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ABSTRACT
One of the challenges for smart card deployment is the security interoperability. A smart card resistant to 
an attack on a given platform should be able to guarantee the same behavior on another platform. But the 
current implementations do not comply with this requirement. In order to improve such standardization the 
authors propose a framework based on annotations with an external pre-processing to switch the Java Card 
Virtual Machine (JCVM) into a secure mode by activating a set of countermeasures. An example has been 
proposed in this paper for implementing a countermeasure against type confusion with a fault attack. Smart 
cards are often the target of software, hardware or combined attacks. In recent days most of the attacks are 
based on fault injection which can modify the behavior of applications loaded onto the card, changing them 
into mutant applications. This countermeasure requires a transformation of the original program byte codes 
which remain semantically equivalent. It needs a modification of the JCVM which stays backward compatible 
and a dedicated framework to deploy these applications. Thus, the proposed platform can resist to a fault 
enabled mutant.
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1. INTRODUCTION

Owing to NFC technology, the usage of mobile 
phone for e-transaction will increase drastically 
in upcoming years. This transition in technology 
requires more applications to be developed in 
mobile phones and some of them are highly 

sensitive and need high level security. For 
example, nowadays using mobile phones for 
payment, ticketing, mobile TV, etc. are com-
mon. Thus, it raises the question of confidence 
of the terminal that delivers these services. If a 
platform is multi-applicative, then loading a new 
application can reduce the security of already 
installed application. Through virtualization, 
the platforms have reached interoperability DOI: 10.4018/jsse.2013040102
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at functional level and it will be difficult to 
obtain it at security level. In case of this se-
curity interoperability property has not been 
achieved, then the consequence will imply a 
costly certification process for each application, 
for all configurations of the application. This 
could be a main point for not adopting NFC 
applications and thereby reducing the develop-
ment’s effort for mobile transactions. Critical 
applications in a mobile phone should be hosted 
by a Secure Element (SE) often implemented 
with a smart card.

Mobile Network Operators (MNO) are 
looking to open their native SE: the Universal 
Subscriber Identity Module (USIM) Card 
(ESTI, 2005) to the third party service providers, 
in order to allow them to develop value added 
services, like m-payment or m-transport etc., on 
NFC based technology. To warrant security for 
third party applications hosted in USIM Card, 
MNO have chosen to certify their SE under the 
Common Criteria (CC) (The Common Criteria 
for Information Technology Security Evalua-
tion) scheme (Common Criteria Organization, 
2012). This will facilitate post issuance for third 
party applications downloading without existing 
CC certification loss which means an industrial 
process will have to be in place, which has to 
warrant the innocuousness of every candidate’s 
application for a download. In particular, an 
application certified on a given platform must 
have the same behavior in other platforms also.

Nowadays most of the USIM cards are 
based on a Java Card Virtual Machine (JCVM). 
Java Card is a type of smart card that imple-
ments the standard Java Card 3.0 (Sun, 2010) 
in one of the two editions “Classic Edition” or 
“Connected Edition”. Such a smart card embeds 
a Virtual Machine (VM), which interprets ap-
plication byte codes already romized with the 
operating system or downloaded after issuance. 
Due to security reasons, the ability to download 
code into the card is controlled by a protocol 
defined by Global Platform (Global Platform, 
2011). This protocol ensures that, the code 
owner has the necessary credentials to perform 
the particular action.

Java Cards have shown an improved 
robustness compared to native applications 
concerning many attacks. They are designed 
to resist numerous attacks using both physical 
and logical techniques. Currently, the most 
powerful attacks are hardware based attacks and 
especially fault attacks. A fault attack modifies a 
part of the memory content or signal on internal 
bus and leads to deviate from the exploitable 
behavior, not by an attacker. A comprehensive 
consequence of such attacks is mentioned in 
Iguchi-Cartigny and Lanet (2010). Although 
fault attacks have been generally used in the 
literature from a cryptanalysis point of view 
(Aumüller, Bier, Fischer, Hofreiter, & Seifert, 
2003; Hemme, 2004; Piret & Quisquater, 
2003), they can also be applied to every code 
layer embedded in a device. For example, by 
choosing the exact byte of a program, an attacker 
can bypass logical tests. To avoid such attacks, 
several countermeasures have been designed to 
protect the execution flow, the integrity of Java 
fields, the confidentiality of the byte code, etc.

Designing efficient countermeasures 
against fault attacks are important not only 
for smart card manufacturers but also for 
application developers. Manufacturers need 
countermeasures with the lowest cost in terms 
of memory and processor usage. The cover-
age (reduction of the number of succeeding 
attacks) and the detection latency (number of 
instructions executed between an attack and its 
detection) are the most important metrics in the 
development process of smart card. In order to 
minimize the impact of fault attacks, developers 
need to implement countermeasures in their 
applicative code. Examples of such applicative 
countermeasures are redundant branch instruc-
tions, counters, redefining the value of true and 
false constants, etc. But in this case the developer 
should have the knowledge of underlying plat-
form architecture, which can differ from each 
smart card model. This low interoperability of 
the security aspects between different platforms 
is a huge problem for smart card application 
developments and certifications.
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The proposed solution in this paper adapts 
a security feature found in the Java Card 3 plat-
form annotations which is also fully applicable 
to Java Card 2 platform using a pre-processor. 
When the VM interprets the application code 
and enters a method or class tagged with a secu-
rity annotation, it switches to a “secure mode”. 
We propose here an efficient countermeasure 
that follows this approach and which is able to 
protect the VM against type confusion.

The contribution of this paper with respect 
to our prior work is based on two mechanisms: 
a novel system countermeasure based on JCVM 
verification of the Java element type, and a 
framework to adapt the Java byte code to the 
proposed countermeasure.

This paper is organized as follows; the first 
section provides a brief state of the art on smart 
cards attacks, the existing countermeasures and 
the impact of the fault and mutant generation. 
The second section introduces the developed 
countermeasure. The evaluation framework and 
the collected metrics are highlighted in the third 
section and finally, section four concludes the 
work with the future perspectives.

2. ATTACKS AND 
COUNTERMEASURES

A Java Card attack can be carried out in two 
ways.

The first one is a logical attack in which 
an attacker uses an ill–formed applet to obtain 
sensitive information stored in the card. For 
obtaining it, the applet will try to execute some 
illegal instructions to read and write in the smart 
card memory as explained in Iguchi-Cartigny 
and Lanet (2010). This can be accomplished by 
making a type confusion attack or by changing 
the control flow graph (CFG). Type confusion 
blurs the Java Card Runtime Environment (JRE) 
to use reference to an object’s instance as a value. 
In Java Card, references are mainly stored as 
16-bit, i.e. the size of a short. This attack can 
be achieved by pushing a value and manipulat-
ing it as a reference (and vice versa). It offers 
the ability to manipulate pointers; even though 

Java security model forbids the use of pointers. 
Indeed, Java is a strong typed language, thus 
it is illegal to perform arithmetic operations 
on reference. Some of the recent smart cards 
with more resources can include a Byte Code 
Verifier (BCV). During the installation step, this 
BCV checks and prevents to install incorrect 
and malicious applets.

The second one is attacking Java Card by 
modifying the physical layout.

2.1. Fault Attacks

Faults can be injected into the chip by induc-
ing perturbations in its execution environ-
ment (Bar-El, Choukri, Naccache, Tunstall, 
& Whelan, 2006). Faults can also be injected 
by some physical attacks which expose the 
device to some sort of physical stress. As a 
result, the device has erratic behaviour, i.e., 
changing values in memory cells, transmitting 
different signals through bus lines, or damag-
ing the structural elements. Thus, these errors 
can generate different versions of a program 
by changing some instructions, interpreting 
operands as instructions, branching to other (or 
invalid) labels and so on. These perturbations 
can have various effects on the chip registers 
(program counter, stack pointer), or on the 
memories (variables and code changes). Mainly, 
it can permit an attacker to execute a treatment 
beyond his rights, or to access secret data in the 
smart card. Fault attack is an old research field 
mainly in avionics or space domains (Ziegler et 
al., 1996). Researchers brought to the fore that 
cosmic rays can flip single bits in the memory 
of an electronic device. Such faults are still an 
issue until now for those devices. Three types 
of fault attacks are focused by researchers in 
the smart card field like power spikes, clock 
glitches and optical attacks.

A smart card is a portable device without 
embedded power supply or clock and thus it 
requires a smart card reader (which provides 
external power and clock sources) for operating 
it. The reader can also be replaced by an attacker 
with specific equipment in the laboratory. Short 
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variations of the power supply can induce errors 
into the smart card internal operations. Spikes 
not only allow injecting memory faults but also 
faults in the execution of a program. To confuse 
the program counter can make conditional 
checks to work improperly, loop counters to 
be decreased and arbitrary instructions to be 
executed.

The reader provides to the card a clock 
signal, which may incorporate short deviations 
beyond the required tolerance from the standard 
signal bounds. Such signals are called glitches. 
They can be defined by a range of different pa-
rameters and can be used to inject memory faults 
as well to generate faulty execution behaviours. 
Hence, the possible effects are the same as in 
spike attacks. If the chip is unpacked, such that 
the silicon layer is visible, it is possible to use 
a laser to induce perturbation in the memory 
cells. These memory cells, i.e., EEPROM and 
semiconductor transistors, have been found 
to be sensitive to light. This occurs thanks to 
photoelectric effect. Modern green or red lasers 
can be focused on relatively small regions of 
a chip, such that faults can be targeted fairly 
well. Another method is to make changes in the 
external electrical field of the smart card and it 
has been considered as a possible method for 
inducing faults.

2.2. Fault Model

To prevent a fault attack from being occurred, it 
is necessary to know its effects on smart cards. 
Fault models have already been discussed in 

details (Blomer, Otto, & Seifert, 2003; Wag-
ner, 2004). The existing fault models, given in 
descending order in terms of attacker’s power 
are shown in the Table 1. An attack using the 
precise bit error model had been discussed in 
Skorobogatov and Anderson (2003). But it is 
not realistic on current smart cards as modern 
components implement hardware security on 
memory like error correction and detection 
code or memory encryption. Barbu et al., in 
2010, use a precise byte errors model. To have 
a precise location, they have a white box model 
on the attacked Java Card. The unknown byte 
errors model is motivated by the fact with the 
attacker’s power is effectively reduced by the 
targeted memory encryption and, on some cards, 
a randomized clock. In this case, the attacker 
knows this attack is a success but he has not 
knowledge about the position of the block as 
it is used in the CPU. Finally, high-secured 
smart cards are armed with countermeasures 
(encrypted memory, scrambled address and 
a randomized clock). These countermeasures 
imply that any error induced into the RAM, 
EEPROM or CPU at an undetermined moment 
give at most the information that a certain vari-
able is faulty as explained in Blomer, Otto, and 
Seifert (2003).

In fact, an attacker injects physically en-
ergy into a memory cell to switch its state. 
According to the underlying technology, the 
memory will physically takes the value 0x00 
or 0xFF. If memories are encrypted, the 
physical value becomes a random value (more 

Table 1. Existing fault model 

Fault Model Precision Location Timing Fault 
Type Difficulty

Precise bit errors Bit Precise control Precise control BSR1, 
Random ++

Precise byte errors Byte Loose control Precise control BSR, Ran-
dom +

Unknown byte errors Byte Loose control Loose control BSR, Ran-
dom -

Random errors Variable No control Loose control Random --



International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013   23

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

precisely a value which depends on the data, 
the address, and an encryption key). To be as 
close to the reality, we choose the precise byte 
error that is the most realistic fault model. Thus, 
we have assumed that an attacker can:

• Make a fault injection at a precise clock 
cycle (he can target at any operation he 
wants), only set or reset a byte to 0x00 
or to 0xff according to the underlying 
technology (BSR fault type), or he can 
change a byte to a random value beyond 
his control (random fault type);

• Target any memory cell he wishes (a spe-
cific variable or register).

Currently this accepted fault model is done 
by laser hits during the execution of a smart 
card command.

2.3. Security Mechanisms

Since a long time, smart card manufacturers 
have been aware of the danger of fault attacks. 
Hence, they have developed a large variety of 
hardware countermeasures (Ko, 2005). Major 
hardware countermeasures are sensors and 
filters, which aim to detect attacks, e.g., using 
anomalous frequency detectors, anomalous 
voltage detectors, or light detectors. Other 
countermeasures use redundancy, i.e., dual-rail 
logic (keeping data in two redundant memories), 
and dual hardware (computing a result twice in 
parallel). A data is considered to be error-free if 
both values (computed or memorized) match. 
But these are very expensive countermeasures, 
and hence, redundancy is not often implemented 
in smart cards.

We can notice that using only hardware 
countermeasures have two drawbacks. Highly 
reliable countermeasures are very expensive and 
low cost countermeasures only detect specific 
attacks. Since new fault attacks are being de-
veloped frequently these days, detecting only 
current known forms of physical tampering is 
not sufficient, especially for long term applica-
tions (an e-passport must be valid for 10 years).

An alternative or additional countermea-
sure is the use of software countermeasures. 
They are introduced at different stages of 
the development process. Their purpose is to 
strengthen the application code against fault 
injection attacks. Current approaches for soft-
ware countermeasures include checksums, 
randomization, masking, variable redundancy, 
temporal redundancy and counters.

2.4. Applicative Countermeasure

Usually, it is the programmer who is in charge 
of adding defensive code to avoid any fault 
attacks. Generally this class of countermea-
sure produces application with a greater size. 
Hence, besides the functional code (the code 
that process data), we have the security code 
and the data structure for enforcing the security 
mechanism embedded in the application. Java is 
an interpreted language therefore it is slower to 
execute than a native language, so this category 
of countermeasures suffers from bad execution 
time and add complexity for the developer. 
Examples of such applicative countermeasures 
are: redundant if structure, step counters, loop 
counters, constant time execution, redundant 
variable (if possible with complementary value), 
specific coding of Boolean value, etc.

The following code is an abstraction of the 
Sun wallet example (Sun, 2010). According to 
the received command in the APDU, the user 
requests either a credit or a debit. The balance 
is protected with integrity which is checked 
with the method readBalance. Then before 
entering to either an increment or a decrement, 
the applet checks if the user has been previously 
authenticated. If not, it throws an exception. 
So, for the unauthenticated user, the security 
problem concerns the possibility to access the 
incBalance if not previously authenticated. 
The laser fault can change the jpc such that 
after reading the value of the balance it jumps 
to incBalance avoiding the authentication 
test. The minimal countermeasure is the step 
counter. The counter is initialized at its initial 
value and each time the control enters in a 
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method it is decremented. Then in a sensible 
method (e.g. incBalance), the verification 
consists in checking that it passed to each dec-
rementing step. Of course, the counter step is 
duplicated to avoid an attack on it and the both 
counter are checked.

Protecting RAM in a card is much easier 
than protecting EEPROM memory. So at the 
beginning, both counters are transferred in a 
transient memory and the modification of both 
counters must be protected by the Java Card 
transaction mechanism to avoid a smart card tear 
down (the two last points are not represented 
in the code)(see Listing 1).

To improve the counter mechanism, we 
can implement the state machine which checks 
if the next block is an authorized one by verify-
ing that a call to a method is a valid one with 
regard to the current method.

The representation of the state machine 
uses an adjacency list which is a data structure 

for representing graphs. In an adjacency list 
representation, we keep, for each vertex in the 
graph, a list of all other vertices which it has 
an edge to (that vertex’s “adjacency list”). We 
can use a two-dimensional array which must 
be simulated in a Java Card (arrays are only 
one dimension in Java Card). Then the state 
machine SM is represented by SM = {{1, 2}, 
{3, 4}, {5, 6}, {}, {}, {}, {}}. (Figure 1)

Only four traces are allowed:

t1= {process, credit, readBalance,   
checkAuthentication, incBalance}; 

t2= {process, credit, readBalance,   
checkAuthentication, ISOException.throwIt}; 

t3= {process, debit, readBalance,   
checkAuthentication, decBalance}; 

process (APDU apdu) { 
   step = MAX;  
   notStep = MIN;  
   if (condition)   
      debit(apdu);  
   else   
      credit (apdu);  
} 
credit (APDU apdu) {  
   step -= DEC;  
   notStep += DEC;  
   short bal = readBalance();  
   if (checkAuthentication())   
      incBalance(bal);  
   else   
      ISOException.throwIt();  
} 
debit(APDU apdu) {  
   short bal = readBalance();  
   if (checkAuthentication())   
      decBalance(bal);  
   else   
      ISOException.throwIt();  
}

Listing 1. The purse example



International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013   25

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

t4= {process, debit, readBalance,   
checkAuthentication, ISOException.throwIt}. 

So, the program is transformed with some 
primitives, startStateMachine, which verifies 
that the last state was a leaf and reinitialize 
the state machine, setState which checks 
that the next state is allowed according to the 
current state. ST is hardcoded as a static final 
array (see Listing 2).

Adding security is not a so obvious process 
which needs a deep understanding of the hard-
ware, the state of the art of the attacks and the 
most adequate countermeasure to use. The 
developer knows the assets of the program to 
be protected, but he needs to be aware of the 
attacks and the particular effects of fault attacks. 
For that reason, it is better to rely on system 
countermeasure embedded into the VM. The 
developer should indicate to the VM the vari-
ables which need a secure storage or the piece 
of codes which need a secure execution. For 

that, the developer also requires to signal to the 
VM the countermeasures which need to be 
enabled during a specific duration. Such 
mechanism will be described in the next section.

2.5. System Countermeasure

The objective of a system countermeasure is to 
detect an attack which occurs at linking time, 
run time (e.g. when the byte code transits on 
the data bus) or during the execution of another 
piece of code. Thus, the nature of the counter-
measure is different in terms of:

• Protection of variable integrity: instance 
field, code to be executed, evaluation stack, 
execution context, etc.;

• Protection against control flow execution 
modification: bypassing a test, jumping to 
an unauthorized data area, jumping to an 
argument instead of an instruction, etc.;

• Execution of shell code;

Figure 1. The control flow graph of the application

Listing 2. The purse example with the state machine commands 
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• Type confusion, executing an instruction on 
an object with a given type so this object 
is considered, in another code fragment, 
as another type.

The integrity of application data is often 
used in Java Card and is called secure storage. It 
mainly consists of a dual storage or a checksum 
in order to verify whether the modification of 
the field is done only through the VM. Another 
integrity check concerns the VM structure and 
in particular the frame context. In Bouffard, 
Lanet, and Iguchi-Cartigny (2011), the authors 
show how to modify the return address in the 
frame using unchecked local variable indices. 
Most of smart cards available on the web stores 
might be flooded by the modification of the 
CFG. Thus, it is possible to jump into an array 
which contains any shell code. It becomes ob-
vious to dump the content of the EEPROM. A 
simple countermeasure consists in controlling 
the system data in the frame with a checksum. 
These data are the return address, the previous 
stack pointer and the context of the previous 
frame. A simple checksum of these data would 
mitigate the EMAN 2 attack.

In Bouffard, Lanet, and Iguchi-Cartigny, 
(2011), the possibility to modify the control 
execution of a byte code fragment has been 
demonstrated. The detection of such attack has 
been mainly studied in A. Séré’s PhD thesis (Al 
Khary Séré A., 2010). He described several 
system countermeasures as the Field of Bits 
countermeasure, in Al Khary Séré, Lanet, and 
Iguchu-Cartigny in Evaluation of Countermea-
sures Against Fault Attacks on Smart Cards 
(2011), the Basic Block method and the Path 
Check method in Al Khary Séré, Lanet, and 
Iguchi-Cartigny in Checking the Paths to Iden-
tify Mutant Application on Embedded (2010):

• The Field of Bits consists in statically build-
ing a representation in an array associating 
the nature of the byte of the method: 1 
representing an executable instruction, 0 

a readable parameter. This information is 
sent to the VM, which is in charge of check-
ing dynamically that each interpreted byte 
code is consistent with the associated bit;

• The Basic Block method generates stati-
cally the CFG of the method and at each 
end of a basic block, computes the value 
of the checksum. Dynamically, the VM is 
in charge of computing the value of check-
sum and checking the coherence with the 
pre-computed value at some predefined 
step: each entry point and each exit point;

• The Path Check method encodes stati-
cally the CFG as a field of bit and sends 
it to the VM with the application. Then 
the VM dynamically constructs its own 
field of bit according to the instructions 
executed. For each instruction, it becomes 
possible to verify if there is a divergence 
in the execution.

To prevent the execution of a shell code, 
there is the possibility to re-encode on the fly 
during the linking phase of the value of byte 
code. So if someone tries to execute an arbi-
trary array, he will not be able to obtain the 
desired behavior. Such a method is described 
in Razafindralambo, Bouffard, Thampi, and 
Lanet (2012), where the encoded value depends 
on a dynamic variable. They showed that using 
the jpc as a nonce is enough to avoid any brute 
force attack for guessing the scrambled value.

Several effects are possible for a type 
confusion using fault attacks:

• If the control flow is modified, the program 
counter can jump over several instruction 
leading to a storage of an operand of a 
given type into a local variable of incom-
patible type;

• As shown in Barbu, Thiebeauld, and Guerin 
(2010) a checkcast instruction can be 
bypassed by avoiding the dynamic control 
of a type cast;
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• To desynchronize the control flow lead 
to a jump to an operand which will be 
executed as a byte code instruction. In 
turn this byte code instruction can lead to 
a type confusion.

There are a lot of possibilities to protect 
the data and the execution of a code into the 
VM. Unfortunately, if all of them are activated 
during the execution of an application, the per-
formance of the smart card will drastically de-
crease reaching an unacceptable level. For that 
reason, such system based on countermeasures 
need to be activated only for some critical code 
sections and deactivated it once the code is no 
more critical. In the next section, we present a 
mechanism based on Java annotation to activate 
or deactivate these countermeasures.

2.6. The Annotation Mechanism

There are two ways to signal to a system in which 
the VM must enter/exit for the given mode. 
We can use annotations or a specific API (like 
startTypedStack(), endTypedStack(), 
etc.). The advantage of the API is that the loader 
of the VM does not need to be modified, while 
the advantage of annotation is the possibility 
to pre-compute statically information that will 
improve the run time check.

We made the choice of Java annotations 
which seems to be a more powerful mechanism 
for us. When the VM interpreter encounters an 
annotation, it switches to a “secure mode” and 
the scope of the annotation indicates the exit 
of this mode. The value provided within the 

annotation signifies the type of countermeasure 
which the developer needs for his application. 
The developers should keep in mind that acti-
vating a method in secure mode would imply 
that the parameters are correct. It is based on 
the paradigm of contract; if the calling context 
is correct, the VM guarantees an execution ac-
cording to the value of the annotation parameter.

We have currently developed several an-
notations and we implemented them into our 
own VM. The first type of annotation concerns 
the integrity of the frame context. It consists in 
a new field that performs a xor with the three 
elements of the context frame (the previous 
stack pointer, return address and the context 
of the previous frame) avoiding any arbitrary 
modification of the return address. For the code 
integrity, we have developed several annotations 
in Al Khary Séré, Lanet, & Iguchi-Cartigny in 
Checking the Paths to Identify Mutant Appli-
cation on Embedded (2010), but also recently 
the Java Card Linker (Hamadouche, et al., 
2012) and the dynamic syntax interpretation 
(Razafindralambo, Bouffard, N Thampi, & 
Lanet, 2012) countermeasures have been added 
to our framework. The last one is a protection 
against illegal use of the Java stack. (Table 2)

The principle of the mechanism is divided 
into two parts: one part is off-card and the 
other part is executed on-card. Our module 
works on byte code, and it has sufficient com-
putation power because all of the following 
transformations and computations are done on 
a server (off-card). It is a generalist approach 
which is not dependent on the type of applica-
tion.

Table 2. List of annotations 

Type CTX_INTEGRITY CODE_INTEGRITY STACK_INTEGRITY

Parameters CHECKSUM FIELD_OF_BIT 
BASIC_BLOCK 
DYNAMIC_SYNTAX 
LINKER

TYPED_STACK
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The fragment of code that follows displayed 
the use of an annotation on a debit method for a 
payment application. The @SensitiveType 
annotation (Listing 3) denotes that this method 
must be checked for integrity with the PATH-
CHECK mechanism.

With this approach, we provide a tool that 
processes an annotated class file. The annota-
tions become a Custom Component containing 
security information. This is possible because 
the Java Card specification (Sun, 2010) allows 
to add Custom Components to a class file. Dur-
ing the load-linking phase the VM process 
Custom Components if it knows how to use 
them. If does not, it ignores them. But in order 
to silently process the information contained 

in these Custom Components the VM must be 
modified. In the following section, we expose 
a complete example of a fault leading to type 
confusion.

2.7. Type Confusion

The following code is extracted from an at-
tacked Java Card memory. The method ends 
by throwing the Java Card exception to PIN 
verification (code 0x6301) and the jump at 
address 0x7404 throws this exception (c.f. 
Listing 4: Disassembling memory dump). If 
a fault is injected at this line, the transformed 
code will probably never throw the exception.

@SensitiveType{
  sensitivity = SensitiveValue.CODE_INTEGRITY, 
  proprietaryValue=”PATHCHECK” 
} 
private void debit(APDU apdu) { 
   if (pin.isValidated()) { 
     // make the debit operation 
   } else { 
      ISOException.throwIt(SW_PIN_VERIFICATION_REQUIRED); 
   } 
}

73F6: 18       aload_0
73F7: 7B 20 14 getstatic_a   0x2014 
73FA: 8B 02 08 invokevirtual 0x0208 
73FD: 32       sstore_3 
73FE: 1A       aload_2 
73FF: 03       sconst_0 
7400: 1F       sload_3 
7401: 8D 09 75 invokestatic  0x0975 
7404: 60 2B    ifeq          0x2B 
7406: 04       sconst_1 
... 
742F: 11 63 01 sspush        0x6301 
7432: 8D 54 0D invokestatic  0x540D 
7435: 7A       return

Listing 3. Sensitive type annotation example

Listing 4. Disassembling memory dump
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One can notice that after the execution of 
the instruction ifeq, the operand stack is 
empty. Now, consider that a laser hits the 
memory block that contains the 0x60 byte 
code, i.e., ifeq, the resulting mutant is given 
in Listing 5: Mutant code.

After executing the astore_0 instruction, 
the stack is empty and the mutant program is 
synchronized with the original program. A 
countermeasure based on the stack under/
overflow will never detect the mutant. If a 
dynamic type verification had occurred, this 

mutant code should have been detected. In the 
original code the type system should evolve as 
described in Table 3. After executing the first 
instruction, a reference is pushed on the top of 
the stack. The second instruction pushes a 
value while the third consumes a reference and 
a value, and pushes a value after execution.

Now, examine the state of the stack with 
the mutant code describes in the Table 4. The 
instruction ifeq of the original code consumes 
a value and the sconst_1 pushes a value. In 
the mutant code, the ifeq is replaced by a nop 

Listing 5. Mutant code

...
7401: 8D 09 75 invokestatic  0x0975 
7404: 00       nop 
7405: 2B       astore_0  
7406: 04       sconst_1 
... 
742F: 11 63 01 sspush        0x6301 
7432: 8D 54 0D invokestatic  0x540D 
7435: 7A       return

Table 3. Type evolution 

Address Code Mnemonic Stack After

73F6 18 aload_0 [ref]

73F7 7B 20 14 getstatic_a [ref, val]

73FA 8B 02 08 invokevirtual [val]

73FD 32 sstore_3 []

73FE 1A aload_2 [ref]

73FF 03 sconst_0 [ref, val]

7400 1F sload 3 [ref, val, val]

7401 8D 09 75 invokestatic [val]

7404 60 3B ifeq 0x3B []

7406 04 sconst_1 [val]

… … … …

742F 11 63 01 Sspush

7432 8D 54 0D invokestatic

7435 7A return
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which does not modify the state of the stack. 
The astore_0 pops a reference from the 
stack, but cannot be executed because a value 
is on top of the stack. Obviously, it is easy to 
see how dynamic type verification increases 
the mutants’ detection.

3. THE TYPE CLASSIFICATION

As we have seen, the most obvious counter-
measures are related with under/overflow of the 
stack but their coverage is low; a lot of mutants 
can bypass these controls. The dynamic type 
verification is probably one of the most efficient 
countermeasures against mutant. It has to verify 
that the content on top of the stack is of the exact 
type expected by the next instruction. To obtain 
dynamic type verification, the VM needs to infer 
dynamically the type of locals and the type of 
each element on the top of the stack. But this is 
known to be costly in terms of computation and 
memory space because the VM must keep the 
stack evolution relating to type, which means 
to have a second stack where the type of each 
stack element must be stored. After executing 
an instruction, the VM must evaluate the type 
stack with regard to the executed instruction. 
Such a mechanism cannot be embedded into a 

resource constrained device like a smart card. 
Hereafter we propose a simpler mechanism 
for type classification based on implementing 
a pointer on the memory with no run time cost.

3.1. Principle

This countermeasure was presented in Dubreuil, 
Bouffard, Lanet, and Cartigny (2012). The 
cornerstone of our mechanism is to process 
references and values in a different way. It is 
possible to obtain a dynamic type checking by 
separating the operand stack into two areas 
one reserved for values and one for references. 
These two areas fill the same memory space 
used by the regular stack. The changes in our 
typed stack are just the place where you will 
find elements.

Here is an example showing how the typed 
stack works compared to a regular stack. If a 
program pushes on the stack one value and 
two references. To begin, it pushes a value, 
then pushes the first reference, and then finally 
the last reference is pushed (Table 5 through 
Table 7).

With the typed stack, there are two areas, 
one at the bottom for the values and the other 
one at the top for the references. The normal 
stack has one pointer called top of stack, but 

Table 4. Type evolution of the mutant code 

Address Code Mnemonic Stack After

73FF 03 sconst_0 [ref, val]

7400 1F sload 3 [ref, val, val]

7401 8D 09 75 invokestatic [val]

7404 00 nop [val]

7405 3B pop []

7406 04 sconst_1 [val]

… … … …

742F 11 63 01 sspush

7432 8D 54 0D invokestatic

7435 7A return
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for the typed stack we need two pointers, one 
pointing the top of the values and one for top 
of the references.

To reuse the example of a mutant applica-
tion previously explained in the Table 4, at the 
nop instruction, address 0x7404, the stack has 
only a value reference. The next instruction, 
astore_0, stores the last pushed value in the 
local 0. Here, we have two parts: the first part 
has a single-stack JCVM implementation and, 
the last pushed value is the return of the in-
vokestatic instruction (address 0x7401). 
This return type is a value. When the astore_0 
is executed, this return value is stored in a local 
variable whose type is a reference.

But on a typed stack JCVM implementa-
tion, when the astore_0 is executed, the 
top part of the Java Card stack which contains 
the pushed reference value is empty. On the 
contrary, the bottom part contains the return 
of the invokestatic instruction. Thus, the 
JCVM detects an unexpected behavior. So this 
countermeasure prevents type confusion to be 
exploited as described in Iguchi-Cartigny and 
Lanet (2010).

The proposed countermeasure prevents 
type confusion attack and cover several attack 
paths, like checkcast described by Barbu, 
Thiebeauld, and Guerin (2010) or the Java Card 

Table 7. Typed stack 3 

Normal Stack Typed Stack

Reference 1

Reference 2 ⇓

Reference 2

⇑ Reference 1 ⇑

Value Value

Table 6. Typed stack 2 

Normal Stack Typed Stack

Reference 1

⇓

⇑ Reference 1 ⇑

Value Value

Table 5. Typed stack 1 

Normal Stack Typed Stack

⇓

⇑ ⇑

Value Value
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stack overflow and underflow (Bouffard, Lanet, 
& Iguchi-Cartigny, 2011).

But this typed stack mechanism requires 
implementation of instructions in the VM to 
know which stack operand is used to get the 
elements. Most of Java instructions are typed, 
so it is easy to implement these instructions, 
knowing the type of elements, one instruction 
will push (pop) to (from) the stack. However, 
there are some untyped instructions and these 
instructions cause problems for the implementa-
tion of the VM. They cannot differentiate the 
references or values. These instructions are:

• pop, pop2
• dup, dup2, dup_x
• swap_x

The question is why these instructions are 
not typed. For example, a dup instruction which 
duplicates the last element stacked, the VM 
does not need to know whether it duplicates a 
value or reference with a simple stack. It must 
just go for the element pointed out by the top 
of stack. However, with a typed stack, the VM 
must know the type of the last element stacked 
to see whether it will get the element as a value 
or a reference. So with the typed stack, the VM 
cannot process these untyped instructions.

3.2. Modifying the Virtual Machine

Here we are modifying the VM by splitting 
the Java Card stack into two parts. In this new 
implementation of the VM we added a pointer 
to manage the values pushed on the stack. With 
two pointers, we can push (pop) the references 
to (from) the top of the stack and the values 
to (from) the bottom of the stack. In order 
to respect the backward compatibility of the 
JCVM, a Custom Component has been added 
to indicate if the VM runs the applet in typed 
stack mode or simple-stack mode.

Each of the untyped instruction must be 
removed to correctly run an application. In-
deed, pop instruction, with dual-stack JCVM 
implementation, might be non-executable. 
We provide a way to protect your application 
against external modification (with a laser beam 
for example) to correctly run on a dual stack 
JCVM or run the applet in the JCVM without 
this countermeasure.

3.2.1. Virtual Machine Run Time

When the JCVM invokes a method, it pushes 
a frame from the top onto the Java stack. Then 
it loads the parameters, locals, header and the 
operands onto the stack. Compared to the single 
stack implementation, in dual stack approach 
the operand or element stack is split into two 
sections: the bottom area for values and top area 
for references. A value pointer SP_V points to 
the value and a reference pointer SP_R points to 
the reference of the current stack frame as shown 
in the Figure 2. In the dual stack implementa-
tion, the VM will identify the type of the data 
to be pushed or popped. If it is a value, it will 
be pushed (popped) to (from) the bottom of the 
operand stack and if it is a reference it is pushed 
(popped) to (from) the top of the operand stack. 
Subsequently, the value and reference pointers 
are updated according to the size of the value or 
reference and the operation performed. Once the 
method execution is finished, the stack frame is 
removed (popped) from the Java stack.

Dual stack is implemented in a protected 
mode when the JCVM interprets the annotation 
provided with the Custom Component. This 
mode can be enabled to execute sensitive 
methods. To prevent the type confusion, a 
pointer SP_R has been added to the stack. Dual 
stack operation is explained step by step in the 
algorithms.

Initialization of Java Card stack frame is 
explained in Algorithm 1. Once the stack frame 
is created, it is pushed onto the JCVM stack. 
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The stack pointers get updated accordingly. The 
reference pointer will change according to the 
size of the element and the max_stack value 
as shown in Algorithm 1: Push a Frame. Then 
the stack frame will load all the parameters, 
locals and header onto the stack and initialize 
all the stack frame pointers.

Operand stack management in dual stack 
is explained in Algorithm 2. When the execution 
of instruction starts, it will push (pop) value 
(reference) according to operations performed. 
Stack pointers SP_V and SP_R are updated 
based on executions.

Once the execution is finished, it will pop 
the current stack frame as shown in Algorithm 3.

Thereby using two pointers, type confusion 
is prevented. The switching between single and 
dual stack mode helps to manage the dual stack 
in secure mode.

3.3. Program Transformation

Although untyped instructions are rare in a Java 
Card program, we should be able to process these 
instructions properly. It requires transformation 
of the original program code so that the VM can 

run the program without errors. One solution 
is to replace untyped instructions by one or 
more other instructions which lead to the same 
result. These replacement instructions would 
use temporary variables to properly perform 
the treatment.

Since the method stack is local this trans-
formation requires the analysis and modifica-
tion of each method, one after the other. Before 
replacing untyped instructions we should have 
the stack history. With this information, the 
algorithm will be able to substitute untyped 
instructions. For example to replace a pop, 
knowing the type of the last element pushed 
on to the stack is enough; so if it is a reference 
just replace the pop by a astore into a local 
variable and if it is a value, replace by a sstore 
instruction. Analyzing the byte code instruc-
tion by instruction can help in extracting this 
data. Hence it is sufficient to perform a stack 
simulation alone as it is clearly known for each 
instruction what changes are made on the stack.

This byte code analysis is completely lin-
ear meaning that the instructions are read one 
after the other. However, jumps complicate the 

Figure 2. Representation of dual stack on JCVM
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/* Pointers declaration */ 
SP_V: value of the current stack frame  
SP_R: reference of the current stack frame  
 TOP: free space in the stack frame  
 FP: first local of the stack frame  

/* Initialization */  
JCVM invokes a method  
Push Frame /* to create a new frame for the   
            * method */  

/* Update Stack Pointers */  
SP_R - =  m_localsize * SIZE_SHORT  
        + m_maxstack;  
SP_V + =  m_localsize * SIZE_SHORT;  

/* Load methods parameters  
 * and local variables and header */

Algorithm 1. Push a frame

Until the method has instructions 
  /* Push Value/ Reference */  
  If opcode instruction push a value then  
      /* Value is pushed to bottom of operand stack */  
     SP_V = SP_V+SIZE_VALUE  
  Endif  
  If opcode instruction is push a reference then  
     /* Reference is pushed to the top of the stack */  
     SP_R = SP_R - SIZE_REFERENCE  
  Endif  

  /* Pop Value/Reference */  
  If opcode instruction is pop a value then  
     /* Value is removed from bottom of operand stack */  
     SP_V = SP_V - SIZE_VALUE  
  Endif  
  If opcode instruction is pop a Reference then  
     /* Reference is removed from the top of the stack */  
     SP_R = SP_R + SIZE_REFERENCE  
  Endif  
End

Algorithm 2. Operand stack management
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analysis. The first approach is to go directly to 
the location pointed by a jump instruction and 
to continue the analysis. But it is not neces-
sary to analyze the same instruction twice, and 
furthermore the analysis can even enter into 
an infinite loop. Therefore the analyzer stops 
when it finds that an instruction has not changed 
during the previous parse (fix point calculus).

Conditional jumps are another issue. If the 
condition is true, then the analysis must continue 
to the instruction pointed to the jump, and if it 
is false, the analysis must ignore the jump and 
continue. So the analysis must explore two 
branches and launch two sub-analyzers. Each 
of these analyzers must be run with an identical 
stack obtained just before the conditional jump.

In Algorithm 4, program transformation 
is used to perform the static analysis and the 
replacement of the untyped instructions.

During the load phase if the VM detects 
an untyped instruction and also the annotation 

requires the typed stack, the VM will return a 
security error code and refuses to load the ap-
plication.

3.4. CapMap Integration

The CapMap (Razafindralambo, Bouffard, 
& Lanet, A Friendly Framework for Hidding 
fault enabled virus for Java Based Smartcard, 
2012) is a Java-framework which provides an 
easy way to parse and modify a CAP file. The 
CAP file is the file sent to the Java Card 2.x as 
a lightweight Java Class file.

This Java-library helps us to analyze the 
execution flow of the current Java Card ap-
plet. For each instruction, you can measure its 
impact on the stack (with the knowledge of the 
previously pushed type and value) in order to 
dynamically modify the CAP file. Then it is also 
possible to update each CAP file component to 
create a well-formed file. This tool is used to 
test card against logical attack.

/* Initialization */
If opcode is not already covered Then 
   read opcode 
   update stack history 
   If opcode is a goto instruction 
   Then go to the instruction pointed by goto 
   If opcode is if instruction 
     Then launch two analysis 
/* One for the if statement and the other for the 
 * else statement, both with the stack history 
 * obtained with this if instruction.*/ 
    EndIf 
    If opcode is untyped Then 
       create replacement instructions from stack history 
    EndIf 
EndIf

Reset Stack pointers 
Reset Frame Pointers 
Pop parameters and logical variables

Algorithm 3. Pop a frame

Algorithm 4. Program transformation
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In our case, the CapMap parses each CAP 
file to protect and for each applet method, verify 
if there are untyped operations on the stack. If 
there are some instruction blocks with untyped 
byte code, the CapMap modify these instruc-
tions as described in the Figure 3.

4. EXPERIMENTATION AND 
RESULTS

A countermeasure is affordable if its:

• latency (the number of instructions ex-
ecuted between the fault and the detection) 
is low;

• mutant detection success ratio is high;
• memory footprint is low.

The above three points are most important 
when designing a countermeasure for a smart 
card. The last point can be split into RAM and 
ROM usage knowing that the scarcest resource 
is the RAM. These metrics require the imple-
mentation of our methods in our own prototype 
while the latency and detection coverage can be 
obtained through a fault simulator (Machemie, 
Mazin, Lanet, & Cartigny, 2011).

Four Java Card applets have been used for 
the evaluation. Two applets are representative 
of the type of code that a MNO may want to 
add to their USIM Card. The first (Applet 1) is 
oriented geolocalization services, this applet is 
able to detect when the handset (the device in 

which the USIM card is inserted) is entering 
or leaving a dedicated or a list of geographical 
dedicated cells and then sends a notification to 
a dedicated service (registered and identified 
in the applet). The second (Applet 2) is more 
specialized to authentication services; the ap-
plet is able to provide a One Time Password 
(OTP) to the customer and/or an application in 
the handset. This OTP value is already shared 
and synchronized by the applet with a central 
server, which is able to check every collected 
OTP value by dedicated web services. The two 
other applications are oriented cryptography and 
scrambling operation (Applet 3 and Applet 4).

To replace an untyped instruction, the 
program transformer creates local variables 
which allow pushing or popping elements to 
(from) the stack, and it inserts new instructions 
to simulate the same effect than the untyped 
instruction. The metrics give us the occurrences 
of these instructions: pop (2%), dup (3%), 
dup2 (<1%), and the others are extremely 
rare. As occurrences of these instructions are 
low in a Java Card application, there are not 
so many changes to do. If we want to remove 
one of these three instructions it does not cost 
much. It needs a new local variable to replace 
a pop; to replace a dup, needs to insert two 
instructions and a new local variable; and for 
a dup2 instruction, insert five instructions and 
two variables. Moreover we could optimize 
local variables, taking those that are not used.

Figure 3. CapMap integration
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Some statistics have been made on four 
applets to show the memory footprint when 
the untyped instructions are replaced by typed 
instructions (Table 8).

The dup instruction is the most com-
monly used untyped instruction after the new 
instruction. The applet size increases by 6% on 
an average. This growth is only due to dup 
instructions because pop replacement does not 
cost new instructions. And dup2 instructions 
are very expensive but we can observe that they 
are not numerous. The number of local variables 
added is low and this number can be decreased 
if we optimize them. These metrics show that 
untyped instructions are rare, and the replace-
ment of these instructions by typed instructions 
are affordable.

5. CONCLUSION

In this paper we presented a complete frame-
work allowing the developers to activate or 
deactivate the system based countermeasures. 
A pre–processing phase to generate the Custom 
Component which can be interpreted by the VM 
had been proposed. Moreover we exposed a new 
approach to improve resistance of JCVM against 
type confusion attacks. As shown in the results 
(section 4), this proposed countermeasure is af-
fordable and is fully backward compatible with 
the available platforms. This countermeasure 
needs an applet without untyped instructions 
on the stack. A static off-card tool is used for 
executing this operation. It could also provide 

a competitive advantage to a platform that 
implements this countermeasure. An application 
executed on a regular platform will be more 
prone to fault attack than the platform which 
is embedded with this countermeasure. This 
countermeasure is on a “secured mode” and 
this mode provides a protected environment to 
execute critical assets which are defined by the 
developer. We have seen here that the cost in 
terms of memory footprint was negligible while 
its detection capacity was better. Furthermore, 
the approach does not have any impact on the 
applicative development and the application 
transformer does not significantly increase the 
size of the application.
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ENDNOTES
1  BSR: Bit Set or Reset


