
International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 19

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Mitigating Type Confusion
on Java Card

Jean Dubreuil, Smart Secure Devices (SSD) Team, University of Limoges, Limoges Cedex,
France

Guillaume Bouffard, Smart Secure Devices (SSD) Team, University of Limoges, Limoges
Cedex, France

Bhagyalekshmy N. Thampi, Smart Secure Devices (SSD) Team, University of Limoges,
Limoges Cedex, France

Jean-Louis Lanet, Smart Secure Devices (SSD) Team, University of Limoges, Limoges Cedex,
France

ABSTRACT
One of the challenges for smart card deployment is the security interoperability. A smart card resistant to
an attack on a given platform should be able to guarantee the same behavior on another platform. But the
current implementations do not comply with this requirement. In order to improve such standardization the
authors propose a framework based on annotations with an external pre-processing to switch the Java Card
Virtual Machine (JCVM) into a secure mode by activating a set of countermeasures. An example has been
proposed in this paper for implementing a countermeasure against type confusion with a fault attack. Smart
cards are often the target of software, hardware or combined attacks. In recent days most of the attacks are
based on fault injection which can modify the behavior of applications loaded onto the card, changing them
into mutant applications. This countermeasure requires a transformation of the original program byte codes
which remain semantically equivalent. It needs a modification of the JCVM which stays backward compatible
and a dedicated framework to deploy these applications. Thus, the proposed platform can resist to a fault
enabled mutant.

Keywords: Countermeasures, Faults, Java Card, Smart Card, Typed Stack, Viruses

1. INTRODUCTION

Owing to NFC technology, the usage of mobile
phone for e-transaction will increase drastically
in upcoming years. This transition in technology
requires more applications to be developed in
mobile phones and some of them are highly

sensitive and need high level security. For
example, nowadays using mobile phones for
payment, ticketing, mobile TV, etc. are com-
mon. Thus, it raises the question of confidence
of the terminal that delivers these services. If a
platform is multi-applicative, then loading a new
application can reduce the security of already
installed application. Through virtualization,
the platforms have reached interoperability DOI: 10.4018/jsse.2013040102

20 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

at functional level and it will be difficult to
obtain it at security level. In case of this se-
curity interoperability property has not been
achieved, then the consequence will imply a
costly certification process for each application,
for all configurations of the application. This
could be a main point for not adopting NFC
applications and thereby reducing the develop-
ment’s effort for mobile transactions. Critical
applications in a mobile phone should be hosted
by a Secure Element (SE) often implemented
with a smart card.

Mobile Network Operators (MNO) are
looking to open their native SE: the Universal
Subscriber Identity Module (USIM) Card
(ESTI, 2005) to the third party service providers,
in order to allow them to develop value added
services, like m-payment or m-transport etc., on
NFC based technology. To warrant security for
third party applications hosted in USIM Card,
MNO have chosen to certify their SE under the
Common Criteria (CC) (The Common Criteria
for Information Technology Security Evalua-
tion) scheme (Common Criteria Organization,
2012). This will facilitate post issuance for third
party applications downloading without existing
CC certification loss which means an industrial
process will have to be in place, which has to
warrant the innocuousness of every candidate’s
application for a download. In particular, an
application certified on a given platform must
have the same behavior in other platforms also.

Nowadays most of the USIM cards are
based on a Java Card Virtual Machine (JCVM).
Java Card is a type of smart card that imple-
ments the standard Java Card 3.0 (Sun, 2010)
in one of the two editions “Classic Edition” or
“Connected Edition”. Such a smart card embeds
a Virtual Machine (VM), which interprets ap-
plication byte codes already romized with the
operating system or downloaded after issuance.
Due to security reasons, the ability to download
code into the card is controlled by a protocol
defined by Global Platform (Global Platform,
2011). This protocol ensures that, the code
owner has the necessary credentials to perform
the particular action.

Java Cards have shown an improved
robustness compared to native applications
concerning many attacks. They are designed
to resist numerous attacks using both physical
and logical techniques. Currently, the most
powerful attacks are hardware based attacks and
especially fault attacks. A fault attack modifies a
part of the memory content or signal on internal
bus and leads to deviate from the exploitable
behavior, not by an attacker. A comprehensive
consequence of such attacks is mentioned in
Iguchi-Cartigny and Lanet (2010). Although
fault attacks have been generally used in the
literature from a cryptanalysis point of view
(Aumüller, Bier, Fischer, Hofreiter, & Seifert,
2003; Hemme, 2004; Piret & Quisquater,
2003), they can also be applied to every code
layer embedded in a device. For example, by
choosing the exact byte of a program, an attacker
can bypass logical tests. To avoid such attacks,
several countermeasures have been designed to
protect the execution flow, the integrity of Java
fields, the confidentiality of the byte code, etc.

Designing efficient countermeasures
against fault attacks are important not only
for smart card manufacturers but also for
application developers. Manufacturers need
countermeasures with the lowest cost in terms
of memory and processor usage. The cover-
age (reduction of the number of succeeding
attacks) and the detection latency (number of
instructions executed between an attack and its
detection) are the most important metrics in the
development process of smart card. In order to
minimize the impact of fault attacks, developers
need to implement countermeasures in their
applicative code. Examples of such applicative
countermeasures are redundant branch instruc-
tions, counters, redefining the value of true and
false constants, etc. But in this case the developer
should have the knowledge of underlying plat-
form architecture, which can differ from each
smart card model. This low interoperability of
the security aspects between different platforms
is a huge problem for smart card application
developments and certifications.

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 21

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The proposed solution in this paper adapts
a security feature found in the Java Card 3 plat-
form annotations which is also fully applicable
to Java Card 2 platform using a pre-processor.
When the VM interprets the application code
and enters a method or class tagged with a secu-
rity annotation, it switches to a “secure mode”.
We propose here an efficient countermeasure
that follows this approach and which is able to
protect the VM against type confusion.

The contribution of this paper with respect
to our prior work is based on two mechanisms:
a novel system countermeasure based on JCVM
verification of the Java element type, and a
framework to adapt the Java byte code to the
proposed countermeasure.

This paper is organized as follows; the first
section provides a brief state of the art on smart
cards attacks, the existing countermeasures and
the impact of the fault and mutant generation.
The second section introduces the developed
countermeasure. The evaluation framework and
the collected metrics are highlighted in the third
section and finally, section four concludes the
work with the future perspectives.

2. ATTACKS AND
COUNTERMEASURES

A Java Card attack can be carried out in two
ways.

The first one is a logical attack in which
an attacker uses an ill–formed applet to obtain
sensitive information stored in the card. For
obtaining it, the applet will try to execute some
illegal instructions to read and write in the smart
card memory as explained in Iguchi-Cartigny
and Lanet (2010). This can be accomplished by
making a type confusion attack or by changing
the control flow graph (CFG). Type confusion
blurs the Java Card Runtime Environment (JRE)
to use reference to an object’s instance as a value.
In Java Card, references are mainly stored as
16-bit, i.e. the size of a short. This attack can
be achieved by pushing a value and manipulat-
ing it as a reference (and vice versa). It offers
the ability to manipulate pointers; even though

Java security model forbids the use of pointers.
Indeed, Java is a strong typed language, thus
it is illegal to perform arithmetic operations
on reference. Some of the recent smart cards
with more resources can include a Byte Code
Verifier (BCV). During the installation step, this
BCV checks and prevents to install incorrect
and malicious applets.

The second one is attacking Java Card by
modifying the physical layout.

2.1. Fault Attacks

Faults can be injected into the chip by induc-
ing perturbations in its execution environ-
ment (Bar-El, Choukri, Naccache, Tunstall,
& Whelan, 2006). Faults can also be injected
by some physical attacks which expose the
device to some sort of physical stress. As a
result, the device has erratic behaviour, i.e.,
changing values in memory cells, transmitting
different signals through bus lines, or damag-
ing the structural elements. Thus, these errors
can generate different versions of a program
by changing some instructions, interpreting
operands as instructions, branching to other (or
invalid) labels and so on. These perturbations
can have various effects on the chip registers
(program counter, stack pointer), or on the
memories (variables and code changes). Mainly,
it can permit an attacker to execute a treatment
beyond his rights, or to access secret data in the
smart card. Fault attack is an old research field
mainly in avionics or space domains (Ziegler et
al., 1996). Researchers brought to the fore that
cosmic rays can flip single bits in the memory
of an electronic device. Such faults are still an
issue until now for those devices. Three types
of fault attacks are focused by researchers in
the smart card field like power spikes, clock
glitches and optical attacks.

A smart card is a portable device without
embedded power supply or clock and thus it
requires a smart card reader (which provides
external power and clock sources) for operating
it. The reader can also be replaced by an attacker
with specific equipment in the laboratory. Short

22 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

variations of the power supply can induce errors
into the smart card internal operations. Spikes
not only allow injecting memory faults but also
faults in the execution of a program. To confuse
the program counter can make conditional
checks to work improperly, loop counters to
be decreased and arbitrary instructions to be
executed.

The reader provides to the card a clock
signal, which may incorporate short deviations
beyond the required tolerance from the standard
signal bounds. Such signals are called glitches.
They can be defined by a range of different pa-
rameters and can be used to inject memory faults
as well to generate faulty execution behaviours.
Hence, the possible effects are the same as in
spike attacks. If the chip is unpacked, such that
the silicon layer is visible, it is possible to use
a laser to induce perturbation in the memory
cells. These memory cells, i.e., EEPROM and
semiconductor transistors, have been found
to be sensitive to light. This occurs thanks to
photoelectric effect. Modern green or red lasers
can be focused on relatively small regions of
a chip, such that faults can be targeted fairly
well. Another method is to make changes in the
external electrical field of the smart card and it
has been considered as a possible method for
inducing faults.

2.2. Fault Model

To prevent a fault attack from being occurred, it
is necessary to know its effects on smart cards.
Fault models have already been discussed in

details (Blomer, Otto, & Seifert, 2003; Wag-
ner, 2004). The existing fault models, given in
descending order in terms of attacker’s power
are shown in the Table 1. An attack using the
precise bit error model had been discussed in
Skorobogatov and Anderson (2003). But it is
not realistic on current smart cards as modern
components implement hardware security on
memory like error correction and detection
code or memory encryption. Barbu et al., in
2010, use a precise byte errors model. To have
a precise location, they have a white box model
on the attacked Java Card. The unknown byte
errors model is motivated by the fact with the
attacker’s power is effectively reduced by the
targeted memory encryption and, on some cards,
a randomized clock. In this case, the attacker
knows this attack is a success but he has not
knowledge about the position of the block as
it is used in the CPU. Finally, high-secured
smart cards are armed with countermeasures
(encrypted memory, scrambled address and
a randomized clock). These countermeasures
imply that any error induced into the RAM,
EEPROM or CPU at an undetermined moment
give at most the information that a certain vari-
able is faulty as explained in Blomer, Otto, and
Seifert (2003).

In fact, an attacker injects physically en-
ergy into a memory cell to switch its state.
According to the underlying technology, the
memory will physically takes the value 0x00
or 0xFF. If memories are encrypted, the
physical value becomes a random value (more

Table 1. Existing fault model

Fault Model Precision Location Timing Fault
Type Difficulty

Precise bit errors Bit Precise control Precise control BSR1,
Random ++

Precise byte errors Byte Loose control Precise control BSR, Ran-
dom +

Unknown byte errors Byte Loose control Loose control BSR, Ran-
dom -

Random errors Variable No control Loose control Random --

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 23

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

precisely a value which depends on the data,
the address, and an encryption key). To be as
close to the reality, we choose the precise byte
error that is the most realistic fault model. Thus,
we have assumed that an attacker can:

• Make a fault injection at a precise clock
cycle (he can target at any operation he
wants), only set or reset a byte to 0x00
or to 0xff according to the underlying
technology (BSR fault type), or he can
change a byte to a random value beyond
his control (random fault type);

• Target any memory cell he wishes (a spe-
cific variable or register).

Currently this accepted fault model is done
by laser hits during the execution of a smart
card command.

2.3. Security Mechanisms

Since a long time, smart card manufacturers
have been aware of the danger of fault attacks.
Hence, they have developed a large variety of
hardware countermeasures (Ko, 2005). Major
hardware countermeasures are sensors and
filters, which aim to detect attacks, e.g., using
anomalous frequency detectors, anomalous
voltage detectors, or light detectors. Other
countermeasures use redundancy, i.e., dual-rail
logic (keeping data in two redundant memories),
and dual hardware (computing a result twice in
parallel). A data is considered to be error-free if
both values (computed or memorized) match.
But these are very expensive countermeasures,
and hence, redundancy is not often implemented
in smart cards.

We can notice that using only hardware
countermeasures have two drawbacks. Highly
reliable countermeasures are very expensive and
low cost countermeasures only detect specific
attacks. Since new fault attacks are being de-
veloped frequently these days, detecting only
current known forms of physical tampering is
not sufficient, especially for long term applica-
tions (an e-passport must be valid for 10 years).

An alternative or additional countermea-
sure is the use of software countermeasures.
They are introduced at different stages of
the development process. Their purpose is to
strengthen the application code against fault
injection attacks. Current approaches for soft-
ware countermeasures include checksums,
randomization, masking, variable redundancy,
temporal redundancy and counters.

2.4. Applicative Countermeasure

Usually, it is the programmer who is in charge
of adding defensive code to avoid any fault
attacks. Generally this class of countermea-
sure produces application with a greater size.
Hence, besides the functional code (the code
that process data), we have the security code
and the data structure for enforcing the security
mechanism embedded in the application. Java is
an interpreted language therefore it is slower to
execute than a native language, so this category
of countermeasures suffers from bad execution
time and add complexity for the developer.
Examples of such applicative countermeasures
are: redundant if structure, step counters, loop
counters, constant time execution, redundant
variable (if possible with complementary value),
specific coding of Boolean value, etc.

The following code is an abstraction of the
Sun wallet example (Sun, 2010). According to
the received command in the APDU, the user
requests either a credit or a debit. The balance
is protected with integrity which is checked
with the method readBalance. Then before
entering to either an increment or a decrement,
the applet checks if the user has been previously
authenticated. If not, it throws an exception.
So, for the unauthenticated user, the security
problem concerns the possibility to access the
incBalance if not previously authenticated.
The laser fault can change the jpc such that
after reading the value of the balance it jumps
to incBalance avoiding the authentication
test. The minimal countermeasure is the step
counter. The counter is initialized at its initial
value and each time the control enters in a

24 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

method it is decremented. Then in a sensible
method (e.g. incBalance), the verification
consists in checking that it passed to each dec-
rementing step. Of course, the counter step is
duplicated to avoid an attack on it and the both
counter are checked.

Protecting RAM in a card is much easier
than protecting EEPROM memory. So at the
beginning, both counters are transferred in a
transient memory and the modification of both
counters must be protected by the Java Card
transaction mechanism to avoid a smart card tear
down (the two last points are not represented
in the code)(see Listing 1).

To improve the counter mechanism, we
can implement the state machine which checks
if the next block is an authorized one by verify-
ing that a call to a method is a valid one with
regard to the current method.

The representation of the state machine
uses an adjacency list which is a data structure

for representing graphs. In an adjacency list
representation, we keep, for each vertex in the
graph, a list of all other vertices which it has
an edge to (that vertex’s “adjacency list”). We
can use a two-dimensional array which must
be simulated in a Java Card (arrays are only
one dimension in Java Card). Then the state
machine SM is represented by SM = {{1, 2},
{3, 4}, {5, 6}, {}, {}, {}, {}}. (Figure 1)

Only four traces are allowed:

t1= {process, credit, readBalance,
checkAuthentication, incBalance};

t2= {process, credit, readBalance,
checkAuthentication, ISOException.throwIt};

t3= {process, debit, readBalance,
checkAuthentication, decBalance};

process (APDU apdu) {
 step = MAX;
 notStep = MIN;
 if (condition)
 debit(apdu);
 else
 credit (apdu);
}
credit (APDU apdu) {
 step -= DEC;
 notStep += DEC;
 short bal = readBalance();
 if (checkAuthentication())
 incBalance(bal);
 else
 ISOException.throwIt();
}
debit(APDU apdu) {
 short bal = readBalance();
 if (checkAuthentication())
 decBalance(bal);
 else
 ISOException.throwIt();
}

Listing 1. The purse example

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 25

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

t4= {process, debit, readBalance,
checkAuthentication, ISOException.throwIt}.

So, the program is transformed with some
primitives, startStateMachine, which verifies
that the last state was a leaf and reinitialize
the state machine, setState which checks
that the next state is allowed according to the
current state. ST is hardcoded as a static final
array (see Listing 2).

Adding security is not a so obvious process
which needs a deep understanding of the hard-
ware, the state of the art of the attacks and the
most adequate countermeasure to use. The
developer knows the assets of the program to
be protected, but he needs to be aware of the
attacks and the particular effects of fault attacks.
For that reason, it is better to rely on system
countermeasure embedded into the VM. The
developer should indicate to the VM the vari-
ables which need a secure storage or the piece
of codes which need a secure execution. For

that, the developer also requires to signal to the
VM the countermeasures which need to be
enabled during a specific duration. Such
mechanism will be described in the next section.

2.5. System Countermeasure

The objective of a system countermeasure is to
detect an attack which occurs at linking time,
run time (e.g. when the byte code transits on
the data bus) or during the execution of another
piece of code. Thus, the nature of the counter-
measure is different in terms of:

• Protection of variable integrity: instance
field, code to be executed, evaluation stack,
execution context, etc.;

• Protection against control flow execution
modification: bypassing a test, jumping to
an unauthorized data area, jumping to an
argument instead of an instruction, etc.;

• Execution of shell code;

Figure 1. The control flow graph of the application

Listing 2. The purse example with the state machine commands

26 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• Type confusion, executing an instruction on
an object with a given type so this object
is considered, in another code fragment,
as another type.

The integrity of application data is often
used in Java Card and is called secure storage. It
mainly consists of a dual storage or a checksum
in order to verify whether the modification of
the field is done only through the VM. Another
integrity check concerns the VM structure and
in particular the frame context. In Bouffard,
Lanet, and Iguchi-Cartigny (2011), the authors
show how to modify the return address in the
frame using unchecked local variable indices.
Most of smart cards available on the web stores
might be flooded by the modification of the
CFG. Thus, it is possible to jump into an array
which contains any shell code. It becomes ob-
vious to dump the content of the EEPROM. A
simple countermeasure consists in controlling
the system data in the frame with a checksum.
These data are the return address, the previous
stack pointer and the context of the previous
frame. A simple checksum of these data would
mitigate the EMAN 2 attack.

In Bouffard, Lanet, and Iguchi-Cartigny,
(2011), the possibility to modify the control
execution of a byte code fragment has been
demonstrated. The detection of such attack has
been mainly studied in A. Séré’s PhD thesis (Al
Khary Séré A., 2010). He described several
system countermeasures as the Field of Bits
countermeasure, in Al Khary Séré, Lanet, and
Iguchu-Cartigny in Evaluation of Countermea-
sures Against Fault Attacks on Smart Cards
(2011), the Basic Block method and the Path
Check method in Al Khary Séré, Lanet, and
Iguchi-Cartigny in Checking the Paths to Iden-
tify Mutant Application on Embedded (2010):

• The Field of Bits consists in statically build-
ing a representation in an array associating
the nature of the byte of the method: 1
representing an executable instruction, 0

a readable parameter. This information is
sent to the VM, which is in charge of check-
ing dynamically that each interpreted byte
code is consistent with the associated bit;

• The Basic Block method generates stati-
cally the CFG of the method and at each
end of a basic block, computes the value
of the checksum. Dynamically, the VM is
in charge of computing the value of check-
sum and checking the coherence with the
pre-computed value at some predefined
step: each entry point and each exit point;

• The Path Check method encodes stati-
cally the CFG as a field of bit and sends
it to the VM with the application. Then
the VM dynamically constructs its own
field of bit according to the instructions
executed. For each instruction, it becomes
possible to verify if there is a divergence
in the execution.

To prevent the execution of a shell code,
there is the possibility to re-encode on the fly
during the linking phase of the value of byte
code. So if someone tries to execute an arbi-
trary array, he will not be able to obtain the
desired behavior. Such a method is described
in Razafindralambo, Bouffard, Thampi, and
Lanet (2012), where the encoded value depends
on a dynamic variable. They showed that using
the jpc as a nonce is enough to avoid any brute
force attack for guessing the scrambled value.

Several effects are possible for a type
confusion using fault attacks:

• If the control flow is modified, the program
counter can jump over several instruction
leading to a storage of an operand of a
given type into a local variable of incom-
patible type;

• As shown in Barbu, Thiebeauld, and Guerin
(2010) a checkcast instruction can be
bypassed by avoiding the dynamic control
of a type cast;

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 27

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• To desynchronize the control flow lead
to a jump to an operand which will be
executed as a byte code instruction. In
turn this byte code instruction can lead to
a type confusion.

There are a lot of possibilities to protect
the data and the execution of a code into the
VM. Unfortunately, if all of them are activated
during the execution of an application, the per-
formance of the smart card will drastically de-
crease reaching an unacceptable level. For that
reason, such system based on countermeasures
need to be activated only for some critical code
sections and deactivated it once the code is no
more critical. In the next section, we present a
mechanism based on Java annotation to activate
or deactivate these countermeasures.

2.6. The Annotation Mechanism

There are two ways to signal to a system in which
the VM must enter/exit for the given mode.
We can use annotations or a specific API (like
startTypedStack(), endTypedStack(),
etc.). The advantage of the API is that the loader
of the VM does not need to be modified, while
the advantage of annotation is the possibility
to pre-compute statically information that will
improve the run time check.

We made the choice of Java annotations
which seems to be a more powerful mechanism
for us. When the VM interpreter encounters an
annotation, it switches to a “secure mode” and
the scope of the annotation indicates the exit
of this mode. The value provided within the

annotation signifies the type of countermeasure
which the developer needs for his application.
The developers should keep in mind that acti-
vating a method in secure mode would imply
that the parameters are correct. It is based on
the paradigm of contract; if the calling context
is correct, the VM guarantees an execution ac-
cording to the value of the annotation parameter.

We have currently developed several an-
notations and we implemented them into our
own VM. The first type of annotation concerns
the integrity of the frame context. It consists in
a new field that performs a xor with the three
elements of the context frame (the previous
stack pointer, return address and the context
of the previous frame) avoiding any arbitrary
modification of the return address. For the code
integrity, we have developed several annotations
in Al Khary Séré, Lanet, & Iguchi-Cartigny in
Checking the Paths to Identify Mutant Appli-
cation on Embedded (2010), but also recently
the Java Card Linker (Hamadouche, et al.,
2012) and the dynamic syntax interpretation
(Razafindralambo, Bouffard, N Thampi, &
Lanet, 2012) countermeasures have been added
to our framework. The last one is a protection
against illegal use of the Java stack. (Table 2)

The principle of the mechanism is divided
into two parts: one part is off-card and the
other part is executed on-card. Our module
works on byte code, and it has sufficient com-
putation power because all of the following
transformations and computations are done on
a server (off-card). It is a generalist approach
which is not dependent on the type of applica-
tion.

Table 2. List of annotations

Type CTX_INTEGRITY CODE_INTEGRITY STACK_INTEGRITY

Parameters CHECKSUM FIELD_OF_BIT
BASIC_BLOCK
DYNAMIC_SYNTAX
LINKER

TYPED_STACK

28 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The fragment of code that follows displayed
the use of an annotation on a debit method for a
payment application. The @SensitiveType
annotation (Listing 3) denotes that this method
must be checked for integrity with the PATH-
CHECK mechanism.

With this approach, we provide a tool that
processes an annotated class file. The annota-
tions become a Custom Component containing
security information. This is possible because
the Java Card specification (Sun, 2010) allows
to add Custom Components to a class file. Dur-
ing the load-linking phase the VM process
Custom Components if it knows how to use
them. If does not, it ignores them. But in order
to silently process the information contained

in these Custom Components the VM must be
modified. In the following section, we expose
a complete example of a fault leading to type
confusion.

2.7. Type Confusion

The following code is extracted from an at-
tacked Java Card memory. The method ends
by throwing the Java Card exception to PIN
verification (code 0x6301) and the jump at
address 0x7404 throws this exception (c.f.
Listing 4: Disassembling memory dump). If
a fault is injected at this line, the transformed
code will probably never throw the exception.

@SensitiveType{
 sensitivity = SensitiveValue.CODE_INTEGRITY,
 proprietaryValue=”PATHCHECK”
}
private void debit(APDU apdu) {
 if (pin.isValidated()) {
 // make the debit operation
 } else {
 ISOException.throwIt(SW_PIN_VERIFICATION_REQUIRED);
 }
}

73F6: 18 aload_0
73F7: 7B 20 14 getstatic_a 0x2014
73FA: 8B 02 08 invokevirtual 0x0208
73FD: 32 sstore_3
73FE: 1A aload_2
73FF: 03 sconst_0
7400: 1F sload_3
7401: 8D 09 75 invokestatic 0x0975
7404: 60 2B ifeq 0x2B
7406: 04 sconst_1
...
742F: 11 63 01 sspush 0x6301
7432: 8D 54 0D invokestatic 0x540D
7435: 7A return

Listing 3. Sensitive type annotation example

Listing 4. Disassembling memory dump

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 29

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

One can notice that after the execution of
the instruction ifeq, the operand stack is
empty. Now, consider that a laser hits the
memory block that contains the 0x60 byte
code, i.e., ifeq, the resulting mutant is given
in Listing 5: Mutant code.

After executing the astore_0 instruction,
the stack is empty and the mutant program is
synchronized with the original program. A
countermeasure based on the stack under/
overflow will never detect the mutant. If a
dynamic type verification had occurred, this

mutant code should have been detected. In the
original code the type system should evolve as
described in Table 3. After executing the first
instruction, a reference is pushed on the top of
the stack. The second instruction pushes a
value while the third consumes a reference and
a value, and pushes a value after execution.

Now, examine the state of the stack with
the mutant code describes in the Table 4. The
instruction ifeq of the original code consumes
a value and the sconst_1 pushes a value. In
the mutant code, the ifeq is replaced by a nop

Listing 5. Mutant code

...
7401: 8D 09 75 invokestatic 0x0975
7404: 00 nop
7405: 2B astore_0
7406: 04 sconst_1
...
742F: 11 63 01 sspush 0x6301
7432: 8D 54 0D invokestatic 0x540D
7435: 7A return

Table 3. Type evolution

Address Code Mnemonic Stack After

73F6 18 aload_0 [ref]

73F7 7B 20 14 getstatic_a [ref, val]

73FA 8B 02 08 invokevirtual [val]

73FD 32 sstore_3 []

73FE 1A aload_2 [ref]

73FF 03 sconst_0 [ref, val]

7400 1F sload 3 [ref, val, val]

7401 8D 09 75 invokestatic [val]

7404 60 3B ifeq 0x3B []

7406 04 sconst_1 [val]

… … … …

742F 11 63 01 Sspush

7432 8D 54 0D invokestatic

7435 7A return

30 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

which does not modify the state of the stack.
The astore_0 pops a reference from the
stack, but cannot be executed because a value
is on top of the stack. Obviously, it is easy to
see how dynamic type verification increases
the mutants’ detection.

3. THE TYPE CLASSIFICATION

As we have seen, the most obvious counter-
measures are related with under/overflow of the
stack but their coverage is low; a lot of mutants
can bypass these controls. The dynamic type
verification is probably one of the most efficient
countermeasures against mutant. It has to verify
that the content on top of the stack is of the exact
type expected by the next instruction. To obtain
dynamic type verification, the VM needs to infer
dynamically the type of locals and the type of
each element on the top of the stack. But this is
known to be costly in terms of computation and
memory space because the VM must keep the
stack evolution relating to type, which means
to have a second stack where the type of each
stack element must be stored. After executing
an instruction, the VM must evaluate the type
stack with regard to the executed instruction.
Such a mechanism cannot be embedded into a

resource constrained device like a smart card.
Hereafter we propose a simpler mechanism
for type classification based on implementing
a pointer on the memory with no run time cost.

3.1. Principle

This countermeasure was presented in Dubreuil,
Bouffard, Lanet, and Cartigny (2012). The
cornerstone of our mechanism is to process
references and values in a different way. It is
possible to obtain a dynamic type checking by
separating the operand stack into two areas
one reserved for values and one for references.
These two areas fill the same memory space
used by the regular stack. The changes in our
typed stack are just the place where you will
find elements.

Here is an example showing how the typed
stack works compared to a regular stack. If a
program pushes on the stack one value and
two references. To begin, it pushes a value,
then pushes the first reference, and then finally
the last reference is pushed (Table 5 through
Table 7).

With the typed stack, there are two areas,
one at the bottom for the values and the other
one at the top for the references. The normal
stack has one pointer called top of stack, but

Table 4. Type evolution of the mutant code

Address Code Mnemonic Stack After

73FF 03 sconst_0 [ref, val]

7400 1F sload 3 [ref, val, val]

7401 8D 09 75 invokestatic [val]

7404 00 nop [val]

7405 3B pop []

7406 04 sconst_1 [val]

… … … …

742F 11 63 01 sspush

7432 8D 54 0D invokestatic

7435 7A return

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 31

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

for the typed stack we need two pointers, one
pointing the top of the values and one for top
of the references.

To reuse the example of a mutant applica-
tion previously explained in the Table 4, at the
nop instruction, address 0x7404, the stack has
only a value reference. The next instruction,
astore_0, stores the last pushed value in the
local 0. Here, we have two parts: the first part
has a single-stack JCVM implementation and,
the last pushed value is the return of the in-
vokestatic instruction (address 0x7401).
This return type is a value. When the astore_0
is executed, this return value is stored in a local
variable whose type is a reference.

But on a typed stack JCVM implementa-
tion, when the astore_0 is executed, the
top part of the Java Card stack which contains
the pushed reference value is empty. On the
contrary, the bottom part contains the return
of the invokestatic instruction. Thus, the
JCVM detects an unexpected behavior. So this
countermeasure prevents type confusion to be
exploited as described in Iguchi-Cartigny and
Lanet (2010).

The proposed countermeasure prevents
type confusion attack and cover several attack
paths, like checkcast described by Barbu,
Thiebeauld, and Guerin (2010) or the Java Card

Table 7. Typed stack 3

Normal Stack Typed Stack

Reference 1

Reference 2 ⇓

Reference 2

⇑ Reference 1 ⇑

Value Value

Table 6. Typed stack 2

Normal Stack Typed Stack

Reference 1

⇓

⇑ Reference 1 ⇑

Value Value

Table 5. Typed stack 1

Normal Stack Typed Stack

⇓

⇑ ⇑

Value Value

32 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

stack overflow and underflow (Bouffard, Lanet,
& Iguchi-Cartigny, 2011).

But this typed stack mechanism requires
implementation of instructions in the VM to
know which stack operand is used to get the
elements. Most of Java instructions are typed,
so it is easy to implement these instructions,
knowing the type of elements, one instruction
will push (pop) to (from) the stack. However,
there are some untyped instructions and these
instructions cause problems for the implementa-
tion of the VM. They cannot differentiate the
references or values. These instructions are:

• pop, pop2
• dup, dup2, dup_x
• swap_x

The question is why these instructions are
not typed. For example, a dup instruction which
duplicates the last element stacked, the VM
does not need to know whether it duplicates a
value or reference with a simple stack. It must
just go for the element pointed out by the top
of stack. However, with a typed stack, the VM
must know the type of the last element stacked
to see whether it will get the element as a value
or a reference. So with the typed stack, the VM
cannot process these untyped instructions.

3.2. Modifying the Virtual Machine

Here we are modifying the VM by splitting
the Java Card stack into two parts. In this new
implementation of the VM we added a pointer
to manage the values pushed on the stack. With
two pointers, we can push (pop) the references
to (from) the top of the stack and the values
to (from) the bottom of the stack. In order
to respect the backward compatibility of the
JCVM, a Custom Component has been added
to indicate if the VM runs the applet in typed
stack mode or simple-stack mode.

Each of the untyped instruction must be
removed to correctly run an application. In-
deed, pop instruction, with dual-stack JCVM
implementation, might be non-executable.
We provide a way to protect your application
against external modification (with a laser beam
for example) to correctly run on a dual stack
JCVM or run the applet in the JCVM without
this countermeasure.

3.2.1. Virtual Machine Run Time

When the JCVM invokes a method, it pushes
a frame from the top onto the Java stack. Then
it loads the parameters, locals, header and the
operands onto the stack. Compared to the single
stack implementation, in dual stack approach
the operand or element stack is split into two
sections: the bottom area for values and top area
for references. A value pointer SP_V points to
the value and a reference pointer SP_R points to
the reference of the current stack frame as shown
in the Figure 2. In the dual stack implementa-
tion, the VM will identify the type of the data
to be pushed or popped. If it is a value, it will
be pushed (popped) to (from) the bottom of the
operand stack and if it is a reference it is pushed
(popped) to (from) the top of the operand stack.
Subsequently, the value and reference pointers
are updated according to the size of the value or
reference and the operation performed. Once the
method execution is finished, the stack frame is
removed (popped) from the Java stack.

Dual stack is implemented in a protected
mode when the JCVM interprets the annotation
provided with the Custom Component. This
mode can be enabled to execute sensitive
methods. To prevent the type confusion, a
pointer SP_R has been added to the stack. Dual
stack operation is explained step by step in the
algorithms.

Initialization of Java Card stack frame is
explained in Algorithm 1. Once the stack frame
is created, it is pushed onto the JCVM stack.

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 33

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The stack pointers get updated accordingly. The
reference pointer will change according to the
size of the element and the max_stack value
as shown in Algorithm 1: Push a Frame. Then
the stack frame will load all the parameters,
locals and header onto the stack and initialize
all the stack frame pointers.

Operand stack management in dual stack
is explained in Algorithm 2. When the execution
of instruction starts, it will push (pop) value
(reference) according to operations performed.
Stack pointers SP_V and SP_R are updated
based on executions.

Once the execution is finished, it will pop
the current stack frame as shown in Algorithm 3.

Thereby using two pointers, type confusion
is prevented. The switching between single and
dual stack mode helps to manage the dual stack
in secure mode.

3.3. Program Transformation

Although untyped instructions are rare in a Java
Card program, we should be able to process these
instructions properly. It requires transformation
of the original program code so that the VM can

run the program without errors. One solution
is to replace untyped instructions by one or
more other instructions which lead to the same
result. These replacement instructions would
use temporary variables to properly perform
the treatment.

Since the method stack is local this trans-
formation requires the analysis and modifica-
tion of each method, one after the other. Before
replacing untyped instructions we should have
the stack history. With this information, the
algorithm will be able to substitute untyped
instructions. For example to replace a pop,
knowing the type of the last element pushed
on to the stack is enough; so if it is a reference
just replace the pop by a astore into a local
variable and if it is a value, replace by a sstore
instruction. Analyzing the byte code instruc-
tion by instruction can help in extracting this
data. Hence it is sufficient to perform a stack
simulation alone as it is clearly known for each
instruction what changes are made on the stack.

This byte code analysis is completely lin-
ear meaning that the instructions are read one
after the other. However, jumps complicate the

Figure 2. Representation of dual stack on JCVM

34 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

/* Pointers declaration */
SP_V: value of the current stack frame
SP_R: reference of the current stack frame
 TOP: free space in the stack frame
 FP: first local of the stack frame

/* Initialization */
JCVM invokes a method
Push Frame /* to create a new frame for the
 * method */

/* Update Stack Pointers */
SP_R - = m_localsize * SIZE_SHORT
 + m_maxstack;
SP_V + = m_localsize * SIZE_SHORT;

/* Load methods parameters
 * and local variables and header */

Algorithm 1. Push a frame

Until the method has instructions
 /* Push Value/ Reference */
 If opcode instruction push a value then
 /* Value is pushed to bottom of operand stack */
 SP_V = SP_V+SIZE_VALUE
 Endif
 If opcode instruction is push a reference then
 /* Reference is pushed to the top of the stack */
 SP_R = SP_R - SIZE_REFERENCE
 Endif

 /* Pop Value/Reference */
 If opcode instruction is pop a value then
 /* Value is removed from bottom of operand stack */
 SP_V = SP_V - SIZE_VALUE
 Endif
 If opcode instruction is pop a Reference then
 /* Reference is removed from the top of the stack */
 SP_R = SP_R + SIZE_REFERENCE
 Endif
End

Algorithm 2. Operand stack management

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 35

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

analysis. The first approach is to go directly to
the location pointed by a jump instruction and
to continue the analysis. But it is not neces-
sary to analyze the same instruction twice, and
furthermore the analysis can even enter into
an infinite loop. Therefore the analyzer stops
when it finds that an instruction has not changed
during the previous parse (fix point calculus).

Conditional jumps are another issue. If the
condition is true, then the analysis must continue
to the instruction pointed to the jump, and if it
is false, the analysis must ignore the jump and
continue. So the analysis must explore two
branches and launch two sub-analyzers. Each
of these analyzers must be run with an identical
stack obtained just before the conditional jump.

In Algorithm 4, program transformation
is used to perform the static analysis and the
replacement of the untyped instructions.

During the load phase if the VM detects
an untyped instruction and also the annotation

requires the typed stack, the VM will return a
security error code and refuses to load the ap-
plication.

3.4. CapMap Integration

The CapMap (Razafindralambo, Bouffard,
& Lanet, A Friendly Framework for Hidding
fault enabled virus for Java Based Smartcard,
2012) is a Java-framework which provides an
easy way to parse and modify a CAP file. The
CAP file is the file sent to the Java Card 2.x as
a lightweight Java Class file.

This Java-library helps us to analyze the
execution flow of the current Java Card ap-
plet. For each instruction, you can measure its
impact on the stack (with the knowledge of the
previously pushed type and value) in order to
dynamically modify the CAP file. Then it is also
possible to update each CAP file component to
create a well-formed file. This tool is used to
test card against logical attack.

/* Initialization */
If opcode is not already covered Then
 read opcode
 update stack history
 If opcode is a goto instruction
 Then go to the instruction pointed by goto
 If opcode is if instruction
 Then launch two analysis
/* One for the if statement and the other for the
 * else statement, both with the stack history
 * obtained with this if instruction.*/
 EndIf
 If opcode is untyped Then
 create replacement instructions from stack history
 EndIf
EndIf

Reset Stack pointers
Reset Frame Pointers
Pop parameters and logical variables

Algorithm 3. Pop a frame

Algorithm 4. Program transformation

36 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In our case, the CapMap parses each CAP
file to protect and for each applet method, verify
if there are untyped operations on the stack. If
there are some instruction blocks with untyped
byte code, the CapMap modify these instruc-
tions as described in the Figure 3.

4. EXPERIMENTATION AND
RESULTS

A countermeasure is affordable if its:

• latency (the number of instructions ex-
ecuted between the fault and the detection)
is low;

• mutant detection success ratio is high;
• memory footprint is low.

The above three points are most important
when designing a countermeasure for a smart
card. The last point can be split into RAM and
ROM usage knowing that the scarcest resource
is the RAM. These metrics require the imple-
mentation of our methods in our own prototype
while the latency and detection coverage can be
obtained through a fault simulator (Machemie,
Mazin, Lanet, & Cartigny, 2011).

Four Java Card applets have been used for
the evaluation. Two applets are representative
of the type of code that a MNO may want to
add to their USIM Card. The first (Applet 1) is
oriented geolocalization services, this applet is
able to detect when the handset (the device in

which the USIM card is inserted) is entering
or leaving a dedicated or a list of geographical
dedicated cells and then sends a notification to
a dedicated service (registered and identified
in the applet). The second (Applet 2) is more
specialized to authentication services; the ap-
plet is able to provide a One Time Password
(OTP) to the customer and/or an application in
the handset. This OTP value is already shared
and synchronized by the applet with a central
server, which is able to check every collected
OTP value by dedicated web services. The two
other applications are oriented cryptography and
scrambling operation (Applet 3 and Applet 4).

To replace an untyped instruction, the
program transformer creates local variables
which allow pushing or popping elements to
(from) the stack, and it inserts new instructions
to simulate the same effect than the untyped
instruction. The metrics give us the occurrences
of these instructions: pop (2%), dup (3%),
dup2 (<1%), and the others are extremely
rare. As occurrences of these instructions are
low in a Java Card application, there are not
so many changes to do. If we want to remove
one of these three instructions it does not cost
much. It needs a new local variable to replace
a pop; to replace a dup, needs to insert two
instructions and a new local variable; and for
a dup2 instruction, insert five instructions and
two variables. Moreover we could optimize
local variables, taking those that are not used.

Figure 3. CapMap integration

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 37

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Some statistics have been made on four
applets to show the memory footprint when
the untyped instructions are replaced by typed
instructions (Table 8).

The dup instruction is the most com-
monly used untyped instruction after the new
instruction. The applet size increases by 6% on
an average. This growth is only due to dup
instructions because pop replacement does not
cost new instructions. And dup2 instructions
are very expensive but we can observe that they
are not numerous. The number of local variables
added is low and this number can be decreased
if we optimize them. These metrics show that
untyped instructions are rare, and the replace-
ment of these instructions by typed instructions
are affordable.

5. CONCLUSION

In this paper we presented a complete frame-
work allowing the developers to activate or
deactivate the system based countermeasures.
A pre–processing phase to generate the Custom
Component which can be interpreted by the VM
had been proposed. Moreover we exposed a new
approach to improve resistance of JCVM against
type confusion attacks. As shown in the results
(section 4), this proposed countermeasure is af-
fordable and is fully backward compatible with
the available platforms. This countermeasure
needs an applet without untyped instructions
on the stack. A static off-card tool is used for
executing this operation. It could also provide

a competitive advantage to a platform that
implements this countermeasure. An application
executed on a regular platform will be more
prone to fault attack than the platform which
is embedded with this countermeasure. This
countermeasure is on a “secured mode” and
this mode provides a protected environment to
execute critical assets which are defined by the
developer. We have seen here that the cost in
terms of memory footprint was negligible while
its detection capacity was better. Furthermore,
the approach does not have any impact on the
applicative development and the application
transformer does not significantly increase the
size of the application.

6. ACKNOWLEDGMENT

The work was partly funded by the French
project INOSSEM (PIA-FSN2 - Technologie
de la Sécurité et Résilience des Réseaux) and
the Région Limousin.

7. REFERENCES

Al Khary Séré, A. (2010). Tissage de contremesures
pour machines virtuelles embarquées. Unpublished
PhD Thesis. France: Université de Limoges.

Al Khary Séré, A., Iguchi-Cartigny, J., & Lanet, J.-L.
(2009, October 15th). Automatic detection of fault
attack and countermeasures. In Proceedings of the 4th
Workshop on Embedded Systems Security (WESS).

Table 8. Results

Applet 1 Applet 2 Applet 3 Applet 4

Instructions count 4296 957 926 465

Untyped
instructions 49 pop, 195 dup, 3 dup2 19 pop, 36 dup 4 pop, 17 dup, 4 dup2 10 pop, 6 dup

Instructions added 405 72 54 12

Locals added 27 16 7 5

38 International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Al Khary Séré, A., Lanet, J.-L., & Iguchi-Cartigny, J.
(2010, December). In T. Kim, Y. Lee, B. Kang, & D.
Slezak (Eds.), Lecture Notes in Computer Science:
Vol. 6485. Checking the paths to identify mutant
application on embedded (pp. 459–468).

Al Khary Séré, A., Lanet, J.-L., & Iguchu-Cartigny, J.
(2011, April). Evaluation of countermeasures against
fault attacks on smart cards. International Journal of
Security and Its Applications, 5(2), 49–61.

Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., &
Seifert, J. (2003). In B. Kaliski, Ç. Koç, & C. Paar
(Eds.), Lecture Notes in Computer Science: Vol.
2523. Fault attacks on RSA with CRT: Concrete
results and practical countermeasures (pp. 81–95).
doi:10.1007/3-540-36400-5_20.

Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., &
Whelan, C. (2006, February). The sorcerer’s appren-
tice guide to fault attacks. Proceedings of the IEEE,
94(2), 370–382. doi:10.1109/JPROC.2005.862424.

Barbu, G., Thiebeauld, H., & Guerin, V. (2010).
In D. Gollmann, J.-L. Lanet, & J. Iguchi-Cartigny
(Eds.), Lecture Notes in Computer Science: Vol.
6035. Attacks on Java Card 3.0 Combining Fault
and Logical Attacks (pp. 148–163). doi:10.1007/978-
3-642-12510-2_11.

Blomer, J., Otto, M., & Seifert, J. (2003). A new
CRT-RSA algorithm secure against Bellcore attacks.
In Proceedings of the 10th ACM Conference on Com-
puter and Communications Security (pp. 311-320).

Bouffard, G., Lanet, J.-L., & Iguchi-Cartigny, J.
(2011). In E. Prouff (Ed.), Lecture Notes in Computer
Science: Vol. 7079. Combined software and hardware
attacks on the java card control flow (pp. 283–296).
doi:10.1007/978-3-642-27257-8_18.

Common Criteria Organization. (2012, September).
Common criteria for information technology security
evaluation v3.1. Retrieved from http://www.com-
moncriteria.org/

Dubreuil, J., Bouffard, G., Lanet, J.-L., & Cartigny,
J. (2012, August 21st). Type classification against
fault enabled mutant in java based smart card. In
Proceedings of the Sixth International Workshop on
Secure Software Engineering (SecSE) (pp. 551-556).

ESTI. (2005). 3GPP TS 31.102. Technical Specifica-
tion Group Core Network and Terminals.

Global Platform. (2011, January). GlobalPlatform.
Retrieved from http://www.globalplatform.org/

Hamadouche, S., Bouffard, G., Lanet, J.-L., Dorse-
maine, B., Nouhant, B., Magloire, A., & Reygnaud,
A. (2012, May 22sd). Subverting byte code linker
service to characterize Java Card API. In Proceed-
ings of the Seventh Conference on Network and
Information Systems Security (SAR-SSI) (pp. 75-81).

Hemme, L. (2004). In M. Joye, & J.-J. Quisquater
(Eds.), Lecture Notes in Computer Science: Vol.
3156. A differential fault attack against early rounds
of (Triple-) DES (pp. 170–217). doi:10.1007/978-3-
540-28632-5_19.

Iguchi-Cartigny, J., & Lanet, J.-L. (2010, November
1st). Developing a Trojan applets in a smart card.
Journal in Computer Virology, 6(4), 343–351.
doi:10.1007/s11416-009-0135-3.

Ko, G. (2005). Fault attacks on Java card. Unpub-
lished Masters Thesis, Eindhoven, Netherlands:
University of Technology.

Machemie, J.-B., Mazin, C., Lanet, J.-L., & Cartigny,
J. (2011, November 29th). SmartCM a smart card fault
injection simulator. IEEE International Workshop
on Information Forensics and Security (WIFS), 1-6.

Noubissi, A., Al Khary Sere, A., Iguchi-Cartigny, J.,
Lanet, J.-L., Bouffard, G., & Boutet, J. (2009). Carte
à puce: Attaques et Contremesures. Majecstic(1112).
Retrieved from http://secinfo.msi.unilim.fr/software/
cap-file-manipulator/

Piret, G., & Quisquater, J.-J. (2003). In C. Walter,
Ç. Koç, & C. Paar (Eds.), Lecture Notes in Com-
puter Science: Vol. 2779. A differential fault attack
technique against SPN structures, with application
to the AES and Khazad (pp. 77–88). doi:10.1007/978-
3-540-45238-6_7.

Rankl, W., & Effing, W. (2000). Smart card handbook
(2nd ed.). John Wiley & Sons.

Razafindralambo, T., Bouffard, G., & Lanet, J.-L.
(2012). In N. Cuppens-Boulahia, F. Cuppens, & J.
Garcia-Alfaro (Eds.), Lecture Notes in Computer
Science: Vol. 7371. A friendly framework for hid-
ding fault enabled virus for Java based smartcard
(pp. 122–128). doi:10.1007/978-3-642-31540-4_10.

Razafindralambo, T., Bouffard, G., & Thampi, N. B.,
& Lanet, J.-L. (2012, October 11st). A dynamic syntax
interpretation for Java based smart card to mitigate
logical attacks. In Proceedings of the International
Conference on Security in Computer Networks and
Distributed Systems (SNDS-2012).

International Journal of Secure Software Engineering, 4(2), 19-39, April-June 2013 39

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Jean Dubreuil finished his Bachelor’s degree in Computer Science from the University of Limoges
and started his Masters in Cryptology and IT-Security (CRYPTIS). He worked in SSD (Smart
Secure Devices) team at XLIM as part of his internship on smart card software security. This
work is the part of his thesis. His research interests include smart card security.

Guillaume Bouffard received his Master’s degree in Cryptology and IT-Security (CRYPTIS) from
the University of Limoges in 2010. He worked as a research engineer in SSD (Smart Secure
Devices) team at XLIM labs for 6 months on smart card physical security before starting his
PhD in 2011. His thesis is on the possibilities and issues of laser beam attacks on JCVM. His
research interests include physical & logical attacks on embedded systems and smart cards.

Bhagyalekshmy N. Thampi received her engineering degree in Electronics and Communication
from Anna University, India, and MSc. in Management of Embedded Electronic Systems from
ESIGELEC, France. She is currently working as a Research engineer in SSD (Smart Secure De-
vices) team at XLIM, France. Her research interests include smart card security and EMC/EMI.

Jean-Louis Lanet is a Professor in the Computer Science Department at University of Limoges
from 2007. He is also the team leader of SSD (Smart Secure Devices) research group at XLIM
research lab. Prior to that, he was a senior researcher at Gemplus Research Labs (1996-2007).
During this period he spent two years at INRIA (Sophia-Antipolis) (2003-2005) as an engineer at
DirDRI (Direction des Relations Industrielles) and as a senior research associate in the Everest
team. He started his career as a researcher at Elecma, Electronic division of the Snecma, now
a part of the Safran group (1984-1995) and his field of research was on jet engine control. His
research interests include security of small systems like smart cards and software engineering.

Skorobogatov, S., & Anderson, R. (2003). In B.
Kaliski, Ç. Koç, & C. Paar (Eds.), Lecture Notes in
Computer Science: Vol. 2423. Optical fault induction
attacks (pp. 31–48).

Sun. (2010). Java card classic development kit 3.0
revenue release. Retrieved from http://www.oracle.
com/technetwork/java/javame/javacard/download/
devkit/index.html

Sun. (2010). Java card classic platform specifica-
tion 3.0. Retrieved from http://www.oracle.com/
technetwork/java/javame/javacard

Wagner, D. (2004). Cryptanalysis of a provably
secure CRT-RSA algorithm. In Proceedings of the
ACM conference on Computer and communications
security (pp. 92-97).

Ziegler, J., Curtis, H., Muhlfeld, H., Montrose, C.,
Chin, B., & Nicewicz, M. et al. (1996, January).
IBM experiments in soft fails in computer electronics
(1978-1994). IBM Journal of Research and Develop-
ment, 40(1), 3–18. doi:10.1147/rd.401.0003.

ENDNOTES
1 BSR: Bit Set or Reset

