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Abstract Retrieving assets inside a secure element is
a challenging task. The most attractive assets are the

cryptographic keys stored into the non volatile mem-
ory (NVM) area. Most of the researches try to ob-
tain cryptographic keys through side channel attacks

or fault injection attacks. Such cryptographic objects

are stored into secure containers. We demonstrate in

this paper how one can use some characteristics of the

Java Card platform to gain access to these assets. Such

a smart card embeds a Firewall that provides isolation
between applets from different clients (using the notion
of security contexts). We exploit the client/server ar-

chitecture of the intra platform communication to lure

a client application to execute within its security con-

text, a hostile code written and called from another

security context: the server security context. This at-

tack shows the possibility for a trusted application to

execute within its security context some hostile code

uploaded previously by the server.
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1 Introduction

Today, most of the smart cards embed a Java Card

Virtual Machine (JCVM). Java Card is a type of smart

card that implements the standard Java Card [22] in

one of the two editions Classic Edition or Connected

Edition. The Virtual Machine (VM) interprets appli-
cation byte codes already romized with the operating

system or downloaded after issuance. Due to security

reasons, the ability to download code into the card is

controlled by a protocol defined by GlobalPlatform [13].

This protocol ensures that, the code owner has the re-

quired credentials to perform the particular action.

A smart card can be viewed as a smart and secure
container which stores sensitive assets. Such tokens are

often the target of attacks at different levels: pure soft-

ware attacks, hardware based, i.e. side channel or fault

injection attacks and mixed attacks. Security issues and

risks of these attacks are ever increasing and continuous

efforts to develop countermeasures against these attacks

are sought. The main assets in a smart card are the sen-

sitive data (i.e. the cryptographic keys) and the code

of the program. Often, attackers perform cryptanaly-

sis using side channel attacks to recover the keys, thus

breaking their confidentiality. The difficulty to break

the security properties of these assets are in the de-

creasing order:

– data confidentiality,

– data integrity,

– code integrity,

– code confidentiality.
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Bouffard and Lanet [9] have shown that it was rela-

tively easy to break the code confidentiality and if this
attack succeeds, then the code integrity can be broken
leading to the memory snapshot. Once the memory is

read, it is possible to perform memory carving [20] to

gain information on the data and in particular the key

containers. Smart card manufacturers have increased

the security of their JCVM implementation from years
to years, in such a way that published attacks do not
work anymore on recent cards. The current smart cards

are now well-protected against software attacks with

different mechanisms such as program counter bound

checks, typed stack, separation of kernel and user data.

We evaluate here in a first step the robustness of
the countermeasures and in particular the ability of an

attacker to mitigate them for getting access to valuable

assets. We have reversed the mechanism that reduces

the capacity of a shellcode to execute loops. We exter-

nalize the control flow of the shellcode in such a way

we keep the semantics of the shellcode of the remaining

basic blocks (linear parts of code). This step needs a

preliminary code transformation and data analysis to

provide to the shellcode the data required to the ba-

sic block. We demonstrate first a proof of concept and

then its application to the dump of a card memory. It

is based on separating the control flow and the basic

blocks of a program.

Then, we extend this idea by revisiting the concept

of shared interface. Our approach allows us to bypass

the Firewall mechanism implemented inside the Java

Card. To the best of our knowledge, this is the first

time that the Java Card Firewall can be bypassed. To

succeed, we need to implement in the client/server ar-

chitecture our attack at the server side. The client exe-

cutes the code which is under the control of the server.

The novelty of the approach relies on the fact that the

code is executed under the security context of the client,

allowing the server to get access to all objects belong-

ing to the client. In particular, we have been able to get
the secret keys in plain-text and to send them to the
server. The contribution introduced in this article aims
at proving that a Byte Code Verifier (BCV) must be

used to protect the smart card assets.

The remaining of this paper is organized as follows:

the first section introduces the Java Card security. The
second section presents the state of the art both in
term of attacks and published countermeasures. The

third section presents an attempt to break secure con-

tainer by brute force. Then, the fourth section intro-

duces our contribution for mitigating the control flow

countermeasure. Next, we propose to use this possibil-

ity in a client/server architecture to force the client to

provide in plain-text the keys. Finally, the last section

concludes this article.

2 Java Card Security

Smart cards security depends on the underlying hard-

ware and the embedded software. Embedded sensors

(light sensors, heat sensors, voltage sensors, etc.) pro-

tect the card from physical attacks. While the card

detects such an attack, it has the possibility to erase

quickly the content of the non volatile memory (NVM)

preserving the confidentiality of secret data or blocking

definitely the card (Card is mute). In addition to the

hardware protection, software are designed to securely

ensure that applications are syntactically and seman-

tically correct before installation and also sometimes

during execution. They also manage sensitive informa-

tion and ensure that the current operation is authorized

before executing it.

The BCV ensures type correctness of code, which in

turn guarantees the Java properties regarding the mem-

ory access. For example, Java-language forbids to per-

form arithmetic on references. Thus, it must be proved

that the two elements on top of the stack are of primi-

tive types before performing any arithmetic operation.

On the Java platform, byte code verification is invoked
at loading time by the class loader. Due to the fact that
Java Card does not support dynamic class loading, byte

code verification is performed at loading time, i.e. be-

fore installing the application into the card. However,

most of the Java based smart cards do not embed an

on-card BCV as it is quite expensive in terms of mem-

ory consumption. Thus, a trusted third party performs

an off-card byte code verification and signs the appli-

cation and, on-card, during the installation, the digital

signature is checked.

Moreover, the Java Card Firewall performs checks

at runtime to prevent applets from accessing (read-

ing or writing) data of other applets. When an applet
is installed, the system uses a unique Applet IDenti-
fier (AID) allowing to retrieve the name of the pack-

age in which the applet is defined. If two applets are

instances of classes coming from the same Java Card

package, they are considered to belong to the same con-

text. The Java Card Firewall isolates the contexts such

that a method which is executed in one context cannot
access any attribute or method of objects that belong to
another context. The only possibility to share function-

ality is via a Shareable Interface Object (SIO). When

an object is created, this object is tagged with the secu-

rity context of the owner applet. During the execution,

the access control policy of the firewall checks that the
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current program has the right to access a given object

by comparing their security contexts.

The Java Card specification [22] introduces the no-

tion of Shareable Interface, which defines a set of meth-

ods that an applet may export through the Firewall.

For exporting methods, one must declare them in an

interface that extends the tagging interface javacard.

framework.Shareable. The interface must be imple-

mented in a class, and an object should instantiate this

class to obtain a SIO. When the client applet wants to
access the specified methods, it first declares a reference
of the type defined by the server’s shareable interface,

and then invoke the JCSystem.getAppletShareable

InterfaceObject() method, indicating the AID of the

server applet. The Java Card Runtime Environment
(JCRE) invokes the server applet’s getShareable

InterfaceObject indicating the AID of the client ap-
plet. The server applet then decides, based on the client’s
AID, if the client is authorized to access to the required

SIO, and returns either a reference to that SIO or null.

This mechanism allows the server to implement its secu-

rity policy concerning the access of its SIO and restricts

the client of gaining access to fields or methods that do

not belong to the interface.

Smart card security is a complex problem with dif-

ferent points of view, but products based on JCVM

have passed successfully real-world security evaluations

for major industries around the world. It is also the

platform that has passed high level security evaluations

for issuance by banking associations and by leading

government authorities, they have also achieved com-

pliance with FIPS 140-1 certification scheme. Never-

theless, implementations have suffered several attacks

either on hardware or on software. Some of them suc-

ceeded in getting access to the data stored in the NVM

area (code of the downloaded applets). Breaking the

Java Card sandbox to read the Read Only Memory

(ROM) area is a difficult task. The ROM area con-

tains the operating system binary code and a part of

the JCVM (Application Programming Interface (API),

interpretor, etc.). To the best of our knowledge, two at-

tacks bypass the Java Card sandbox to read the ROM
area. On the first hand, Bouffard and Lanet [9] cor-
rupted the indirection table. This table is used to in-
voke a native method from the Java-side. This attack is

succeeding in executing the attacker’s native-shellcode.

On the other hand, Lancia and Bouffard [18, 19], after

presented a bug in the Java Card BCV, where a check

is not correctly done, exploited it to corrupt the execu-

tion flow. When a public Java Card method is invoked,

the link resolution mechanism makes an overflow to ex-

ecute native code contains in the Application Protocol

Data Unit (APDU) buffer. Each of those attackers of-

fers a way to execute native shellcodes and reading the

ROM memory.

3 Accessing the content of a Secure Key

Container

There is no specification which defines how to store se-

curely keys inside the card. The Java Card specifica-

tion [22] states when creating a key the method has a

boolean parameter which request (when is set to true)
to store the key in a secure way. In several implemen-

tations, the value of the boolean parameter is irrele-

vant: the key is always stored encrypted. Nevertheless,

there are some standards for securely storing keys. The

PKCS12 specification defines a container for private

keys using a pair of asymmetric keys. They mainly rely

on the fact that it exists a key for encrypting keys but
located in a secure environment (smart cards, TPM,
etc.). Of course, in a smart card it is possible to store

a key in the NVM memory to encrypt a key container.

We can consider that the ROM or NVM areas, not

accessible by the VM of the smart card, are probably

where a key can be stored. In PKCS12, a secure con-

tainer (PFX) includes a tag, a SafeBag and mac data for

integrity. Each SafeBag holds one piece of information:

a key, a certificate, etc. which is identified by an object
identifier, then the value and potentially attributes.

For retrieving sensitive keys, the first idea is to snap-

shot the content of a smart card memories, to find the
adequate pattern and try to brute force it. We made
these experiments on a card that contains a triple-DES

co-processor and a public key co-processor. The card

embeds 32 KB of NVM with only 31 KB available

for applications. It supports triple-DES and RSA al-

gorithms.

3.1 Characterizing a key container

The first step consists in reading the memory using a

classical EMAN2 attack as described in the next sec-

tion. This allows us to search for a secure container.

We had collected several memory dumps with different

configurations of keys (values, initialization, type, etc.)

and after the analysis of the differences between each
snapshot, we have reached the conclusion that keys are

stored as arrays in this card. The metadata of an array
contains the size (two bytes), a type (one byte), a se-
curity context (one byte) and the data. A DES key, for
example, is stored as two arrays as shown in Table 1.

A secure container is split in two parts, the first

one describes the kind of key, while the second stores

the key. The second array is referred by the first one
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Size Type
Security
context

Data

00 0c c0 12 0f 03 05 57 12 a4 00 01

00 03 00 80

00 0d c9 12 01 0d 01 99 95 b1 5d d5

46 1e fa 5d f9

Table 1 Internal representation of a secure key container.

with the bytes 0x12 and 0xa4 which represent an off-

set from the beginning of the current package. In the

second array, the three first bytes represent the sta-

tus of the key, while the elements between the bytes

0x99 to 0xf9 represent the 8-byte key value and a

2-byte integrity checksum. Whatever the value of the

boolean keyEncryption of the method buildKey1 of

the interface KeyBuilder is, the key is always stored

encrypted. The specification states the key implementa-

tion returned may implement the javacardx.crypto.

KeyEncryption interface even when the keyEncryption

parameter is false. The Java Card specification does

not define how the key is ciphered.

3.2 Guessing the keys

After the secure container identified in the dump, we

had tried to brute force it. If the keys are encrypted

through the DES algorithm with the key stored in the

different snapshots it is possible to brute force. We

looked for a common immutable part in different mem-

ory snapshots because for a given plain text (the key to

store) the cipher value is always the same. Finally, we

have not succeeded in brute forcing it. Several reasons

can explain it:

– the key is not stored in the NVM area;
– the plain text is not the correct one, a function is ap-

plied on the key value before encryption (e.g. xoring

the key);

– the ciphering algorithm is unknown;

– key is split in non continuous blocks.

Secure containers for sensitive objects like keys are
well-implemented on the certified cards. We did not suc-

cess within this card to brute force their secure con-

tainer even if we succeeded in characterizing them. It

seems that the only solution is to force the embedded

software to decrypt itself the key and to provide it in

plain text. This raised several challenges:

1 The function buildkey requires three parameters:
keyType, keyLength and keyEncryption. The keyType param-
eter defines the type of key to generate, keyLength the key
length in bits and keyEncryption is a boolean which requests
to encrypt the key value.

– Secure download: to load a shellcode, we need

to upload an ill-typed applet. The BCV checks the
correctness of the applet but recently [12, 18], flaws
in this secure piece of code has shown the possibility

to upload ill-formed applet and run some shellcodes.

If the BCV used to check each applet and library to

be installed is not up to date, it may contains some

vulnerability exploitable from the literature.
– Executing a shellcode: most of the cards imple-

ment countermeasures to avoid illegal control flow

transfer. We will focus on how to bypass it.

– Bypassing the Firewall: being able to execute an

arbitrary code does not prevent to be blocked by
the Firewall. We will demonstrate the possibility to

gain access to an object that do not belongs to our

security context.

We consider that the literature has solved the first

issue, then we focus on the two lasts i.e. executing a
shellcode and bypassing the Firewall.

4 Control Flow Attacks to Obtain Smart Card

Secrets

The previous section has presented that snapshotting
the smart card memory is not enough to obtain the sen-

sitive data. Each of them is securely stored in the smart
card. In fact, each applet sensitive data, ciphered in the
NVM area, is quietly decrypted when it is legally read
(accessed from a path allowed by Java Card security

rules) by the JCVM. From the Java Card specification,

a legitimate access is a reading by the applet which

owns the sensitive asset. The owner properties are com-

puted with the context information at execution time.
If an attacker succeeds in accessing an object with the
owner applet context, then the access to the object is

granted else a security exception is raised. The best so-

lution is to let the JCVM decrypt itself the content of

the secure container using a shellcode which requires to

execute a hostile code.

Executing malicious fragment of code on the JCVM

is studied in the literature and it is mainly based on a

software attack which corrupts the application control

flow [7]. This approach is the cheapest solution to get

access to sensitive information from the targeted cards.

Recently, cards embed several verifications during the

installation process. Those verifications are considered

as a lightweight (partial) BCV embedded in the card.

To succeed software attacks inside the card and to by-

pass this countermeasure, the combined attacks [25] en-

able software attacks via a physical perturbation (laser
or electromagnetic fault injection) which brings on a

logical fault.
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4.1 Software Attacks against Java Card Platform

Mostowski and Poll [21] introduced attacks on smart

cards where they presented a quick overview of the

classical attacks available on smart cards and in par-

ticular the SIO. The idea to abuse shareable interfaces

is interesting and can lead tricking the VM even in the

presence of a BCV. The main goal is to obtain a type
confusion without the need to modify the Converted
APplet (CAP) files. To do that, they had to create two
applets which will communicate using the shareable in-

terface mechanism. To create a type confusion, each

applet uses a different type of array to exchange data.

During compilation or during the load, there is no way

for the BCV to detect it.

This attack aims at abusing the shareable mecha-
nism thanks to the non-typed verification. In fact, they

tried to pass a byte-array as a short-array. Thanks to
this trick, when reading the original array, the authors
are able to read after the last value due to the length

confusion. To make this attack, two interfaces are re-

quired: one for the client (Listing 1) and one for the

server (Listing 2).

pub l i c i n t e r f a c e
I n t e r f a c e extends

Shareable {
pub l i c byte [ ]

g iveArray ( ) ;
pub l i c shor t

accessArray
( byte [ ]

MyArray) ;
}

Listing 1 Client interface.

pub l i c i n t e r f a c e
I n t e r f a c e extends

Shareable {
pub l i c byte [ ]

g iveArray ( ) ;
pub l i c shor t

accessArray
( shor t [ ]

MyArray) ;
}

Listing 2 Server interface.

These two interfaces must have the same AID for
package and applet of the server and client. Then, the

server’s interface is uploaded into the card. The byte-
array is interpreted as a short-array from the client side.
The two required methods are used to read values in the

array and to share an array between the client and the

server. From the client’s side, the server’s array is re-

trieved, which is a byte-array, by using the giveArray

method. After, the array is passed as a parameter of

accessArray method and they send the return reading

short through the APDU. As a result, the authors suc-

ceed to pass a byte-array as a short-array in all cases,

but when they exceeded the standard ending of the ar-

ray, an error was checked by the card.

Other software attacks are based on the fact that

the runtime relies on the BCV to avoid costly tests. An

absence of a test during runtime leads to an attack path.

An attack aims at confusing the applet’s control flow

upon a corruption of the Java card Program Counter

(JPC) or perturbation of the data.

Misleading the application’s control flow purposes

to execute a shellcode stored somewhere in the mem-

ory. The aim of EMAN1 attack [17] is to abuse the Fire-

wall mechanism with the unchecked static instructions

(as getstatic, putstatic and invokestatic) to call

malicious byte codes. In a malicious CAP file, the pa-
rameter of an invokestatic instruction may redirect

the Control Flow Graph (CFG) of another installed ap-
plet in the targeted smart card. Such an attack leads for
the first time to execute self modifying code in a Java
Card. This attack has been mitigated through different

countermeasures. EMAN2 [7] attack was related to the

return address stored in the Java Card stack. The au-

thors used the unchecked local variables to modify the

return address, while Faugeron in [11] exploited an un-

derflow on the stack to get access to the return address.

Since a perfect BCV is embedded or if the process
requires its usage, installing an ill-formed applet be-

comes impossible. To bypass a code verification process,

new attacks exploit the idea to combine physical and

logical attacks. Barbu et al. introduced and performed

several combined attacks such as the attack [4] based on

the Java Card 3.0 specification leading to the circum-

vention of the Firewall application. Another attack [3]
consisting of tampering the APDU that leads to access
the APDU buffer array at any time. They also discussed

in [2] about a way to disturb the operand stack with a

combined attack. It also gives the ability to alter any

method regardless of its Java context or to execute any

byte code sequence, even if it is ill-formed. This attack

bypasses the on-card BCV [5]. In [7], Bouffard et al.

described how to change the execution flow of an ap-

plication after loading it into a Java Card. Recently,

Razafindralambo et al. [24] introduced a combined at-

tack based on fault enabled viruses. Such a virus is ac-

tivated by hitting with a laser beam, at a precise loca-

tion in the memory, where the instruction of a program

(virus) is stored. Then, the targeted instruction mutates

one instruction with one operand to an instruction with

no operand. The operand is executed by the JCVM as

an instruction. They demonstrated the ability to de-

sign a program in such a way, that the modification

of a given instruction can change the semantics of the

program. Finally, a well-typed application is loaded into
the card but an ill-typed one is executed.

Hamadouche and Lanet [16] described various tech-

niques used for designing efficient viruses for smart cards.
The first one is to exploit the linking process by forc-

ing it to link a token with an unauthorized instruction.

The second step is to characterize the whole Java Card

API by designing a set of CAP files which are used to

extract the addresses of the API regardless of the plat-

form. The authors were able to design CAP files that
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embed a shellcode (virus). As the author learned all the

addresses of each method of the API, they could replace

invocation token of any method.

4.2 Executing Arbitrary Code to Retrieve Smart Card

Secrets

Retrieving sensitive keys stored in the smart card can

be accessed by the owner applet. This section focuses

on how, based on a control flow attack, we are able to

read the secret keys of an applet.

4.2.1 EMAN1: Polymorphic code strikes again

The original EMAN1 attack allowed to invoke in the

method stored inside the card to invoke an array in-

stead of a method. It required to browse the internal

representation of the CAP such that it detected the
stored byte array and then modify the destination of
the invocation. In [10], the authors presented a new

logical vector attack that used of the API and in par-

ticular the method ArrayCopyNonAtomic. This attack

has generated the concept of reference forgery. Under-

standing the metadata enabled the authors to forge

their own metadata with applet fields. Then, they used
these metadata to enforce and mislead the system to
consider them as a header of an object. This behavior

gives the authors an access to the NVM memory start-

ing from their first forge. Thanks to these forges, they

revisited the EMAN1 attack, where the original attack

is mitigated by the counter measures of targeted card.

The result of this revisited attack is a huge dump with a

length 0xFFFF bytes of the NVM, which gives access to

memory areas that were unattainable with the forges.

The advantage of this revisited version of the EMAN1

attack is that it does not rely on any assumption regard-

ing how the frame is built on the given card. The only

assumptions are:

– the right to load applets inside the card with the
appropriate keys;

– a way to bypass the type verification process or to

rely on combined attack;

This attack allows to execute a method stored in an

array which in turn can be easily filled at runtime with

the adequate data.

4.2.2 EMAN2: Fooling the Control Flow

Introduced in the previous section, the EMAN2 at-

tack [7] aims at changing the index of a local variable

to confuse the applet control flow. For that purpose, we

use two instructions: sload and sstore. As described

in the JCVM specification, these instructions are used

to transfer from or to the stack a short value from or

to a local variable .

If someone changes the parameter of the sstore in-

struction, as for instance sstore 4, a short value will
be stored into the local variable 4. Let us assume that

the program stores a short value that corresponds to
the first element of an array into the last local variable
increased by an offset of 2. It means, that we try to
store into a local that does not exist. Due to the fact

that the BCV checks the range of the local variables,

this overflow is detected during the conversion process.

But, after this verification step, if one changes the value

of the sstore parameter, it will not be detected during

the runtime.

With the knowledge of the internal reference of an

array2, this manipulation changes the return address of

the current method by the address of the first element
of an array. When exiting from the current method,
instead of returning to the caller, the JPC will jump

into the array and the JCRE will execute the content

of the byte-array. Of course, this data must be inter-

pretable by the VM without any stack underflow or

overflow. With this attack, an arbitrary shellcode can

be executed.
The assumptions concerning the EMAN2 attack are:

– the right to load applets inside the card with the

appropriate keys;

– a way to bypass the type verification process or to

rely on combined attack;

– knowledge of the implementation details of the frame;

– the absence of countermeasures on the return ad-

dress.

The last assumption requires that no integrity check

is made at runtime while using the frame. We demon-

strated in [10] that a split stack (user and kernel stacks

are separated) is a weak countermeasure that can be

bypassed.

4.2.3 Accessing Applet Secrets

The previous section has introduced the EMAN1 and

EMAN2 attacks which fool the applet control flow to

execute the content of a Java array. Whatever the at-

tack path (array or return address) we will have to face
the out of the bounds countermeasure while executing
an array. For the sake of simplicity, we continue with
the EMAN2 attack, knowing that the scheme of the at-

tack against the out of the bounds countermeasure will

be the same with the EMAN1 attack.

2 This information can be disclosed via a characterization
step as introduced in [1, 6].
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This section focuses on how, by the EMAN2 attack,

an attacker can obtain applet sensitive assets. The List-
ing 3 introduces an applet which uses sensitive assets.
This applet aims, upon a control flow modification, at

reading the content of the private3DESKey field. This

field is only accessible from an AppletSecretKey class
instance. The private3DESKey field is only readable

from the same security context as the field owner.

class AppletSecretKey
extends javacard . framework . Applet {

// Secre t 3−DES Key
private DESKey private3DESKey ;
// Payload to execute
private byte [ ] s h e l l c o d e ;
// . . .

private3DESKey=(DESKey) KeyBuilder . buildKey
( KeyBuilder .TYPE DES,0 x40 , fa l se ) ;

private3DESKey . setKey ( keyArray , ( short ) 0) ;
// . . .

}

Listing 3 An applet with sensitive assets.

In the AppletSecretKey class, the private3DESKey

field is the first declared one. According to the JCVM

specification, to access to this field, the getfield <T>3

instruction is used. As it is the first AppletSecretKey

class field, the private3DESKey field is accessible upon

the getfield a 1 instruction.

Confusing the applet control flow to read fields. To re-

trieve the content of the private3DESKey field, we as-

sume that the code listed in the Listing 4 is executed.
The getArrayAddress() function returns the address

of the content of the byte-array given in parameter.

public void ConfusingControlFlow
(byte [ ] apduBuffer , APDU apdu , short a ) {

short i = ( short ) 0 ;
short j = getMyAddressByteArray

(SERVER SHELLCODE) ;
i = j ;
// re turns to the by te code pointed out by
// the re turn address r e g i s t e r .
return ;

}

Listing 4 Function to confuse the applet control flow.

The compiled version, in Java Card byte code, is

shown in the Listing 5.

Regarding to the JCVM implementation, succeed-

ing EMAN2 attack aims at changing the return address

3 The type T must be either a for a type reference field, b
for a type byte or type boolean field, s for a type short field
or i for a type integer field.

pub l i c void ConfusingControlFlow
( byte [ ] apduBuffer , APDU apdu , shor t a ) {

0x00 : 02 // f l a g s : 0 max stack : 2
0x01 : 42 // nargs : 4 max loca l s : 2
0x02 : 11 CA FE sspush 0xCAFE
0x05 : 29 04 s s t o r e 4
0x07 : 18 a load 0
0x08 : 7B 00 g e t s t a t i c a 0
0x0A : 8B 01 i nvok ev i r t u a l 1
0x0C : 10 06 bspush 6
0x0E : 41 sadd
0x0F : 29 05 s s t o r e 5
0x11 : 16 05 s load 5
0x13 : 29 04 sstore 4

0x15 : 7A return }

Listing 5 Byte code applet of the function 4.

register upon a stack overflow from the local variables

area. The Figure 1(a) introduces a possible implemen-

tation of a Java Card stack.

The Figure 1(b) represents the state of the stack

at the end of the method ConfusingControlFlow().

In this figure, the return address register is located 2

words after the last local variable. If the JCVM does

not check the stack bounds access, the return address

register is located in L7. If the byte code listed in the

Listing 5 is changed in such a way that the sstore 4

(at the offset 0x13, in bold) is shifted to sstore 7, the

return address register will be updated with the content

of j (L5) local variable. Since the return instruction is

executed, the JPC jumps to the address pointed by the

return address register. In this case, the JPC points

the payload contained in the shellcode byte-array. The

shellcode is executed within the caller’s stack and the
caller’s security context.

Reading the private3DESKey field. To access private-

3DESKey field upon the shellcode, we use the payload
listed in the Listing 6.

0x01 : [ 1 8 ] s l o ad 0 // push t h i s
// r e f e r e n c e .

0x02 : [ 8 3 ] g e t f i e l d a 1 // push
// private3DESKey
// f i e l d r e f e r e n c e .

0x04 : [ 1A] a load 2 // Assume that i t i s
// the APDU bu f f e r

0x05 : [ 0 3 ] s c on s t 0
0x06 : [ 8E] i n v ok e i n t e r f a c e 03 02

0F 04 // getKey ( )
0x0C : [ 3B] pop
0x0D : [ 7A] re turn

Listing 6 Payload to read the content of a cryptographic
key.
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...

MAX VALUE values

Frame header

Local variables

...

(a) Generic Java Card
stack.

Previous frame

Current frame

...

0x0006 L10

getArrayAddress ret. L9

@MALICIOUS ARRAY L8

Return address L7

Security context L6

j L5

i L4

a L3

@apdu L2

@apduBuffer L1

this L0

...

(b) A Java Card stack im-
plementation.

Fig. 1 Java Card stack characterization.

In the shellcode, shown in the Listing 6, the private-

3DESKey field is copied to the content of the local vari-

able 2 by the getKey() function. In this discussion, the

local variable 2 is a reference (pushed by the aload 2 in-
struction) to a byte-array like the buffer APDU. When

the key is copied to the buffer APDU, the deciphered
key is sent out of the card. Indeed, in the memory, the
key container ciphers the key value but, when a key

owner accesses to it, the JCVM deciphers the key value.

4.2.4 Conclusion

The integrity of application data is often used in Java

Card and is called secure storage. It consists of mainly a

dual storage or a checksum to verify whether the mod-

ification of the field is only done through the VM. An-

other integrity check concerns the VM structure and in
particular the frame context. By using the EMAN2 at-
tack, it is possible to modify the return address in the
frame using unchecked local variable indexes. Several

old smart cards available on the web markets might

be flooded by the modification of the CFG. Thus, it

is possible to jump into an array which contains any

shellcode.

For preventing the execution of a shellcode, there is

the possibility to re-encode on the fly during the linking

phase of the value of byte code. So, if someone tries to

execute an arbitrary array, he will not be able to obtain

the desired behavior. In such a method, the encoded

value depends on a dynamic variable, using the JPC

for example as a nonce is enough to avoid any brute

force attack for guessing the scrambled value.

There are lot of possibilities to protect the data and

the execution of a code into the VM. Unfortunately, if

all of them are activated during the execution of an ap-

plication, the performance of the smart card will drasti-

cally decrease reaching an unacceptable level. For that

reason, most of the smart cards available on web mar-

ket implement the bound check countermeasure which
has been demonstrated efficient enough to mitigate any
exploitable shellcode.

4.3 Checking the Jump Boundaries

An attack as the EMAN2, presented in the previous

section, modifies the return address such that while it

returns from method f() the control is transferred to

the shellcode instead of the caller. But, the execution
of the shellcode is done within the execution context of

the caller as shown in Figure 2. In such a case, when

the shellcode ends with its own return instruction, it

goes back to the caller of the caller of the method f().

The shellcode cannot be embedded within the method

f() and thus is implemented as an array stored in a
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different area of the method. Then, the offset of the

array where the shellcode is stored is different from the

offset of the method.

Fig. 2 Description of the execution context.

An affordable countermeasure against the execution

of shellcode is to verify if the code is still executing

within the boundaries of the current method. For each

method, the system maintains several information as

maxJPC. So, the domain of the JPC of a method be-

longs to [minJPC, maxJPC]. The countermeasure is im-
plemented in each instruction concerned by a branch,

i.e. goto, ifeq, tableswitch, etc. The operand fol-

lowing the instruction is checked if it belongs to the

domain of the method.

This countermeasure does not prevent to jump to
a shellcode but restrict the semantics of the shellcode

to a linear code. In particular, no loop can be used, no
condition evaluation and so on. As an effect, it becomes
impossible to use a shellcode for dumping the memory.
The first step is to bypass this countermeasure.

4.4 Bypassing the Embedded Countermeasure

Two ways are possible to bypass the countermeasure.

Both of them are related to the non completeness of the

countermeasure. The first one is to use the exception

mechanism to transfer the control flow and data to the

caller. It requires to rebuild in the caller the control flow

using the catch mechanism of Java. Thus, the exception

object is propagated to the caller. If a handler is present

in the method, it can take decision using the reason

embedded in the exception object.
The second possibility is to split the original code

into several fragments representing each basic block

adding a preamble and a postamble. The preamble is

used to initialize each variable of the basic block. To

provide input data to any of the basic blocks stored into

the array, we use the caller context, i.e. the argument

of the dummy() method. The number of arguments of

the dummy method must be the maximum number of

arguments of all the basic blocks for each type of data.
The only constraint is that the order of the parameters
of the dummy() method must be strictly the same as

the shellCodeLaucher() method because they share

the same execution context

The postamble of each basic block has two parts.

An instruction sspush value is inserted and its value

is the variable that is evaluated at the beginning of the
next basic block. And secondly, an instruction sreturn

finishes each of the basic block. All these basic blocks

are stored consecutively into an array. The control flow

is then assumed by a specific controlFlow() method
that controls the correct sequencing of each basic block.

The CFG is implemented into this method which con-

tains only decision instructions and calls to the dummy()

method. This intermediary method plays only the role
of embedding the context execution of the shellcode and

invokes the shellCodeLauncher() method. This latter
is the one patched thanks to the EMAN2 attack.

Once the shellCodeLauncher() method ends its

execution, it transfers the control flow to one of the ba-

sic block stored into the array. At the end of the shell-
code, the return instruction is executed which trans-

fers the control flow to the controlFlow() method as

shown in the Figure 3. It is important to notice that
the execution context of the shellcode is the dummy()

method and not the shellCodeLauncher() method.

Fig. 3 Control flow derivation.

Within this method, we are able to execute in a

shellcode only linear part of a code delegating the con-

trol flow part into the original method such that, no

branching instruction is executed outside the domain
of the method.
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4.5 Automatic extraction

The proof of concept described here has been auto-
mated with a program transformation. Our tool re-

quires as input a method into a CAP file. It automat-

ically creates an array, extract the basic blocks of the

method, stores them into the array and replace them

by an invocation to the method shellCodeLauncher().

Thus, we have add to the CapMap tool the capability

to represent a method with a linked list of basic blocks.

4.5.1 Basic Block extraction

The CapMap tool allows to manipulate the CAP file

as a set of objects. We can define a basic block as a

sequence of instructions with the properties:

– Only one entry point, meaning no code within it is

the destination of a jump instruction anywhere in

the program.
– Only one exit point, meaning only the last instruc-

tion can cause the program to begin executing code

in a different basic block.

We used a block boundaries algorithm to built the
block. We scan over the code, marking block bound-

aries, which are instructions which may either begin or

end a block because they either transfer control or ac-

cept control from another point. Exception handlers are

included in the basic block extraction procedure. Two

steps are necessary to built the blocks. With CapMap,

we go through the entire method to obtain the list of

offsets (destination of a jump). The second step builds

the basic blocks starting with the first instruction which

begins the first basic block. We search for the end of the

current block which consists in an instructions that can

be:

– Unconditional and conditional branches,

– Targets of jumps or branches

– Exception handlers

The list of basic block is chained with the previous

and the next one. Then, each basic block is copied into

the array. In the structure of each basic block, we store

the value of the index where the block is stored.

4.5.2 Passing parameters

We can observe in Figure 3 that the execution context

of the shellcode is the frame of the method dummy().

In that case, the stack and the local variables used

by the shell code are those of the method dummy and

not the original one controlFlow. We need to trans-

fer each variable of the original method to the called

dummy method. For that reason, the execution context

of the method dummy is sized to be compatible with

the execution context of controlFlow.
The method controlFlow does not change the state

of the method i.e. all the assignments are done by the

shell code except the initialization. The arguments of

the method must be transferred from the caller to the

dummy method at the beginning of the method. We
transfer them in the first call to dummy to initialize the

execution context. Local variables are initialized in the

basic blocks and do not require to be synchronized.

The return value of the method and evaluation of

the variables are done in the controlFlow method.

We need to transfer the required data at the end of

each basic block. We automatically insert at the end of

each basic block a return instruction with the adequate
type and the expected variable as parameter. There
are two instructions that require to have two element
on top of the stack to be executed: if acmp<cond>,

if scmp<cond>. The first one compares two references

and the second compares two shorts. But we can return

only one value from the dummy method. For the refer-

ence value, the condition is either equality or inequality.
We add in the shell code a subtraction of short values
ssub, and we return a short. We do not care about the

well-typeness of the code: there is no runtime test. In
the controlFlow method, we replace the if acmp eq

by a ifeq which compares if the value on top is equal

to zero. For the short value, we use the same mecha-
nism except that we have more cases to evaluate (lower,
lower or equal, and so on).

4.6 Completeness of the Countermeasure

The countermeasure is inefficient due to its incomplete-

ness. The objective of the countermeasure is to detect
the execution of a shellcode outside its original po-
sition by checking the destination branch. Thus, the
current countermeasure encompasses only the set of

intra procedure instructions (i.e. goto, if, jsr). It

must be extended to the set of inter procedure instruc-
tions which is more complicated (i.e. invokestatic,

return). The VM has the information about the minJPC

and the maxJPC which is enough to check destination

branches within the boundaries.

For inter procedure instructions the VM requires

to know while building or destroying the frame, if the
JPC belongs to a valid method. A valid method’s JPC
depends on how methods are stored within the class.

One can suggest to define the boundaries of the meth-

ods pool but. But if the method is inherited, then the

check must be done with the mother class and not

the current one. Moreover, the method must be al-

lowed to be called according to the current instance.
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This is threaten naturally by the invoke instruction

while building the frame, no new check is required. The
return instruction is more difficult to handle but one

invariant at least must hold: at the destination the pre-

vious instruction must be an invoke. This is enough to

ensure the completeness of the invariant check counter-
measure.

We have shown in this section that we are able to

execute shellcode even in presence of dedicated coun-

termeasure. We got access to our own key in plain-text.

We demonstrate now how to get access to objects that

belong to another security context bypassing the Fire-

wall.

5 The Server-based Attack

5.1 Client Server Architecture

As explained in Section 2, the Firewall enforces the em-

bedded security which prevents to access an object that

does not belong to the user. This is one of the differ-

ences between Java and Java Card. Even if a method

or a field is public, it cannot be accessible from an-

other package which prevents to cast illegally an object

reference to gain access to the public methods of the

instance.

Checking that an object belongs to the current ap-
plet is obtained with the security context. The security

context segregates the objects such that all applets in
a given package share the same security context and
are prohibited from accessing objects having a different
security context. The JCRE has root privileges to ac-

cess objects in any security context. Some objects like

the APDU buffer which belongs to the JCRE can be

accessed by applets in any context. Once an instance

is created, the current security context is attached to
the object. Each access (read or write) is checked by
the Firewall. It verifies that the object has the same

security context than the current one.

To support cooperative applications on-card, the

Java Card technology provides well-defined sharing mech-
anisms. The SIO mechanism is the system in the Java
Card platform intended for applets collaboration. The
javacard.framework package provides an interface cal-

led Shareable and any interface which extends the

Shareable interface will be considered as shareable.
Requests for services to objects implementing a share-

able interface are allowed by the Firewall mechanism.

Any server applet which provides services to other ap-

plets, within the Java Card, must define the exportable

services in an interface tagged as Shareable. Then, a

client applet can request a reference to that service.

Fig. 4 Shareable interface protocol.

The server that implements the Shareable interface

is registered within the JCRE as shown Figure 4. Then,

the client requests the JCRE to obtain a SIO of a given

server where the AID of the server is provided as pa-

rameter. The JCRE looks up the server associated with

this AID and forward the request with the AID of the

client. The called method of the server implements its

policy regarding client’s request. If the server accepts

the request it provides the reference to the client, oth-

erwise null is returned. Once the SIO is obtained, the

client can invoke any shared method of the interface. At

that time, a security context switch occurs and the ex-

ecution is done under the security context of the server.

If the server tries an access to an object of the client,

a security exception will be raised. Once the method of

the server finishes, the control is given back to the caller

(i.e. the client) and the execution continues under the

security context of the client.

5.2 Revisiting the Shareable Interface

Our contribution aims to abuse the client security con-

text from the server to access the client assets. In this

case, the server contains a malicious fragment of code

which is executed under the client rights. For this pur-

pose, the control flow is transferred through the EMAN2

attack to a shellcode. This later is contained in the

server memory area but is executed with the client se-

curity context. This attack succeeded in executing ma-

licious code under another context to read secrets.

5.2.1 Can you trust in a server applet?

Trust in a server applet which provides features is a
difficult problem when an application is developed. In
fact, a secure application must use evaluated libraries

as the Java Card API which commonly evaluated from,

for instance, the common criteria scheme during the

platform certification.

Several others features may be out of the evaluation

scheme. Some extended features may be downloaded on
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the smart card developer website (like export file for

biometry or vendor’ specific API).

On the one hand, an unevaluated API might contain

bugs exploitable by an attacker.

One the other hand, as pointed by Bouffard et al. [8],

an attacker can access secure information using export

file fraudulence. By a man-in-the-middle attack, an ex-

port file which defines the same features as the legiti-

mate one is used in the standard compilation toolchain4.

This fraudulent export file has only one difference as the

legitimate one, the package AID. As the standard Java

Card toolchain does not support file signature, the Java

Card BCV is not able to detect an illegitimate export

file. For this attack, we will use the this approach.

5.2.2 Linking a legitimate application with a malicious

server applet.

A legitimate applet requires features provided by an-

other applet inside the card. The chosen architecture by
the Java Card technology is a client/server approach.
Therefore, the first applet will be named client applet

and the second one is named the server applet. To use

the features provided by the server applet, the client

applet should be linked with the server export file.

As explained in the section 5.1, the client must be
granted by the Firewall to use specific features provided

by the server application. This protocol was overviewed

in the Figure 4. When a client applet uses features pro-

vided by a server applet embedded in the card, the

client cannot prove that the server has a malicious be-

havior. From the Java Card security model point of

view, the Firewall prevents any illegal behavior from the
client application to the server applet (and vice versa).

5.2.3 Confusing the client execution flow from the

server.

A method named sharedM() is shared by the server

applet. This method is called by the client application.

The client applet has the right to legally execute this

method. During its execution, the sharedM() method

exploits the EMAN2 attack to return in a malicious
shellcode. This shellcode is located at the server side.

First, this method makes the feature required by the

applet client. Next, the dark side of the server applet ap-
pears and performs an EMAN2 attack to set up the re-

turn address to jump inside the array SERVER SHELLCODE.

4 The export file contains information to translate the
Java Class’s classes, methods and fields names (encoded as
a UTF16 string) to CAP file token value by the Java Card
converter.

5.2.4 Executing malicious fragment of code from the

server with the client privileges.

When the return instruction is executed, the control

flow is confused and the JCVM updates the JPC regis-
ter with the value contained in the return address regis-

ter. As this value was moved to refer the content of the

SERVER SHELLCODE, the JCRE interprets the content of

the SERVER SHELLCODE array as the caller instructions

with the context of the applet client. During the method

returns, the JCVM pops the callee’s frame, pushes the

returned value on the stack of the caller’s frame and

continues the byte code execution within the incorrect
instructions location.

5.2.5 Obtaining client assets.

Executing the server shellcode under the client applet

context, with the client applet rights, gives the possibil-

ity to read each client instance fields as cryptographic
keys. The aim of this attack is to extort client’s assets
and thus to jeopardize the client security.

To prove this attack, if we make the assumption

that the field 5 of the client instance contains a cryp-

tographic key stored in a byte-array, then the shellcode

listed in the Listing 7 exports the key to the buffer

APDU.

public void getSecretKey (APDU apdu ) {
g e t f i e l d a t h i s 5 // cryp tograph i c key
sspush 0
aload 1 // pushing apdu re f e r ence
i n v ok ev i r t u a l @Apdu . g e tBu f f e r ( )
sspush 0
i n v ok e s t a t i c @Util . arrayCopy ( )
pop
aload 1 // pushing apdu re f e r ence
sspush 0
sspush 50 // s i z e o f the cryp tograph i c key
i n v ok ev i r t u a l @apdu . setOutgoingAndSend ( ) }

Listing 7 A naive shellcode to read the content of an applet
instance field.

The approach introduced in this section is a proof

of concept. Indeed, to improve this attack, the client

assets should be saved inside the server context.

5.2.6 Storing the client assets inside the server side.

To be closer to the real attacks, the attacker stores the

client assets upon the shellcode in the server side. First,

the executed shellcode should invoke hidden shared meth-

ods to save several client’s assets. Second, the end of the

shellcode should restore the caller context to continue

the client applet execution flow. In fact, the server shell-

code should not have effects on the client.
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From the attacker’s point of view, the internal ref-

erences to call method inside the card are hidden. This
information is a secret. Invoking methods from a mali-
cious shellcode was studied by Hamadouche et al. [15].

In their paper, the authors fooled the on-card linker to
perform code mutation and obtain the internal refer-
ences of each method provided by the card API. Based

on their approach, the shellcode is improved to invoke
shared methods by the server application with a valid
internal reference.

The pseudo-code described in the Listing 8 presents

a fragment of the shellcode used to save the client’s
assets in the server context. At the end of the shellcode,
the client caller context should be restored.

// Reading the c l i e n t ’ s a s s e t .
i n v ok e i n t e r f a c e @Server . saveAsset s

( /∗ c l i e n t ’ s a s s e t s ∗/ )
// Returning the JPC to the co r r e c t c a l l e r
// and r e s t o r e the c a l l e r s t a t e .

Listing 8 Abstract shellcode to read and save the content
of a client applet instance field.

Since the shellcode is executed under the client rights,
it saves the content of each sensitive client’s assets to

the server context. Later in the card life cycle, the
attacker might extract these client’s assets upon the
server applet.

5.3 Discussion

Our contribution introduces an attack that focuses on
a malicious server. From the client point of view, it
is difficult to ensure if the server is evil or not. The

Java Card security model was designed to prevent this

kind of application to be loaded and executed into the

card. The BCV statically checks the application. Dy-

namically, the executed applet is controlled by the Fire-

wall which checks each asked access. The standard Java
Card toolchain architecture are not able to check if the
export file use to convert a Java application to a Java

Card one is correct (compliance with the features pro-

vided by the targeted Java Card implementation).

The requirements from the developer guidelines, as-

sociated to the linked Common Criteria evaluation re-

port, force the usage of a BCV. Thus, most of JCVM

implementations embed countermeasures that relies on

the hypothesis that each installed applet and libraries

had been verified by a BCV before loading on card.

Moreover, embedding a BCV in the card or performing

twice some BCV tests increase heavily the resources

required into the card.

Secure applets are evaluated in a certification-like

approach. In this case, interfaces and libraries used and

imported by the evaluated applet are checked. In addi-

tion in the attack introduced in this article, if an un-

secure applet is corrupted by a malicious interface, its

own security context must be jeopardized. In this case,

other (secure) applets or the platform based a sloppy

unsecure applet can be corrupted.

To reproduce the attack presented in this paper, a

malicious server should be installed in the card. Due

to the starting hypothesis (for instance, the EMAN2

attack), this attack is detected by a BCV. To exploit

this attack on a JCVM product, the attacker should

install it without checking his server applet with a BCV.

The attack may either due to a smart card developer

who develops a product for a specific market or a smart

card manufacturer which implements a back-door.

In the case of a wicked manufacturer, checking the

target of a Common Criteria evaluation improves the
confidence of the evaluated elements. The embedded

elements out of the evaluation target can contain poor

security parts and might embed bugs or back-doors.

From the developer’s point of view, a server applet
should be either evaluated, for instance, via the Com-

mon Criteria scheme or the applet source code should

be checked by the entity that uses the feature provided

by the server applet.

6 Conclusion and Future Works

In this paper, we set up an attack to break the con-
fidentiality of assets of the card. In particular, we tar-

geted the most difficult one: the cryptographic keys. For
that purpose, we first demonstrated the ability to exe-
cute rich shellcode even in presence of dynamic counter-

measures like address bound checks. We have been able

to extract the control flow part, execute it as legal Java

byte code, executing then only linear basic blocks stored

into an array. We used code transformation algorithm

to automate this part.

In a second step, we applied this mechanism on the

client server architecture of the Java Card. Within this

approach, the client request a service which is intended

to be executed into the security context of the callee.

Thanks to the shellcode execution paradigm, we are

able to force the execution of the code under the se-

curity context of the caller, without any control of the

system. The shellcode definition is under the control of

the server, thus this approach forces an applet to exe-

cute arbitrary code. Thus, it becomes obvious to force



14 Janati et al.

an applet to call the getKey method and to send the

result to the server. As far as we know, it is the first
time the Firewall of a Java Card has been bypassed. We
go a step further than Faugeron in her paper where she

modified the security context which had no integrity

check. Her attack depends on hypotheses concerning

the implementation. In the evaluated card, an integrity

check is present and we can not use her attack, while
the attack presented here does not rely on such an hy-
pothesis.

This attack breaks the security model of the Java

Card architecture relying on the separated security do-
main enforced by the Firewall. This attack relies on two
hypothesis, we are able to load ill-typed code into the

card, the BCV is not correctly use or it is not up to date

and it contains some vulnerabilities, and the second one

is the possibility to bypass the dynamic address bound

check, an ill-formed applet/library is installed on card

and can make an EMAN2 attack. We have explained

how to mitigate the second pitfall with a complete im-

plementation of the countermeasure.
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