
J Comput Virol Hack Tech (2014) 10:239–253

DOI 10.1007/s11416-014-0218-7

ORIGINAL PAPER

Reversing the operating system of a Java based smart card

Guillaume Bouffard · Jean-Louis Lanet

Received: 5 February 2014 / Accepted: 12 June 2014 / Published online: 5 July 2014

© Springer-Verlag France 2014

Abstract Attacks on smart cards can only be based on a

black box approach where the code of cryptographic prim-

itives and operating system are not accessible. To perform

hardware or software attacks, a white box approach pro-

viding access to the binary code is more efficient. In this

paper, we propose a methodology to discover the romized

code whose access is protected by the virtual machine. It

uses a hooked code in an indirection table. We gained access

to the real processor, thus allowing us to run a shell code

written in 8051 assembly language. As a result, this code has

been able to dump completely the ROM of a Java Card oper-

ating system. One of the issues is the possibility to reverse

the cryptographic algorithm and all the embedded counter-

measures. Finally, our attack is evaluated on different cards

from distinct manufacturers.

1 Introduction

A smart card is a small tamper-resistant device with few

memory. Size constraints restrict the amount of on chip mem-

ory and the most of smart cards on the market embed at most

4 kB of RAM (for runtime data and OS stacks), 256 kB of

ROM (OS, API and applications), and 256 kB of EEPROM

(for persistent data). These constraints have a deep impact

on software design. A smart card can also be viewed as an

intelligent data carrier which stores data in a secured manner

and ensures data security during transactions. Several means

G. Bouffard (B) · J.-L. Lanet

University of Limoges, 123 Avenue Albert Thomas,

87060 Limoges, France

e-mail: guillaume.bouffard@unilim.fr

J.-L. Lanet

e-mail: jean-louis.lanet@unilim.fr

have been used to retrieve sensitive information: side chan-

nel analysis or fault injection appear to be the most efficient.

Having a precise knowledge of the software and in particular

the control flow graph should be helpful for new attacks or

understanding the algorithms.

1.1 Java based smart card

A Java Card is a smart card that implements the standard

Java Card 3 [30] in one of the two editions Classic Edi-

tion or Connected Edition. Such a smart card embeds a vir-

tual machine, which interprets codes already romized, with

the operating system or downloaded after issuance. Due to

security reasons, the ability to download code into the card

is controlled by a protocol defined by GlobalPlatform [18]

(GP). The GP specification supports the implementation and

management of tamper-resistant chips such as smart cards.

Being a subset of Java technology, Java Card runs by the

same principles: compile the Java code to get the Java class

file format, convert it into CAP (for Converted APplet) file, a

more compact format. It reduces the size of the applet image

downloaded into the card and minimizes run-time memory

requirements. Then the program is executed using the Java

Card Virtual Machine (JCVM). The Java Card platform is

a multi-application environment where the sensitive data of

an applet must be protected against malicious access from

another applet or from the external world. To enforce pro-

tection from the software level, Java technology uses type

verification, class loader and security managers to create pri-

vate name-spaces for applets. In a smart card, complying

with the traditional enforcement process is not possible. The

type verification is executed outside the card due to memory

constraints. The Java Card platform provides further security

enhancements, such as transaction atomicity, cryptographic

classes and the applet Firewall. This later replaces the class

123

240 G. Bouffard, J.-L. Lanet

loader and security manager for enforcing the sandbox secu-

rity model. Due to the limited resources of the platform, the

Java Card architecture is split in two parts. One part of the

JCVM is executed off-card on a workstation. It converts and

optimizes the executable code that is ran on the on-card part.

The JCVM consists of a Converter and a Byte Code Verifier

(BCV). The Converter takes the Java class files as input for a

Java Card applet, and replaces all the method and field names

by tokens. The BCV allows to assert whether the content of

the applet meets the Java Card specification [30] or not. The

on-card part of the virtual machine consists of the JCVM, the

Java Card Runtime Environment (JCRE), and the Java Card

APIs.1

The Java Native Interface (JNI) is an interface that enables

Java code running in a Java Virtual Machine to call and to be

called by native applications and libraries written in other lan-

guages. The Java Card specification expresses that no native

access is defined in a JCVM. Thus, there is no way to access

or execute native code in a Java Card.

1.2 Smart card security

Smart card security depends on the underlying hardware

and the embedded software. Embedded sensors (light, heat,

voltage sensors, etc.) protect the card from physical attacks.

While the card detects such an attack, it has the possibility to

erase quickly the content of the EEPROM preserving the con-

fidentiality of secret data or blocking definitely the card (Card

mute). In addition to the hardware protections, softwares are

designed to securely ensure that application are syntactically

and semantically correct before installation and also some-

times during execution. They also manage sensitive informa-

tion and ensure that the current operation is authorized before

executing it. The BCV guarantees type correctness of code,

which in turn guarantees the Java properties regarding mem-

ory access. For example, it is impossible in Java to perform

arithmetic on reference. Thus, it must be proved that the two

elements on top of the stack are of primitive types before

performing any arithmetic operation. On the Java platform,

BCV is invoked at load time by the loader. Due to the fact that

Java Card does not support dynamic class loading, byte code

check is performed during installation time, i.e., before stor-

ing the CAP onto the card. However, most Java Card smart

cards do not embed an on-card BCV as it is quite expensive

in term of memory consumption. Thus, a trusted third party

performs an off-card byte code verification and sign it, and

on card its digital signature is checked.

Moreover, the Firewall performs checks at runtime to pre-

vent applets from accessing (reading or writing) data of other

applets. When an applet is created, the system uses an unique

applet identifier (AID) from which it is possible to retrieve

1 Application programming interface.

the name of the package. If two applets are instances of

classes from the same Java Card package, they are consid-

ered belonging to the same context. The Firewall isolates the

contexts in such a way that a method executing in one context

cannot access any attribute or method of objects belonging

to another context unless it explicitly exposes functionality

via a Shareable Interface Object.

Smart card security is a complex problem with different

points of view but products based on JCVM have passed suc-

cessfully real-world security evaluations for major industries

around the world. It is also platform that has passed high level

security evaluations for issuance by banking associations and

by leading government authorities, they have also achieved

compliance with FIPS 140-1 certification scheme [39]. Nev-

ertheless implementations have suffered from several attacks

either hardware or software based. Some of them succeeded

into getting access to the EEPROM (code of the downloaded

applets) but nobody succeeded into reversing the code, i.e.,

having access to the code of the VM, the operating system and

the cryptographic algorithm implementations. These latter

are protected by the interpretation layer which denies access

to other memories than the EEPROM.

This paper is organized as follow. First, the Sect. 2 presents

some approaches to obtain a snapshot of the EEPROM mem-

ory. Next, in the Sect. 3, the memory snapshot is analyzed to

understand how the targeted smart card works. In this snap-

shot, the approach related to native code execution is discov-

ered. To prove the power of our attack, we evaluate it on cards

from different manufacturers (Sect. 4). Since the smart card

memories snapshot (RAM, EEPROM and ROM) is obtained,

it have been analyzed in the Sect. 5. This part was done by

our tool, the Java Card Disassembler and Analyser (Sect. 6),

which offers the reverse of the JCVM and the smart card

operating system in the Sect. 7. Finally, we conclude this

article by the related works.

2 Dumping the EEPROM

Confidentiality of the EEPROM covers for example applet

confidentiality, i.e., disclosure of already stored code and

data confidentially. Often the sensitive data are stored into a

secure container, even if sometime keys are stored in clear

text in memory [23]. There are several ways to dump the

EEPROM according to the attacker hypotheses. The card

can be locked, i.e., post-issuance download is not permit-

ted (like banking card). In such a case, the only way is to

use Side Channel Attack (SCA). If the card is open (some

(U)SIM cards, for example), so it allows post-issuance code

download. This scenario is protected by the GP protocol that

needs a mutual authentication before loading any code. In

this scenario, the operator who is the only one allowed to

load code into the card, checks systematically new applica-

123

Reversing the operating system of a Java based smart card 241

tion using of course the BCV but also rules checkers (e.g.

never use getKey() nor setValidatedFlag(), etc.)

and code reviews. Using the BCV denies the right to load

ill-formed applications. But Barbu et al. [5] and Bouffard et

al. [9] demonstrated that this step is useless. They loaded

a well-formed code but executed ill-formed one. The last

scenario concerns development cards. With such cards, the

developer has the right to load code (he has the authentica-

tion keys) and he can load ill-formed applications. This latter

requires less knowledge and means from the attacker but he

can only retrieves information related to a development card.

This scenario is not valid for a product, the BCV will always

check the applet before being loaded into the card.

2.1 Product card with no post-issuance allowed

In order to gain access to services or assets stored in a

product, several means have been used to retrieve valuable

information, and SCA appears to be the most efficient. The

idea is to use information leakage from the processor which

could be power consumption or electromagnetic emanations.

Power analysis involves interpreting power traces, or graphs

of electrical activity over time. For example [40], it is used to

get knowledge on RSA keys during the “Square and Multi-

ply” step of modular exponentiation. A naive and vulnerable

implementation of the algorithm such as the binary exponen-

tiation algorithm could be used. Each key bit is processed

with a modular square operation followed by a conditional

modular multiplication. Thus, the power consumption trace

shows explicitly the difference between each round of the

loop the value of each bit of the key. The power consumption

gives a global representation of the card activity while a EM

probe gives a local information (memory, register, etc.). But

this technique [40] has also been used to reverse the code of

an application and thus provides a means to have a collection

of traces representing different executions. There is no pos-

sibility for the attacker to be sure to fully cover all the code

of the application he wants to reverse. He can only obtain

traces according to the input data he provides to the card.

2.2 Product card with post-issuance allowed

In that case, only well-formed application can be loaded into

the card. This scenario is suitable for cards that are modifiable

after delivery to the customer. Attacks are based either on a

misunderstanding of the specification by the developers or

the use of a perturbation attack.

2.2.1 Specification misunderstanding

The idea of [22] is to abuse shareable interfaces to obtain

a type confusion without the need to load an ill typed CAP

files. To do that, the authors created two applets which com-

municate using the shareable interface mechanism. To create

a type confusion, each applet uses a different type of array to

exchange data. During compilation, there is no way for the

BCV to detect a problem. But, this attack is rather old and

now it seems that every tested card, with an on-card BCV,

refuses to allow applets using shareable interface. As it is

impossible for an on-card BCV to detect this kind of anom-

aly, Hubbers et al. emitted the hypothesis that any use of

shareable interface on card can be forbidden with an on-card

BCV.

The other way is to abuse the transaction mechanism. The

purpose of transaction is to execute a set of atomic opera-

tions. Of course, it is a widely used concept, for instance

in databases, but still complex to implement in a card. By

definition, the rollback mechanism should also deallocate

any objects allocated during an aborted transaction and reset

references to such objects to null. However, Hubbers et

al. found some cases where the card keeps the references

to objects allocated during transaction even after a rollback.

Moreover, the authors described the easiest way to make and

exploit a type confusion to gain illegal access to protected

memory. Their example was to get two arrays with different

types, a byte array and a short array. If a byte array of 10

bytes is declared and it exists a reference to a short array, it

is possible to read 10 shorts, so 20 bytes. With this method,

they can read the 10 bytes stored after the array. If Hubbers

et al. increase the size of the array, they will able to read as

much memory as they want.

2.2.2 Using perturbation

Hardware based attack with perturbation is explained in [3].

A modification of the input current may modify the execution

flow as the card is not self-powered [1,26]. We also have

attacks, explained by Skorobogatov et al. [38], that use light

(LED, laser, etc.) and focus on a specific part of the chip.

This light provides enough energy in the memory cells to

change their values. Electromagnetic attacks [29,31,37] like

inducted current, provide a way to modify the memory value,

and it also help in characterizing the chip area used during a

critical operation.

The idea is to combine software and physical attacks.

Barbu et al. presented and performed several combined

attacks such as the attack [7] based on the Java Card 3.0

specification leading to the circumvention of the Firewall

application. Another attack [6] consisting of tampering the

Application Protocol Data Unit buffer (APDU) that leads to

access the APDU buffer array at any time. They also dis-

cussed in [5] about a way to disturb the operand stack with a

combined attack. It also gives the ability to alter any method

regardless of its java context or to execute any byte code

sequence, even if it is ill-formed. This attack bypasses the

on-card BCV [8]. In [9], Bouffard et al. described how to

123

242 G. Bouffard, J.-L. Lanet

change the execution flow of an application after loading it

into a Java Card. Recently, Razafindralambo et al. [33] intro-

duced a combined attack based on fault enabled viruses. Such

a virus is activated by hitting with a laser beam, at a pre-

cise location in the memory, where the instruction of a pro-

gram (virus) is stored. Then, the targeted instruction mutates

one instruction with one operand to an instruction with no

operand. Then, the operand is executed by the JCVM as an

instruction. They demonstrated the ability to design a code in

a such way that a given instruction can change the semantics

of the program. And then a well-typed application is loaded

into the card but an ill-typed one is executed.

2.3 Development card

Logical attacks are based on the fact that the runtime relies

on the BCV to avoid costly tests. Then once someone find an

absence of a test during runtime, there is a possibility that it

leads to an attack path. The idea is to be able to execute a shell-

code stored somewhere in the memory. The aim of EMAN1

attack [23], explained by Iguchi-Cartigny et al., is to abuse

the Firewall mechanism with the unchecked static instruc-

tions (asgetstatic,putstatic andinvokestatic)

to call malicious byte codes, this behavior is allowed by the

Java Card specification. In a malicious CAP file, the para-

meter of an invokestatic instruction may redirect the

Control Flow Graph (CFG) of another installed applet in the

targeted smart card. The EMAN2 [9] attack was related to

the return address stored in the Java Card stack. They used

the unchecked local variables to modify the return address,

while Faugeron in [14] uses an underflow on the stack to get

access to the return address.

Hamadouche et al. [19] described various techniques used

for designing efficient viruses for smart cards. The first one is

to exploit the linking process by forcing it to link a token with

an unauthorized instruction. The second step is to character-

ize the whole Java card API by designing a set of CAP files

which are used to extract the addresses of the API regardless

of the platform. The authors were able to develop CAP files

that embed a shellcode (virus). As they know all the addresses

of each method of the API, they could replace instructions

of any method. In [34], they abuse the on board linker in

such a way that the application is only made of tokens to

be resolved by the linker. Knowing the mapping between

addresses to tokens thanks to the previous attack, they have

been able to use the linker to generate itself the shellcode to

be executed.

Since the card embeds an on-card BCV, Savary et al. [36]

proposed to generate vulnerability tests to discover failures in

the BCV implementation. This approach is based on the use

of formal methods, model transformation and model-based

testing. They shown in [35] the feasibility of their approach

on a smart card product.

Logical attacks are the simplest (few knowledge and no

specific hardware) and thus affordable. Unfortunately, it

gives only access to the EEPROM, thus the implementations

of cryptographic algorithms and their associated counter

measures still remain confidential. Nowadays, all sensitive

data are stored into cryptographic containers and such an

attack can affect only confidentiality of the code of the post-

issuance applets.

2.4 Dumping the EEPROM memory

The EMAN2 [9] attack allows to modify the value of the

return address of a method by storing a short into a local.

By choosing the right value for the local number, the return

address can be overwritten. In a given, card the return address

register is stored at MAX_LOCAL + 2. The value stored

in this register will be the address where Java Program

Counter (JPC) will be updated while returning from the cur-

rent method to the caller. We just need to define a static array

which is stored close to the method area. Then, after return-

ing from the method, the JCVM will execute the content of

the array. Due to the fact that getstatic and putstatic

instructions are not checked by the Firewall [23], we are able

to read the content of the memory. The shellcode is presented

in Listing 1.

7C 01 00 getstatic_b 0x0100

78 sreturn

Listing 1 Executing the basic shellcode

This piece of code pushes on the top of the stack, the

content of the memory from the address0x0100 and returns

this value. The caller has just to store it into the APDU buffer

and the value is sent to the terminal. Then, the third byte of the

static array (the low byte of the getstatic_b instruction

parameter) must be incremented and the next call will return

the value of the address 0x0101. We just need to manage

the carry from the low byte to the high byte representing the

address. Unfortunately, this method stresses the memory and

will need more than 65,000 writing to the same cell. So 10 or

20 executions of this shellcode will kill the card reaching the

stress threshold of the EEPROM. We need to have a smarter

shellcode. For that, we purpose to use transient array.

A transient array is an array where the data are stored

in RAM and its descriptor is stored in EEPROM. Thus a

transient array lost its content during power off but not the

reference, there is no natural garbage collection. Unlike the

EEPROM, one can write indefinitely in RAM area. So, using

a transient array is better to dump RAM and EEPROM parts

to avoid memory stress. To understand how a transient array

is stored in the smart card, we created a simple applet which

gets the transient array address and reads data at this address.

123

Reversing the operating system of a Java based smart card 243

size addresssize type context

Transient Array

DataHeader RAM memory

size

Header

type

Permanent Array

Data

context

Fig. 1 Structure of transient and permanent arrays

The header of a transient array is the following at the

EEPROM area address:

0x8E85: 0x00 0x04 0x5B 0x30 0x6C 0x88

0x00 0x0A 0x05 0xB9 ...

Where 0x0004 is the size of the structure without the

meta data corresponding to the header. In the header part the

byte 0x5B corresponds to the array type. Here, its data is

of type byte. The three next bytes corresponding probably to

the security context 0x30 0x6C 0x88. It remains the four

last bytes as pseudo data. After several trials, we understood

that 0x000A represents the size of the data in RAM and

0x05B9 its address as shown in the Fig. 1.

Since we are able to write wherever we want on the card,

we could edit the size and the address of our array in order

to cover from 0 for 0xFFFF bytes, i.e., the whole memory.

This is perfectly accepted by the card and we can use such

a transient array to read the complete memory. This manip-

ulation seems to work while the size of the array is less than

0x00FF. The array length should be coded on a byte.

Using a transient array is more efficient than the regular

EMAN2 attack: we need to write only few bytes in memory

to obtain an array which can be read normally.

18 FF sspush 0x00FF

80 8E 9B putstatic_s 0x8E9B / / size : 0x00FF

18 00 sspush 0x00FE

80 8E 9D putstatic_b 0x8E9D / / address: start from 0x00FE

7A return

Listing 2 Executing the basic shellcode

Once this shellcode is executed, we have to copy the array

in the APDU buffer slicing it into slots of 255 bytes to fit the

size of the APDU buffer. Unfortunately these arrays could

not be used to read the ROM. The values returned at these

addresses are filled with 0. With the EMAN2 attack, the

dumping shellcode needs to write around 65,000 times into a

Fig. 2 Representation of an applet stored in a Java Card memory

particular cell. Now, we have improved the dump with only

one write into each cell, which improved greatly the execu-

tion time2 (the time needed to dump is divided by 7) and

minimized the memory stress.

3 EMAN 3: all roads lead to the ROM

The main attack that we have used was the EMAN2

attack [23] improved by using transient arrays instead of per-

manent arrays. It gave us the ability to execute arbitrary code

in the EEPROM and to dump the memory. As we succeeded

this step, it is necessary to analyze and to determine the exact

nature of each element contained in the memory, in order to

display the memory dump in a more understandable way.

Since there is no existing tool, we developed the disassem-

bler for Java Card memory dump. Indeed, the Java Card byte

codes are different from Java byte code.

For rest of this paper, a memory dump of a smart card with

Java Card 2.1, GP 2.0 and 8-bit processor will be analyzed.

This targeted card runs with 5MHz CPU and has 32 KB of

ROM, 32 kB of EEPROM and 2 kB of RAM.

3.1 Storing a Java card applet into the smart card

The CAP file format is based on the notion of interdepen-

dent components. It is specified in [30] and they consist

of eleven standard components: Header, Directory, Import,

Applet, Class, Method, Static Field, Export, Constant Pool,

Reference Location and Descriptor. Moreover, the targeted

JCVM may support user Custom components. Tokens resolu-

tion is performed in the Method component. Each component

is stored in memory by the Java Card Linker. As explained

in [23], the smart card memory can be structured like in the

Fig. 2.

2 Writing in EEPROM needs to erase which is time consuming.

123

244 G. Bouffard, J.-L. Lanet

Table 1 Array with methods call

0xDBC4 21 01 32 0xE681 21 00 3F

0xDBC7 24 00 33 0xE684 21 00 40

0xDBCA 24 00 34 0xE687 21 00 41

0xDBEA 22 01 35 0xE68A 21 00 42

0xDBF9 22 00 36 0xE024 22 00 43

0xDF7D 21 02 37 0xE69C 21 02 44

0xE66C 24 01 38 0xE69F 21 03 45

0xE66F 24 00 39 0xE6A2 22 01 46

0xE672 21 00 3A 0xF251 24 01 47

0xE675 24 00 3B 0x96BC 23 00 48

0xE678 24 00 3C 0xF32D 22 01 49

0xE67B 22 00 3D 0xF330 22 02 4A

0xE67E 24 04 3E 0xF7B5 24 02 4B

3.2 Unexcepted memory behavior

During the analysis of each linked applets into the smart card

memory, a method with a unexcepted call has been noticed

at the address 0xDBE6 listed in Listing 3.

0xDBE6: 01 / / flags : 0 max_stack : 1

0xDBE8: 00 / / nargs: 0 max_locals: 0

0xDBE9: 8D DB C7 invokestatic DB C7

0xDBEC: 67 08 ifnonnull 08

0xDBEE: 11 6F 00 sspush 6F 00

/ / ISOException . throwIt(0x6F00) ;

0xDBF0: 8D 6F 05 invokstatic 6F 05

0xDBF3: 7A return

Listing 3 Calling a method stored in EEPROM at the address 0xDBE6

At 0xDBE9, the invokestatic instruction refers to

a method in the EEPROM area. This method is located3 at

0xDBC7. At this address several non specified methods have

been found out and are given in the Table 1.

The JCVM specification [30] defines a method as a

method_header_info, described in the Listing 4, and

its associated byte code.

For the flag value, three defined possibilities are expected:

– 0x0: it is a normal method;

– 0x8 (ACC_EXTENDED): the method represents an

extended method;

– 0x4 (ACC_ABSTRACT): the method represents an

abstract method;

– All other flag values are reserved.

3 The targeted card has not hidden mechanism for address.

method_header_info {

u1 bitf ield {

/ / a mask of modifiers defined

/ / for the method

bit [4] flags

/ / max cells required during execution

/ / of the method

bit [4] max_stack

}

u1 bitf ield {

/ / number of parameters passed to

/ / the method

bit [4] nargs

/ / number of local variables declared

/ / by the method

bit [4] max_locals

}

}

Listing 4 Java Card method header info

Each method listed in the Table 1 contains non standard-

ized flag value (0x2). Moreover, the associated byte code

(1-byte) cannot be an instruction. On the other side, we also

have a set of interesting values in the EEPROM part which

are given in Table 2. We assumed that all these values are

addresses that refer to ROM area, except the one in bold font

which refers to the EEPROM.

To prove our hypothesis, we checked the data contained

at the address 0xFF5C to understand the meaning of this

table. As we have seen in the Lisiting 13 (Appendix A), this

method is associated to a 8051 assembler language which

corresponds to the native code for the targeted card.

3.3 The indirection table

In order to access to the JNI or to execute updated func-

tions, cards have vendor’s implementation of an indirection

table. This kind of table is used to switch between the Java

Card land and native land. For that, we supposed to have an

invokestatic instruction to a method with a flag value

0x2. This non standardized method has an offset to the indi-

rection table which gives the address of the associated native

method and is described in Fig. 3.

3.4 Dumping the ROM area

We explained in the previous section, how the JCVM exe-

cutes native code using an indirection table and a non stan-

dardized method with a flag value 0x2. In this section,

we explain a way to abuse this mechanism to execute our

native code and an associated countermeasure. To perform

this attack, we assume that we are able to write in the memory

123

Reversing the operating system of a Java based smart card 245

Table 2 List of addresses in the

EEPROM 0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE

0x8060 0x5800

0x8070 0x7E84 0x6ADC 0x6AED 0x6AFE 0x1800 0x7F08 0x7F29 0x7F02

0x8080 0x7F24 0x7EFC 0x5E79 0x47AD 0x6732 0x6B85 0x49DD 0x68BD

0x8090 0x5F9F 0x5DC9 0x631D 0x4638 0x5EA5 0x7E01 0x0FEB 0x6915

0x80A0 0x6C22 0x68A7 0x5FEF 0x6B0F 0x6B20 0x6B31 0x6B42 0x6B53

0x80B0 0x7EF0 0x38BE 0x62D9 0x5767 0x6B64 0x4EA3 0x55DA 0x7F31

0x80C0 0x7F46 0x5208 0x378F 0xFF5C 0x6515 0x5CE5 0x7EF6 0x67C7

0x80D0 0x7F1A 0x63A0 0x6732 0x49DD 0x7EA2 0x61E4 0x641F 0x67AF

0x80E0 0x37FB 0x692A 0x6732 0x17FB 0x7E7A 0x487C 0x1686 0x7DE9

0x80F0 0x7F35 0x7EEA 0x7F1F 0x5AEA 0x2AAC 0x7D9C 0x7EE4 0x7D8F

0x8100 0x61E4 0x67F7 0x2797 0x64D9 0x6000 0x009C 0x009E 0x0000

Fig. 3 Indirection table usage

and we can install an applet on the targeted card. For that,

we used a development card.

As described in the Fig. 3, a fake method (a method with

a flag value equals to 0x2) contains an offset to an address

in the indirection table. Each element in the indirection table

refers to a native function. At this offset we store the address

of our shellcode. Without integrity check, the Java Card run-

time will execute the malicious code. According to the card

architecture, the native code is written in 8051 language.

To do that, we split this modification into three steps. First,

we create two Java Card arrays. The first array has a fake

method and an offset to the indirection table. It will refer

to the address of the shellcode. The other array contains

our malicious native code. Then, in the indirection table,

we write the address of the native shell code. We should

know the offset associated to the shellcode location in order

to shift it into the fake method. To know the array address

of the smart card memory, an attack like [23] can be done.

Finally, to execute the native shellcode the parameter of an

invokestatic instruction, or another kind of call instruc-

tion should be changed by the address of our fake method.

Table 3 Cards used during this evaluation

Reference Java Card GP Characteristics

a-21a 2.1.1 2.0.1

a-22b 2.2 2.1 72kB EEPROM

b-22a 2.2.1 2.1.1 36kB EEPROM, RSA

b-22b 2.2.2 2.1.1 72kB EEPROM, RSA

b-21c 2.1.1 2.1.2 16kB EEPROM, RSA

c-21a 2.1 2.0.1 32KB EEPROM, RSA

c-22b 2.2.1 2.1.1 16kB EEPROM

Thus, the faulty instruction provides a way to execute our

shellcode which set as the Listing 14 in the Appendix B. This

piece of 8051-code reads each byte contained in an address

range. This range shall be in the ROM or EEPROM memory.

Each read byte is copied into the APDU buffer. With this

shellcode, we are able to do a memory dump for ROM.

4 Evaluation: to a generic exploit?

To evaluate our approach, we try our attack on different smart

cards from different manufacturers. The evaluated cards are

available on public internet shops. We evaluated seven cards

from three distinct manufacturers (a, b and c). Each card

name is associated with the manufacturer reference and its

Java Card specification. Moreover, we hypothesized that each

evaluated card supports the native methods execution through

the JCVM. The list of evaluated Java Card is presented in the

Table 3.

At each card, we sent a CAP file which contains the

method shown on the Listing 5. This method contains its

flag value set to 0x2 and 1-byte. We supposed that he byte

is interpreted as an offset into the indirection table, so the

first native method will be called.

123

246 G. Bouffard, J.-L. Lanet

methodNative() {

21 / / flags : 2 max_stack : 1

01 / / nargs: 0 max_locals: 1

/ / the offset value used to the indirection table

00 NOP

}

Listing 5 A fragment of a dumped Java Card memory.

Table 4 Each tested card’s return value for the native method execution

Reference Return value

a-21a Status word: 0x6F00

a-22b PCSC error: SCARD_E_NOT_TRANSACTED

b-22a Status word: 0x9000

b-22b Status word: 0x9000

b-21c Status word: 0x6F00

c-21a Status word: 0x6F00

c-22b PCSC error: SCARD_E_NOT_TRANSACTED

We executed the code contained in the Listing 5. The return

value of each card is presented into the Table 4.

In this table, three different values are returned:

– The status word 0x9000: the execution was done without

error.

– The status word 0x6F00: a Java exception was thrown

and never caught.

– A PCSC error (SCARD_E_NOT_TRANSACTED): The

smart card has an unexpected behavior during the exe-

cution of a command and the exchange is stopped by the

card.

Since a error value is returned, we cannot conclude

anything.

On the Table 4, two cards (b-22a and b-22b) return the

status word 0x9000. We focused on the card b-22b. To

improve our analysis, we call the arrayCopy()4 function.

This function is provided by the class Util from the pack-

age javacard.framework. It may be developed in C

language. With a script, we searched the offset value required

to call the native method which returns the expected value.

After testing each value of the offset range 0x00 to 0xFF,

the expected return was not be found. So, we investigate and

discover that the card uses a different strategy to call native

methods.

After an investigating step, we discovered that the card

b-22a encodes the native method offset into a 0x02 flag

4 This function returns a value depending to the start offset of the output

buffer plus the length of the copied data.

method header, inside the fields nargs and max_locals

(cf Listing 4). Inside this card, we succeed to call a native

method which changes the smart card’s life cycle. Since the

native method refereed by the offset 0x0F is called, the

smart card shifts to the production mode without specially

right.

In this card, we have a proof that we are able to call native

piece of code. However, we had not succeed to locate where

the indirection table is stored. It may be masked by a xor

operation.

5 Java Card memory forensics

Once we obtained the ROM, we have to face a challenge,

defining the area that are related to native code and the area

related to Java Card byte code. Currently, the reverse of the

dumped smart card memory is manually analyzed. Of course,

it’s a difficult task (human errors are frequent) and long (an

exhaustive result needs some days or weeks). To automa-

tize this analyze, the Java Card Disassembler and Analyser

(JCDA) based on the index of coincidence has been devel-

oped to reverse the Java Card memory. A dump file contains a

set of binary values which represents a fragment of the smart

card memory. Into the smart card memory, the program’s

code either Java or native and data, object’s instance infor-

mation can be found and some sensitive information can be

retrieved.

5.1 A memory dump

In the Listing 6, a fragment of a dumped Java Card

memory is presented which corresponds to 88 bytes frag-

ment of the EEPROM and start from the logical address

0x13F8.

/∗0x13F8∗/ 00 0B 81 00 0A 48 65 6C

/∗0x1400∗/ 6C 6F 57 6F 72 6C 64 00

/∗0x1408∗/ 00 02 80 00 00 03 04 02

/∗0x1410∗/ 0C 34 00 00 01 BE 81 08

/∗0x1418∗/ 00 0a 00 19 00 25 00 01

/∗0x1420∗/ 2E 00 01 0D 48 65 6C 6C

/∗0x1428∗/ 6F 57 6F 72 6C 65 41 70

/∗0x1430∗/ 70 01 71 00 02 34 04 00

/∗0x1438∗/ 04 06 02 00 00 01 73 01

/∗0x1440∗/ 75 00 05 42 18 8D 08 97

/∗0x1448∗/ 18 01 87 06 18 01 87 07

/∗0x1450∗/ 18 08 91 00 07 87 08 18

/∗0x1458∗/ 01 87 09 1e 29 04 03 29

Listing 6 A fragment of a dumped Java Card memory

A reverse version of the dump is listed in the Listing 7. The

first part of the analyzed dump contains metadata information

(package and class information). The second part describes

the byte code of each class methods.

123

Reversing the operating system of a Java based smart card 247

0x13F8: 000B 81 00 / / Array header:

/ / data size : 0x000b,

/ / type: 0x81, owner: 0)

/ / PACKAGE_AID

0A 48 65 6C 6C 6F 57 6F 72 6C 64

/ / Unknown data

0x1408: 00 0002 8000 0003 0402 0C34 0000

0x1414: 01BE 81 08 / / Array header:

/ / data size : 0x01be,

/ / type: 0x81, owner: 08)

/ / Undefined values

000a 0019 0025 0001 2E00 010D

/ / APPLET_AID

48 65 6C 6C 6F 57 6F 72 6C 64 41 70 70

/ / Undefined values

01 71 00 02 34 04 00 04 06 02 00 00

01 73 01 75 00

0x1442: /∗ method 00: ∗/

/ / Method’s header

05 / / flags : 0 max_stack: 5

42 / / nargs: 4 max_locals: 2

/ / Method’s byte code

18 / / aload_0

8D 08 97 / / invokestatic 0x0897

18 / / aload_0

01 / / aconst_null

87 06 / / putfield_a 06

/ / To be continued . . .

Listing 7 The reverse of the values listed in the Listing 6

In this sample, the byte codes are used as defined into the

Java Card specification [30]. Depending on the card model,

the program’s code may be modified or scrambled [4,34]. In

this case, the card hides each instruction’s value to mask the

code. But, even with any masking or encryption, the program

stored in the memory always keeps the same semantics. On

the other side, the way to store the data depending to a propri-

etary implementation. Due to the fact that disassembling is

done without knowledge of the card dumped, reversing was

difficult.

5.2 Index of coincidence

In 1922, Friedman [16] invented the notion of Index of Coin-

cidence (IC) to reverse ciphered messages. In cryptography,

this technique consists to counting the times that identical

letters appear in the same position in both texts. This count,

either as a ratio of the total or normalized by dividing by

the expected count for a random source model. The IC is

computed as defined in the Eq. 1.

I C =

∑c

i=1
ni (ni − 1)

N (N − 1)/c
(1)

where N is the length of the analyzed text and ni is the fre-

quencies of the c letters of the alphabet (c = 26 for a Latin

alphabet). The IC is mainly used in the analysis of natural-

language text and in the analysis of ciphered message (as

cryptanalysis). Even when only ciphered message is avail-

able, the coincidences in the ciphered text can be caused

by coincidences in the plain message. This cryptanalysis

technique is mainly used to attack the Vigenere cipher, for

instance. For a natural-language, the IC for the French lan-

guage is 0.0778, for the English language, 0.0667 and for

German language is 0.0762.

5.3 Finding Java Card byte codes

In a Java Card dumped memory, it is very difficult to find

where are the program’s data and code. The program’s byte

code can be assimilated to a language where each instruction

has a precise location into the language’s grammar.

The Java Card toolchain ensures that the compiled Java

Card byte codes is compliant with the rules of Java language.

To determine the IC for the Java Card byte codes, we tested a

set of Java Card byte code compiled by the Oracle’s toolchain.

An acceptable index of coincidence for Java Card byte codes

is located between 0.009 and 0.025. In addition to the IC, we

defined two counters that will be used during the research of

Java Card byte codes. The first one counts the incorrect Java

Card instructions. A Java Card instruction is specified [30]

inside the range 0x00 to 0xB8. Outside this range, the byte

read is not a standard byte code value. The second counter

counts the NOP instruction. The NOP instruction does noth-

ing and is never used by the Oracle’s compiler. So, except a

handy-written byte code, a Java Card program has no NOP

instruction.

In the Listing 6, a fragment of a dumped memory is ana-

lyzed to determined if there is Java Card bytes and where.

Our analysis shown that the IC equals 0.00927, 1.87 % bytes

are unknown instructions and 3.30 % of the byte corresponds

to a NOP instruction. We are 90 % sure that this piece of the

dumped memory contains Java Card byte codes.

/∗0x85E0∗/ 86 85 86 8C 85 ED 85 F8

/∗0x85E8∗/ 86 04 86 04 00 03 21 10

/∗0x85F0∗/ AA 31 19 03 02 39 1E 78

/∗0x85F8∗/ 01 10 7C 00 02 78 01 00

/∗0x8560∗/ 7C 00 02 78 01 21 1D 00

/∗0x8568∗/ 80 87 7D 78 01 21 1D 00

…

/∗0x8690∗/ DA 13 83 21 95 A7 83 21

/∗0x8698∗/ 87 F8 88 9E 00 00 10 00

/∗0x8700∗/ 00 02 41 FE 6D C5 91 BB

/∗0x8708∗/ 00 02 46 FE 6C 88 DA 42

Listing 8 A fragment of a dumped Java Card memory.

5.4 How to find data in a Java Card dumped memory?

Instead of the byte code search in a dump memory, search-

ing data cannot be predictable without a pre-analysis realized

123

248 G. Bouffard, J.-L. Lanet

by the attacker. By a learning process based on the pattern

matching, the attacker should discover himself how the card

stores each element in its memory. In the smart card world,

any kind of data stored in the smart card contains a header

(or metadata) which describes the data type, data owner and,

sometimes, the size of the data. Into a Java Card, the data

can be:

– A package information. A package AID and all contained

classes should be saved to verify the ownership context

during the applet execution.

– A class information. A class contains the initialization

value of each field, the method’s byte code and an AID.

A fragment is presented, with its package information, in

the Listing 7.

– The class instance which referees each field sets to the

current value (regarding to the instance’s life). The class

instance is linked with an instance AID which is different

compared to the class AID.

– An array is the last element which contains a header.

Empirically, we have discovered that an array header is

structured by the size of the array data, the data type and

the owner context. A example of Java Card array found

in a dumped memory is shown in the Listing 9.

0010 / / Data size

81 / / type of the data ,

/ / i t ’s a byte array

08 / / applet ’s owner context

/∗ Data ∗/

CA FE CA FE CA FE CA FE CA FE CA FE CA FE CA FE

Listing 9 A Java Card array found in the dumped memory

6 JCDA: Java Card disassembler and analyzer

To disassemble Java Card dumped memory, we have devel-

oped a Java-tool, named JCDA, which need to be adapted to

each Java Card memories architecture. To reverse of a Java

Card dumped memory, the JCDA (Fig. 4) requires a card

model and a dump file to work. The first one defines the struc-

ture of the data contained in the dumped smart card mem-

ory. This model is a high level abstraction of how the smart

card stores objects and associated instances, array, etc. in the

memory dump. This file should be created by the attacker.

The second parameter, is a piece of an attacked Java Card

memory.

In our tool, the reverse a Java Card dump memory is done

though two steps. In a first time, the Java Card Analyzer

parses the Java Card dumped memory to locate Java infor-

mation: data and applet’s code. As described previously, to

find Java Card instructions, an automatic process based on

the index of coincidence is done. For the Java Card data, the

Fig. 4 JCDA architecture

Table 5 Java Card instructions specification

Byte Code Parameters

number

Stack’s state

0x1d sload_1 0 .. -> value_1

0x78 sreturn 0 value -> [empty]

0x8d invokestatic 1 (2-byte

parameter)

[args] -> ..

0x96 sinc_w 2 (1-byte

parameter and

2-byte

parameter)

.. -> ..

card memory model is used to search by pattern matching

classes information, tables and other data.

Since the applet’s code and the data located in the dumped

Java Card memory have been identified, the second part of

the JCDA starts. The Java Card disassembler performs a

reverse of each applet installed in the dumped memory. A

Java Card instruction’s specification is required to correctly

disassemble the program’s byte code. Into this specification,

each instruction is defined as its byte code value, its parame-

ters number, the parameter’s size and the stack’s state of each

instruction. A part of Java Card instructions specification is

presented in the Table 5.

Next, the disassembler step realizes a symbolic execu-

tion of each detected method. This way allows to deter-

mine the Java Card method’s CFG and its stack’s state for

each Java-instruction. Finally, the human reading results are

reported with the elements found in the Java Card dumped

memory. Currently, the JCDA outputs a HTML file which

reports tables, applet’s AIDs, and the reverse of the pro-

gram’s byte codes. A report fragment is shown in the Table 6.

This report corresponds to the memory dump refereed in the

Listing 8.

To improve our tool, we will integrate it in IDA Disassem-

bler [20]. IDA is a software which has been developed by the

Hex Rays company and it implements all features required

to reverse a computer application. This software is mainly

used by security laboratories.

123

Reversing the operating system of a Java based smart card 249

Table 6 A fragment of the JCDA output

Address Instructions Operand stack

0x85ED 0x03 // flags: 0, max_stack: 3

0x85EE 0x21 // nargs: 2, max_locals: 1

0x85EF 0x10AA bspush 0xAA []

0x85F1 0x31 sstore_2 [’0xAA’]

0x85F2 0x19 aload_1 []

0x85F3 0x03 sconst_0 [ref]

0x85F4 0x02 sconst_m1 [ref,’0’]

0x85F5 0x39 sastore [ref,’0’,’0xFF’]

0x85F6 0x1E sload_2 []

0x85F7 0x78 sreturn [value_2]=>[empty]

7 Reversing the code

In the previous sections, we have shown how to obtain an

efficient dump of the EEPROM. Then, we explained how to

obtain the dump of the ROM. We have developed a tool to

help us in retrieving some of Java objects, how to distinguish

native code and Java code. In this section, we try to reverse

some functions of the ROM.

7.1 Getting the entry points of the API

To reverse the smart card operating system, the JCDA can

exploit the way described by Hamadouche et al. [19]. Their

attack was described in the Subsect. 2.3. Thus, for a specific

Table 7 javacard.framework functions addresses

Function’s name Address

.

JCSystem.abortTransaction 0x6FC9

JCSystem.beginTransaction 0x6FCC

JCSystem.commitTransaction 0x6FCF

JCSystem.getAID 0x6FD2

JCSystem.getAppletShareableInterfaceObject 0x6FE2

JCSystem.getMaxCommitCapacity 0x701C

JCSystem.getPreviousContextAID 0x701F

JCSystem.getTransactionDepth 0x702F

JCSystem.getUnusedCommitCapacity 0x7032

JCSystem.getVersion 0x7035

JCSystem.isTransient 0x703B

JCSystem.lookupAID 0x703E

JCSystem.makeTransientBooleanArray 0x7053

JCSystem.makeTransientByteArray 0x7060

JCSystem.makeTransientObjectArray 0x706D

JCSystem.makeTransientShortArray 0x707B

.

Util.arrayCompare 0x7358

Util.arrayCopy 0x735B

Util.arrayCopyNonAtomic 0x735E

Util.arrayFillNonAtomic 0x7361

Util.getShort 0x7364

Util.makeShort 0x7372

.

card model, the JCDA can reverse the API functions based

on the API addresses given as input. An example of the kind

of input is shown in the Table 7.

This table gives the address of some functions contained

into the package javacard.framework. The functions

with a gray foreground are stored in the 8051-assembler area

into the analyzed dump.

7.2 Reversing Java based methods

Based on the Table 7, we reverse each Java function pro-

vided by the Java Card API. As example, we will reverse

the makeTransientShortArray function. From the

address 0x707B, the bytes corresponding to the method.

Next, we reverse it. As we seen in the Listing 10, it’s a Java

method.

static short [] makeTransientShortArray

(short length , byte event) {

/∗0x707B∗/ 03 / / flags : 0 max_stack: 3

/∗0x707C∗/ 20 / / nargs: 2 max_locals: 0

/∗0x707D∗/ 1C sload_0

/∗0x707E∗/ 1D sload_1

/∗0x707F∗/ 07 sconst_4

/∗0x7080∗/ 8D 6FC6 invokestatic 0x6FC6

/∗0x7083∗/ 94 0C00 checkcast 0x0C00

/∗0x7085∗/ 77 areturn

}

Listing 10 Byte code of function makeTransientShortArray

This function corresponds to the Java code listed into the

Listing 11.

static short [] makeTransientShortArray

(short length , byte event) {

short [] ret =

createTransientArray(length , event , 4) ;

return ret ;

}

Listing 11 Source of makeTransientShortArray function

In this method, an external function is called. This

function, located at address 0x6FC6, corresponds to the

following bytes: 0x240305. As previously explained, a

method flagged with 0x02 is a native method. So, the

createTransientArray function will be executed in

the native side.

7.3 Reversing native methods

Reversing the native part is a more difficult task. Indeed, we

do not know the initialization vector of the 8051 processor.

123

250 G. Bouffard, J.-L. Lanet

The best way that we found is to start the reverse by the

Java-functions listed into the indirection table.

On the previous example, the function listed in the Listing

10 calls a native method with the token 0x05. The fifth ele-

ment into the indirection table refers to the address 0x6FCE.

At this address, the code presented into the Listing 12 is

stored.

/∗0x6AFE∗/ E4 clr a

/∗0x6AFF∗/ FF mov r7 , a

/∗0x6B00∗/ 126C04 lcall 0x6C04

/∗0x6B03∗/ AC mov r4 , 0x06

/∗0x6B04∗/ 06AD inc @r0

/∗0x6B06∗/ 07 inc @r1

/∗0x6B07∗/ 7FD9 mov r7 , 0xd9

/∗0x6B09∗/ 7E mov r6 , 0x6d

/∗0x6B0A∗/ 6D xrl a , r5

/∗0x6B0B∗/ 1265C7 lcall 0x65C7

/∗0x6B0E∗/ 22 ret

Listing 12 createTransientArray() function

This native function calls two other code fragments to

create a transient array. The first method computes where

the transient array will be stored in the RAM memory.

The second one, reserves, in the memory, the space for the

array.

8 Related works

8.1 Side channel origins and analysis

In order to gain access to services or assets stored on the

card, several means have been used to retrieve valuable

information, and side channel analysis or fault injection

appears to be the most efficient. The major difficulty is to

clearly identify operations or data manipulated. Side chan-

nel analysis can be used in many situation for the same. Side

channel leakage is correlated with electrical devices power

consumption.

8.1.1 Power analysis attack

Power analysis involves interpreting power traces, or graphs

of electrical activity over time.

Timing attack [24]. For example, it was used to get knowl-

edge on RSA keys during the “Square and Multiply” step

of modular exponentiation. It was based on the analysis of

the time difference between two same subroutine executions

using two different data entry. Attackers were able to easily

read key bits during exponentiation.

Simple and differential power analysis [25]. These two

well-known attacks were developed to exploit the differences

between two signals in order to extract information. The first

one shows that data processing is influenced by computa-

tion as in power consumption and the other one improves the

signal clarity by characterizing it.

Correlation power analysis [10]. It is based on statistical

models and uses a consumption model based on the Ham-

ming distance or weight. A correlation coefficient value is

used to evaluate a guessed proposition.

8.1.2 Electromagnetic attacks [17,28,32]

The magnetic traces are obtained by positioning an electro-

magnetic probe at a precise location, and also by varying the

value of the data stored at this location. This is more precise

and gives better results than the power analysis methods.

8.1.3 Temperature analysis [21,27,41]

The thermal difference gives a spacial information on where

specific operations are executed as any resistive electrical

system generate heat. For instance, to retrieve where the static

tables used by the encryption algorithms are stored.

8.2 Reverse engineering methods

Side channel analysis for revere engineering (SCARE)

method [11,13]. It manages to understand and highlight

some specific implementation depending on the monitored

system. It insists on the fact that observing the power con-

sumption by clock cycle can provide priceless information

on the targeted system.

Fault injection for reverse engineering (FIRE) attacks are

using faults injected in embedded systems by various meth-

ods (light flashes, electromagnetic impulses, etc.) in order to

gather informations on the secure algorithm implemented in

the device. There are some studies of partial data recovering

by means of faults but, as far as we know, there is only one

reverse engineering of a full algorithm [12].

This method is a combination of an efficient classification

tool and a convex form comparison, which is able to evaluate

the probability for an instruction, executed on a CISC5 archi-

tecture, correspond to a given power trace. It offers a com-

plete solution for reverse-engineering code even if it seems

to be complicated to adapt it on other architectures.

5 Complex instruction set computer (CISC) is an architecture where

each instruction can be executed with several low-level operations.

123

Reversing the operating system of a Java based smart card 251

9 Conclusion

In this paper, we presented an attack to execute native code

into a Java Card based smart card. For that purpose, we

described how to obtain a smart card with a new attack which

exploits the transient array. On the obtained dump, we are

able to identify the indirection table, a table used to redirect

the called Java Card method to its native implementation.

Fool this element offers us the way to execute our native

code.

After the evaluation of our attack with other cards, we dis-

covered that the attacked element is sometime implemented

in the same way for the different card manufacturer. Because

the indirection table was not found, we are not able to exploit

this attack on other cards.

This attack offers the ability to read the content of the

ROM area. When a snapshot of the memory was obtained, we

have reversed the ROM area in order to obtain the operating

system code.

Acknowledgments The authors would thank to Julien Boutet for his

contribution during this work.

10 Native code in the EEPROM area

FF5C lcall code_5A46

FF5F jnc code_FF9A

FF61 clr C

FF62 mov A, RAM_3F

FF64 subb A, #0x80 ; ’Ç’

FF66 jnc code_FF76

FF68 mov R7, RAM_40

FF6A mov R6, RAM_3F

FF6C mov R4, RAM_76

FF6E mov R5, RAM_77

FF70 mov R3, RAM_44

FF72 lcall code_3F6B

FF75 ret

FF76 code_FF76: ; CODE XREF: code:FF66

FF76 setb RAM_20.0

FF78 jnb RAM_20.2, code_FF8B

FF7B clr A

FF7C mov R7, A

FF7D lcall code_6C04

FF80 mov RAM_45, R6

FF82 mov RAM_46, R7

FF84 mov R7, #0x45 ; ’E’

FF86 lcall code_3CE3

FF89 mov RAM_20.0, C

FF8B code_FF8B: ; CODE XREF: code:FF78

FF8B mov R7, RAM_40

FF8D mov R6, RAM_3F

FF8F mov R4, RAM_76

FF91 mov R5, RAM_77

FF93 mov R3, RAM_44

FF95 mov R2, RAM_43

FF97 lcall code_2961

FF9A code_FF9A: ; CODE XREF: code:FF5F

FF9A ret

Listing 13 Native code found in the EEPROM

11 Native code to dump ROM area

mov DPTR, @tab ; Address of the transient array

; which contains the dump of the ROM

; ; Save the A, R0 and R1 registers

movx @DPTR, A ; A is saved

mov DPTR, @tab+1 ;

mov A, R0

movx @DPTR, A ; R0 is saved

mov DPTR, @tab+2

mov A, R1

movx @DPTR, A ; R1 is saved

mov R0, 1 ; R0 is used as offset

LOOP1: ; ; main loop which dump the ROM

mov A, R0

mov R1, A ; Copy A in the R1 register

mov DPTR, @ROM ; Copying the f i r s t address of

; ROM to dump

movc A, @A + DPTR ; Increasing the f i r s t ROM

; address by A

mov DPTR, @BUFFER_APDU ; Moving the address of the

APDU

; buffer in the DPTR register

LOOPINC: ; ; Set DPTR as an index into the APDU buffer

inc DPTR ; Increase DPTR register

djnz R1, LOOPINC ; Decrease R1 while i t is > 0

movx @DPTR, A ; the value read in ROM is put

; in the APDU buffer

inc R0 ; increasing the R0 register

mov A, R0 ; Setting the offset of the byte

; to read ROM in the next loop

jz LOOP1 ; Jump to LOOP1 i f A �= 0

; ; Restore the CPU registers

mov DPTR, @tab+2

movx A, @DPTR

mov R1, A ; R1 is reloaded

mov DPTR, @tab+1

movx A, @DPTR

mov R0, A ; R0 is reloaded

mov DPTR, @tab

movx A, @DPTR ; A is reloaded

ret

Listing 14 Dump 255-byte of the ROM in 8051

References

1. Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.:

When clocks fail: on critical paths and clock faults. In: Gollmann,

D., Lanet, J.L., Iguchi-Cartigny, J. (eds.) Smart Card Research and

Advanced Application, Lecture Notes in Computer Science, vol.

123

252 G. Bouffard, J.-L. Lanet

6035, pp. 182–193. Springer, Berlin Heidelberg (2010). doi:10.

1007/978-3-642-12510_213

2. Aranda, F.X., Lanet, J.L.: Smart card reverse-engineering binary

code execution using side-channel analysis. Thorie des Nombres,

Codes, Cryptographie et Systmes de Communication (NTCCCS)

(2012)

3. Aumller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault

attacks on RSA with CRT: concrete results and practical counter-

measures. In: Kaliski, B., Ko, E., Paar, C. (eds.) Cryptographic

Hardware and Embedded Systems—CHES 2002, Lecture Notes

in Computer Science, vol. 2523, pp. 81–95. Springer, Berlin Hei-

delberg (2003). doi:10.1007/3-540-36400-5_20

4. Barbu, G.: On the security of Java Card™ platforms against hard-

ware attacks. Ph.D. thesis, Grant-funded with Oberthur Technolo-

gies and Télécom ParisTech (2012)

5. Barbu, G., Duc, G.: Java Card operand stack: fault attacks, com-

bined attacks and countermeasures. In: Prouff, E. (ed.) Smart Card

Research and Advanced Applications, Lecture Notes in Computer

Science, pp. 297–313. Springer, Berlin Heidelberg (2011). doi:10.

1007/978-3-642-27257-8_19

6. Barbu, G., Giraud, C., Guerin, V.: Embedded eavesdropping on

Java Card. In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.)

Information Security and Privacy Research, IFIP Advances in

Information and Communication Technology, vol. 376. Springer,

Berlin Heidelberg (2012). doi:10.1007/978-3-642-30436-1_4

7. Barbu, G., Hoogvorst, P., Duc, G.: Application-replay attack on

Java Cards: when the garbage collector gets confused. In: Barthe,

G., Livshits, B., Scandariato, R. (eds.) Engineering Secure Soft-

ware and Systems, Lecture Notes in Computer Science, vol.

7159, pp. 1–13. Springer, Berlin Heidelberg (2012). doi:10.1007/

978-3-642-28166-2_1

8. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0

combining fault and logical attacks. In: Gollmann, D., Lanet, J.L.,

Iguchi-Cartigny, J. (eds.) Smart Card Research and Advanced

Application, Lecture Notes in Computer Science, vol. 6035,

pp. 148–163. Springer, Berlin Heidelberg (2010). doi:10.1007/

978-3-642-12510-2_11

9. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined software

and hardware attacks on the Java Card control flow. In: Prouff,

E. (ed.) Smart Card Research and Advanced Applications, Lec-

ture Notes in Computer Science, vol. 7079, pp. 283–296. Springer,

Berlin Heidelberg (2011). doi:10.1007/978-3-642-27257-8_18

10. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a

leakage model. In: Joye, M., Quisquater, J.J. (eds.) CHES, Lecture

Notes in Computer Science, vol. 3156, pp. 16–29. Springer, Berlin

Hidelberg (2004). doi:10.1007/978-3-540-28632-5_2

11. Clavier, C., Isorez, Q., Wurcker, A.: Complete SCARE of AES-like

block ciphers by chosen plaintext collision power analysis. In: Paul,

G., Vaudenay, S. (eds.) INDOCRYPT, Lecture Notes in Computer

Science, vol. 8250, pp. 116–135. Springer, berlin Hidelberg (2013).

doi:10.1007/978-3-319-03515-4_8

12. Clavier, C., Wurcker, A.: Reverse engineering of a secret AES-like

cipher by ineffective fault analysis. In: Fischer and Schmidt [15],

pp. 119–128. doi:10.1109/FDTC.2013.16

13. Daudigny, R., Ledig, H., Muller, F., Valette, F.: SCARE of the

DES. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) Applied

Cryptography and Network Security, Lecture Notes in Computer

Science, vol. 3531, pp. 19–33. Springer, Berlin Heidelberg (2005).

doi:10.1007/11496137_27

14. Faugeron, E.: Manipulating the frame information with an under-

flow attack. In: CARDIS 2013 (2013)

15. Fischer, W., Schmidt, J.M. (eds.): 2013 Workshop on Fault Diag-

nosis and Tolerance in Cryptography, Los Alamitos, CA, USA,

August 20, 2013. IEEE (2013)

16. Friedman, W.F.: The index of coincidence and its applications in

cryptography. Cryptographic Series. Aegean Park Press (1996)

17. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis:

concrete results. In: Ko, C.C., Naccache, D., Paar, C. (eds.) Cryp-

tographic Hardware and Embedded Systems ” CHES 2001, Lec-

ture Notes in Computer Science, vol. 2162, pp. 251–261. Springer,

Berlin Heidelberg (2001). doi:10.1007/3-540-44709-1_21

18. GlobalPlatform: Card Specification. In: GlobalPlatform, 2.2.1 edn.

GlobalPlatform Inc. (2011)

19. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B.,

Nouhant, B., Magloire, A., Reygnaud, A.: Subverting Byte Code

Linker service to characterize Java Card API. In: Seventh Confer-

ence on Network and Information Systems Security (SAR-SSI),

pp. 75–81 (2012)

20. Hex Rays, S.: IDA Pro Disassembler and Debugger

21. Huang, H., Quan, G., Fan, J.: Leakage temperature dependency

modeling in system level analysis. In: ISQED, pp. 447–452. IEEE

(2010). doi:10.1109/ISQED.2010.5450539

22. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java

Card: specification ambiguity and strange implementation behav-

iours. University of Nijmegen (2004)

23. Iguchi-Cartigny, J., Lanet, J.L.: Developing a trojan applets in a

Smart Card. J. Comput. Virol. 6, 343–351 (2010). doi:10.1007/

s11416-009-0135-3

24. Kocher, P.: Timing attacks on implementations of Diffie-Hellman,

RSA, DSS, and other systems. In: Koblitz, N. (ed.) Advances in

Cryptology - CRYPTO’96, Lecture Notes in Computer Science,

vol. 1109, pp. 104–113. Springer, Berlin Heidelberg (1996). doi:10.

1007/3-540-68697-5_9

25. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener,

M. (ed.) Advances in Cryptology - CRYPTO’99, Lecture Notes

in Computer Science, vol. 1666, pp. 789–789. Springer, Berlin

Heidelberg (1999). doi:10.1007/3-540-48405-1_25

26. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-

resistant smartcard processors. Proceedings of the USENIX Work-

shop on Smartcard Technology on USENIX Workshop on Smart-

card Technology. WOST’99, pp. 2–2. USENIX Association,

Berkeley, CA, USA (1999)

27. Meterelliyoz, M., Kulkarni, J.P., Roy, K.: Analysis of SRAM and

eDRAM cache memories under spatial temperature variations.

Comput. Aided Design Integrated Circuits Syst., IEEE Trans. On

29(1), 2–13 (2009). doi:10.1109/TCAD.2009.2035535

28. Circuits, O., Ral, D., Guilley, S., Flament, F., Danger, J.L., Valette,

F.: Characterization of the Electromagnetic Side Channel in Fre-

quency Domain. In: Lai, X., Yung, M., D, D. (eds.) Information

Security and Cryptology, Lecture Notes in Computer Science, vol.

6584, pp. 471–486. Springer, Berlin Heidelberg (2011). doi:10.

1007/978-3-642-21518-6_33

29. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz,

E.: Electromagnetic fault injection: towards a fault model on a 32-

bit Microcontroller. In: Fischer, W., Schmidt, J.M. (eds.) FDTC.

Workshop on Fault Diagnosis and Tolerance in Cryptography, Los

Alamitos, CA, USA, August 20, 2013, pp. 77–88. IEEE (2013).

doi:10.1109/FDTC.2013.9

30. Oracle: Java Card 3 Platform, Virtual Machine Specification, Clas-

sic Edition. Version 3.0.4. Oracle, Oracle America Inc, 500 Oracle

Parkway, Redwood City, CA 94065 (2011)

31. Quisquater, J., Samyde, D.: Eddy current for magnetic analysis

with active sensor. In: Proceedings of E-Smart (2002)

32. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA):

measures and counter-measures for Smart Cards. In: Attali, I.,

Jensen, T. (eds.) Smart Card Programming and Security, Lecture

Notes in Computer Science, vol. 2140, pp. 200–210. Springer,

Berlin Heidelberg (2001). doi:10.1007/3-540-45418-7_17

33. Razafindralambo, T., Bouffard, G., Lanet, J.: A friendly frame-

work for hidding fault enabled virus for Java based smartcard. In:

Nora Cuppens-Boulahia Frédéic Cuppens, J.G.A. (ed.) Data and

Applications Security and Privacy XXVI, Lecture Notes in Com-

123

http://dx.doi.org/10.1007/978-3-642-12510_213
http://dx.doi.org/10.1007/978-3-642-12510_213
http://dx.doi.org/10.1007/3-540-36400-5_20
http://dx.doi.org/10.1007/978-3-642-27257-8_19
http://dx.doi.org/10.1007/978-3-642-27257-8_19
http://dx.doi.org/10.1007/978-3-642-30436-1_4
http://dx.doi.org/10.1007/978-3-642-28166-2_1
http://dx.doi.org/10.1007/978-3-642-28166-2_1
http://dx.doi.org/10.1007/978-3-642-12510-2_11
http://dx.doi.org/10.1007/978-3-642-12510-2_11
http://dx.doi.org/10.1007/978-3-642-27257-8_18
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-319-03515-4_8
http://dx.doi.org/10.1109/FDTC.2013.16
http://dx.doi.org/10.1007/11496137_27
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1109/ISQED.2010.5450539
http://dx.doi.org/10.1007/s11416-009-0135-3
http://dx.doi.org/10.1007/s11416-009-0135-3
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1109/TCAD.2009.2035535
http://dx.doi.org/10.1007/978-3-642-21518-6_33
http://dx.doi.org/10.1007/978-3-642-21518-6_33
http://dx.doi.org/10.1109/FDTC.2013.9
http://dx.doi.org/10.1007/3-540-45418-7_17

Reversing the operating system of a Java based smart card 253

puter Science, vol. 7371, pp. 122–128. Springer, Berlin Heidelberg

(2012). doi:10.1007/978-3-642-31540-4

34. Razafindralambo, T., Bouffard, G., Thampi, B.N., Lanet, J.L.: A

Dynamic Syntax Interpretation for Java Based Smart Card to Mit-

igate Logical Attacks. In: Thampi, S.M., Zomaya, A.Y., Strufe, T.,

Calero, J.M.A., Thomas, T. (eds.) SNDS, Communications in Com-

puter and Information Science, vol. 335, pp. 185–194. Springer,

Trivandrum (2012). doi:10.1007/978-3-642-34135-9_19

35. Savary, A., Frappier, M., Lanet, J.: Automatic Generation of Vul-

nerability Tests for the Java Card Byte Code Verifier. In: Network

and Information Systems Security (SAR-SSI), 2011 Conference

on, pp. 1–7 (2011). doi:10.1109/SAR-SSI.2011.5931379

36. Savary, A., Frappier, M., Lanet, J.L.: Detecting Vulnerabilities

in Java-Card Bytecode Verifiers Using Model-Based Testing. In:

Johnsen, E., Petre, L. (eds.) Integrated Formal Methods, Lecture

Notes in Computer Science, vol. 7940, pp. 223–237. Springer,

Berlin Heidelberg (2013). doi:10.1007/978-3-642-38613-8_16

37. Schmidt, J., Hutter, M.: Optical and EM fault-attacks on crt-based

RSA: Concrete results. In: Proceedings of the Austrochip, pp. 61–

67. Citeseer (2007).

38. Skorobogatov, S.P., Anderson, R.: Optical Fault Induction Attacks.

In: Kaliski, B., Ko, E., Paar, C. (eds.) Cryptographic Hardware and

Embedded Systems - CHES 2002, vol. 2523, pp. 31–48. Springer,

Berlin Heidelberg (2003). doi:10.1007/3-540-36400-5_2

39. Standard, S.H.: Federal information processing standard publica-

tion# 180. US Department of Commerce, National Institute of Stan-

dards and Technology 56, 57–71 (1993)

40. Vermoen, D.: Reverse engineering of Java Card applets using power

analysis. Master’s thesis, Faculty of Electrical Engineering, Math-

ematics and Computer Science, Delft University of Technology,

Computer Engineering, Mekelweg 4, 2628 CD Delft, The Nether-

lands (2006).

41. Viraraghavan, J., Amrutur, B., Visvanathan, V.: Voltage and Tem-

perature Aware Statistical Leakage Analysis Framework Using

Artificial Neural Networks. IEEE Trans. on CAD of Integrated Cir-

cuits and Systems 29(7), 1056–1069 (2010). doi:10.1109/TCAD.

2010.2049059

123

http://dx.doi.org/10.1007/978-3-642-31540-4
http://dx.doi.org/10.1007/978-3-642-34135-9_19
http://dx.doi.org/10.1109/SAR-SSI.2011.5931379
http://dx.doi.org/10.1007/978-3-642-38613-8_16
http://dx.doi.org/10.1007/3-540-36400-5_2
http://dx.doi.org/10.1109/TCAD.2010.2049059
http://dx.doi.org/10.1109/TCAD.2010.2049059

	Reversing the operating system of a Java based smart card
	Abstract
	1 Introduction
	1.1 Java based smart card
	1.2 Smart card security

	2 Dumping the EEPROM
	2.1 Product card with no post-issuance allowed
	2.2 Product card with post-issuance allowed
	2.2.1 Specification misunderstanding
	2.2.2 Using perturbation

	2.3 Development card
	2.4 Dumping the EEPROM memory

	3 EMAN 3: all roads lead to the ROM
	3.1 Storing a Java card applet into the smart card
	3.2 Unexcepted memory behavior
	3.3 The indirection table
	3.4 Dumping the ROM area

	4 Evaluation: to a generic exploit?
	5 Java Card memory forensics
	5.1 A memory dump
	5.2 Index of coincidence
	5.3 Finding Java Card byte codes
	5.4 How to find data in a Java Card dumped memory?

	6 JCDA: Java Card disassembler and analyzer
	7 Reversing the code
	7.1 Getting the entry points of the API
	7.2 Reversing Java based methods
	7.3 Reversing native methods

	8 Related works
	8.1 Side channel origins and analysis
	8.1.1 Power analysis attack
	8.1.2 Electromagnetic attacks
	8.1.3 Temperature analysis

	8.2 Reverse engineering methods

	9 Conclusion
	Acknowledgments
	10 Native code in the EEPROM area
	11 Native code to dump ROM area
	References

