailed in Section 6.3. At line 4 it opens the connection with the
card and sends the fuzzed request at line 11. Finally at line 14, it receives back
the answer.

1 [19:27:56] Info: Restarting target process using SmartcardMonitor

2 [19:27:56] Test Case: 2: req0.byte.2

3 [19:27:56] Info: Type: Byte. Default value: b'\xca'. Case 2 of 123 overall.

4 [19:27:56] Info: Opening target connection (port: /dev/ttyUSB0, baudrate: 9600)...

5 [19:27:56] Info: Connection opened.

6 [19:27:56] Test Step: Monitor ProcessMonitor#140340867959888.pre_send()

7 [19:27:56] Test Step: Monitor CallbackMonitor#140340842364320[pre=[],post=[],restart=[],

8 post_start_target=[]].pre_send()

9 [19:27:56] Test Step: Fuzzing Node 'req0'

10 [19:27:56] Info: Sending 9 bytes...

11 [19:27:56] Transmitted 9 bytes: 00 00 05 00 a4 04 00 01 a4 b'\x00\x00\x05\x00\xa4\x04

12 \x00\x01\xa4'

13 [19:27:56] Info: Receiving...

14 [19:27:56] Received: 00 00 02 67 00 65 b'\x00\x00\x02g\x00e'

15 [19:27:56] Test Step: Contact target monitors

16 [19:27:56] Test Step: Cleaning up connections from callbacks

17 [19:27:56] Check OK: No crash detected.

18 [19:27:56] Info: Closing target connection...

19 [19:27:56] Info: Connection closed.

20 [19:27:56] Test Step: Sleep between tests.

21 [19:27:56] Info: sleeping for 0.100000 seconds

22 [19:27:57] Test Step: restart interval of 1 reached

23 [19:27:57] Test Step: Restarting target

24 [19:27:57] Info: Restarting target process using SmartcardMonitor

Figure 7.1: Output of the terminal when running Boofuzz on a smartcard. It
shows the successful execution of one test-case.
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Chapter 8

Conclusion and further work

All the previous chapters have demonstrated how it is technically feasible to ap-
ply state-of-the-art fuzzing methods to the software implementation of ISO7816
drivers in smartcards. It first puts in evidence the smartcard world specificit-
ies which renders the usage of available fuzzing tools not straightforward. It
then proposed solutions to make it work, to create the link between the fuzzing
tool and the card and it then demonstrated that these solutions are suitable for
finding vulnerabilities.

The value brought by this project is first a proof-of-concept showing the
feasibility of such a fuzzing approach and identifying the tools and solutions to
achieve it. Then, it brought a powerful and ready to use framework and setup
opening a great perspective over the second part of the project aiming to find
and exploit vulnerabilities.

Nevertheless, the project initial goals are not all fulfilled, there is still a
large amount of work to be done before being able to first identify irregularities
in drivers implementations and even more efforts to be done to prove their
exploitability to break security. The next steps are to settle an oracle strategy,
to improve the T=1 protocol models and to establish a testing plan. Over the
longer term it is also planned to model T=0 protocol, to parallelize the fuzzing
process over several cards at the same time to improve performances. If the
results are satisfying it is taken under consideration to publish method and
results in an academic conference.
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