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Abstract. Recently, several Fault Attacks (FAs) which target modern
Central Processing Units (CPUs) have emerged. These attacks are stud-
ied from a practical point of view and, due to the modern CPUs com-
plexity, the underlying fault effect is usually unknown.
In this article, we focus on the characterization of a perturbation (the
fault model) on modern CPU. For that, we introduce the first approach
to characterize the fault model on modern CPU from the Instruction
Set Architecture (ISA) level to the micro-architectural level. This fault
model helps at determining which micro-architecture elements are dis-
rupted and how. Our fault model aims at finding original attack paths
and design efficient countermeasures. To confront our approach to real
modern CPUs, we apply our approach on ARM and x86 architectures
CPUs, mainly on the BCM2837 and an Intel Core i3.

1 Introduction

Nowadays, mobile devices are widely used. They are based on high performance
System on Chips (SoCs) which embed performance oriented Central Processing
Units (CPUs). With all their optimizations, these modern CPUs have shown
flaws in their security [8, 11].

Since 2015, several Fault Attacks (FAs) on modern CPUs have been pre-
sented, some are new and some others already applied on Micro-Controller
Units (MCUs) CPUs [12]. These attacks are very practical and, due to the com-
plexity of modern CPUs, the underlying fault effect is usually unknown. The
fault effect knowledge is mandatory for building efficient countermeasures and
evaluating the impact of an attack. Therefore, we think that fault characteriza-
tion on modern CPUs is an important work for the future.

Many fault model characterizations have been done on MCUs but only few on
modern CPUs. For determining the fault model on such targets and for making



it reproducible, we propose a characterization method and we show its applica-
bility on modern CPUs, based on ARM or x86 cores. The proposed method is
inspired by all the works done on MCUs and integrates the different approaches
introduced in these different works.

This article is organized as follows. The section 1 presents the background
about fault model characterization, our motivations and the modern CPUs speci-
ficities. Section 2 introduces a model for CPUs on which we base our method,
section 3 describes our method and section 4 presents its application with ex-
perimental results. The section 5 concludes and opens on future works.

1.1 Related Works

Practical fault attacks emerged on 2002 with an optical fault attack [23]. Since
then, several practical attacks have been applied on cryptographic implementa-
tions [20, 21, 22] or on secure softwares [4, 5, 29]. These attacks aim at breaking
the implemented algorithm and therefore focus on obtaining a precise fault.
Therefore, only few information is given about the characterization process.

The seminal work on the fault model characterization of a CPU was published
in 2011 and focus on the clock glitch effects on an ATMega163 MCU [3]. During
the next years, many works have been done on the fault model characterization
of MCUs CPU and memory [6, 9, 10, 13, 14, 15, 19, 31]. These works gave useful
information about the fault effect on CPUs micro-architecture. This knowledge
helped in building countermeasures. However, in 2015 and 2016, several software
countermeasures have been shown to be ineffective against certain class of FAs
[16,30].

Since 2015, researchers had started to focus on modern CPUs. Their works
aim at breaking complex security features like secure boot [26, 27], Trusted Ex-
ecution Environments (TEEs) [24] or kernel security mechanisms [25, 28] via

fault injection. All these works focus on the mobile devices security area, where
modern CPUs run a complex Operating System (OS) like Linux, Android or
iOS.

These articles focus on the attacks practicality and do not present any method-
ology about the fault characterization. In 2019, Proy et al. [18] propose the first
fault characterization work on ARM Cortex-A9 based CPU for evaluating their
countermeasures against FAs. This work is a first step for fault characterization
on modern CPUs. However, the applied method is not clearly described. The
authors realize several classical tests to determine how the program execution
is modified by the fault. They mainly focus on the Instruction Set Architec-
ture (ISA) layer whereas we propose to determine micro-architectural effects
from the ISA fault model.

1.2 Motivations

Regarding the state of the art presented in section 1.1, we think that a fault
characterization method on modern CPUs is needed to design efficient coun-



termeasures. Also, these systems are widely used in mobile devices which tend
to be integrated almost everywhere in the future and used for critical usage as
banking, healthcare, etc, enforcing their need in security and reliability.

1.3 Contribution

We propose a method that would allow us to characterize fault model on a
modern CPU. This method is based on an ISA fault model determination but
is oriented to also provide information about the micro-architectural fault ef-
fect. Therefore, we have two contributions, a modern CPU model and then a
fault characterization method built on this model. The introduced modern CPU
model is easily adaptable to match with MCU CPUs. This makes our approach
adaptable to any type of CPU matching this model, even most MCU CPUs.

2 Modern CPU modeling

2.1 Modern CPUs specificities

The previous works on fault characterization on MCUs give information about
what we can expect from a characterization and how to do it. Unfortunately,
modern CPUs are different from MCU CPUs as shown on figure 1. Indeed,
they are more complex and embed several cores with optimizations like out-of-
order execution, speculative execution, branch prediction, etc. They also have
multiple levels of caches and a Memory Management Unit (MMU) abstracting
their memory.

Core MPU
2 to 8
Cores

Cache
L1/L2 MMU

MCU CPU Modern CPU

Fig. 1: Micro-controller and modern architectures

Even if their specification is public, another issue with CPUs is that their
implementation is not available. Moreover, most of the time, debug tools for
these platforms are either only partially open or not available. Therefore, the
only way to retrieve information is through the ISA layer. In other words, as
we do not have access to the physical layout, we aim at characterizing the fault
model at the program level. This is a real issue as for building efficient counter-
measures, a software knowledge is not enough, but a micro-architectural fault
effect knowledge is also necessary. Therefore, a method that enables to retrieve
information on the micro-architectural CPU behavior, based on the ISA fault
model, is required.



2.2 Modern CPU model

This section aims at offering a complete and comprehensive description of mod-
ern CPUs. We start from the observation that any CPUs can be modeled with
three functional elements.

– A pipeline which fetches, decodes and executes instructions.
– The registers where the manipulated data are stored.
– A memory storing the instructions and some data.

Actually, the memory is external to the CPU. However, there is an internal one,
called cache, where a part of the external memory is copied. The three func-
tional elements are based on Micro-Architectural Blocks (MABs) as introduced
in figure 2.

Pipeline

Memory

Fetch Decode Execute

MMU Data CacheInstruction Cache

Mixed Cache

External Memory

Registers

Data Instructions

Micro-architectural blocks manipulating: Communication buses:

Fig. 2: CPU model

The pipeline fetches and decodes the instructions then the execute stage re-
alizes the operation. In modern CPUs, these blocks have several optimizations
that we do not consider in our model. The memory relies on several cache level
and a MMU. Usually, CPUs have a mixed architecture where the data path and
the instruction path are separated only at the lowest cache level. The instruc-
tions and the data are not differentiated in the high cache level (L2/L3) and



the external memory, this is a Von Neumann architecture. But, in the lowest
level of cache (L1) the instructions and data are separated, this is an Harvard

architecture. As modern CPUs have both organizations, they are said to have a
mixed architecture.

Physically, a core corresponds to the registers, the pipeline, the MMU and the
cache. The CPU is composed of one or more cores, but in the end, its behavior
corresponds to this model.

This model is usually used for fault characterization on MCUs as all fault
models are explained by a MAB perturbation presented in figure 2. As most
of the MCUs have only one core in their CPU, this model fits them well. The
question is to know whether this model is still relevant for a multi-core optimized
CPU. We will show that, on average, it is enough for determining more than 80%
of the fault effects.

3 Fault effect analysis on CPU

During a Fault Injection (FI), one or several CPU MABs are disturbed. As they
can all be perturbed during a fault injection, the full fault effect characterization
can be a complicated process. However, according to the previous works, in
most cases, the fault affects only a single MAB [9, 19]. We actually verified
this assumption on modern CPUs. Under this simplified paradigm, the fault
characterization problem aims at determining which MAB is faulted and how.

To reach our objective, the proposed method consists in realizing a fault dur-
ing the test program execution and in determining the micro-architectural fault
that can explain the observed misbehavior. An underlying assumption is that the
fault affects the same MABs in the same way independently of the executed pro-
gram. This has been experimentally verified; depending on the processor state
some new effects can appear, but a set of usual effects remains.

3.1 Determining the faulted element

The method general idea is to apply a top-down approach. We start by deter-
mining whether the fault affects the registers, the pipeline or the memory. Once
we know which element is affected, we determine which of its MABs is faulted.

To achieve this, we rely on the available registers observation and the exe-
cuted instructions knowledge. The way they are faulted gives information about
the faulted element. To discriminate which element is faulted, we repeatedly ex-
ecute the same instruction as introduced in listing 1.1 (for ARM) and listing 1.2
(for x86) on a known state CPU.

Listing 1.1: mov r0, r0 (ARM)

mov r0, r0 // Several times

Listing 1.2: mov rax, rax (x86)

mov rax , rax // Several times

These instructions are given as examples but have two important properties.
First, they do not fetch any data from the memory, which means that a fault



in the memory can only affect the instructions, which simplifies the analysis.
Secondly, the instructions do nothing and are therefore semantically equivalent
to nop. This is helpful since a modification of the registers state can only be
caused by a fault4 and its effect is not drowned within a complex program.

Disturbing the program execution will give a distribution of faulted values in
the registers. The next step consists in determining whether these faulted values
come from a fault on the manipulated data or on the instructions. Indeed, the
execution of the nth program instruction by the CPU can be modeled such as in
(1):

sn+1 = insn(sn), (1)

where sn+1 is the CPU state after the execution of the nth instruction insn.
The CPU state corresponds to all its registers and is usually named the data.
An instruction is composed of three elements: an opcode encoding the operation
to do, a reference to the destination register and reference(s) to the operand(s).
These operands can be registers or immediate values. Depending on the archi-
tecture, the encoding of this information may vary but they are always present.

When there is a fault during an instruction execution, we assume here that it
either applies on the data or on the instruction. We experimentally verified this
assumption. Therefore, the faulted instruction execution can be modeled such
as in (2).

˜sn+1 = ˜ins(s̃n), (2)

where x̃ denotes the faulted representation of x. From this representation,
we can define the fault model fdata on the data as introduced in (3), and the
fault model fins on the instruction as presented in (4).

s̃n = fdata(sn), (3)

˜ins = fins(ins). (4)

These fault models can have different descriptions to match with the different
underlying fault causes. The data fault types and their corresponding MABs are
presented in table 1.

Based on the figure 2 and table 1, it is possible, from these fault types, to
determine which MABs have been faulted. In the case of a register corruption, it
is straightforward that the registers are faulted. If there is a memory corruption,
the cache storing the data or the data bus is faulted. In the the bad fetch case,
either the cache has loaded the wrong data or the MMU has failed the address
translation.

4 This assumption must be carefully studied as some registers like the Program
Counter (PC) are always modified independently of the executed instruction.



Faulted
element

Data

Fault type
Register

corruption
Memory corruption Bad fetch

Faulted
MAB

Registers Cache Data bus Cache MMU

Table 1: Data fault models

For the instructions, the fault types, presented in table 2, are corruption and
bad fetch.

Faulted
element

Instruction

Fault type Corruption Bad fetch
Faulted
MAB

Pipeline Cache Bus Cache MMU

Table 2: Instruction fault models

If an instruction corruption is observed, the fault affects either one of the
pipeline MABs or the cache or the instruction bus. In the case of a bad fetch,
either the instruction cache has loaded the wrong instruction or the address
translation has failed.

Regarding the test code presented in listing 1.2 and listing 1.1, the data
fault models memory corruption and bad fetch cannot appear as there is no
data fetched from the memory. Therefore, we can focus on the remaining fault
models and this is enough for determining which element among the registers,
the pipeline or the memory has been faulted.

4 Experimental analysis

This section aims at applying the approach introduced in section 2. We present
the experimental protocol and the corresponding results on two targets, a BCM2837
from a Raspberry Pi 3 model B board and an Intel Core i3 from a classical com-
puter.

4.1 BCM2837

Now that we introduced a method which determines the affected element, we
decide to apply our approach on an experimental work. The presented work
comes from an attack campaign realized on a BCM2837 SoC from a Raspberry Pi
3 model B board. The tested code is the repetition of the orr r3, r3 instruction
and the observed registers initial values are presented in table 3. These values



Register Initial value Register Initial value
r0 0x80000001 r5 0x04000020
r1 0x40000002 r6 0x02000040
r2 0x20000004 r7 0x01000080
r3 0x10000008 r8 0x00800100
r4 0x08000010 r9 0x00400200

Table 3: Observed registers initial values

are chosen to be identifiable and hard to compute from each others with simple
operations (or, xor, etc).

This setup has been disturbed using ElectroMagnetic Pulse (EMP). The
obtained faulted values are presented with their probability of appearance in
figure 3.

80
81
82
83
84
85
86
87
88

0x3000000c

0x90000009
0xfffff

fff

0x80000001

0xdb1e38ea

0x10018208

0xfb1e38ee

0x81010001

0xff3efcee

0x831e386b

0xc71e386b

0x5b2af46a

0x965ff7ce

0x8816c421

0x82029843

0xdf3efcea

0xa0000005
0xfffff

fdc

0xb21f920e

0x3451e70d

0x1202184a

0x3013820c

Faulted values

0
1
2
3
4
5
6
7
8

Oc
cu

rre
nc

e 
(%

)

Fig. 3: Faulted values distribution with their occurrence probability obtained
from an ElectroMagnetic Fault Injection (EMFI) campaign on a BCM2837.

Several values appear with different probabilities, however there are always
some outstanding values that are frequently obtained. Here, these values are
0x3000000c (86.45%), 0xffffffff (5.83%) and 0x80000001 (3.79%). We ignore
the other values as the latter ones are sufficient for demonstrating the method
relevance.

Register corruption analysis. According to the method presented in sec-
tion 2, we want to check if the perturbation corrupted the registers. To do so, we
need to know the registers initial content. In our experiment, the only faulted
registers are r0, r1 and r3.



Giving the faulted and the initial values, it is possible to determine the fault
model on the registers. The fault model we consider for register corruption is
the masking fault model, this defines the fault as a logical mask applied to the
initial value. In other words, the random variable fdata is one of the following
functions5:

fxor,e : x → x xor e,

fand,e : x → x and e,

for,e : x → x or e,

with e the error viewed as a logical word with the same size as x.
As several fault models can explain the obtained faulted value, we consider

that a fault model is relevant if it explains the obtained faulted value for at least
two different experiments. In our context, the only observed register corruption

fault model is when the faulted value is 0xffffffff and the corresponding
function is for,0xffffffff. This fault model appears in around 5% of the cases.

Instruction corruption analysis. As the register corruption analysis was
inconsistent for some faulted values, the next step consisted in checking if a
faulted instruction can explain them. The idea here is to first determine the
instructions that, from the registers initial state, explain the faulted value.

Regarding the faulted values and the registers initial state we observe that
0x3000000c can be obtained with the or between r2 and r3 and that 0x80000001
can be obtained by moving the value in r1 into the faulted register. The corre-
sponding faulted instructions are orr r3, r2 and mov r3, r1.

Because the initial instruction is known, we can determine the fault model
fins. We decided to consider a fault model that modifies the elements (opcode,
operands, etc) constituting the instruction. The faulted instruction ˜ins is de-
rived from the initial instruction ins. Determining the fault model consists in
determining which part of the instruction was corrupted and how.

In this experiment, the fault model corresponding to the 0x3000000c faulted
value is that the instruction second operand is set to r2 and correspond to
the orr r3, r2 faulted instruction. This happens in around 85% of the cases
and was tested with other instructions. The fault model corresponding to the
0x80000001 faulted value is that the opcode is set to a mov and the second
operand to r1, it happens in around 3.5% of the cases.

Conclusion. During this experiment, the faults may affect the pipeline or the
registers. We have determined the faulted element with their corresponding fault
model for the three main cases (i.e. those with greatest occurrence probability
in figure 3). This covers 96.07% of the observed faults and it experimentally
validates that the model is relevant for this CPU.

5 It is possible to consider fdata as the combination of these functions with different
errors, but this do not change the way to apply our methodology.



4.2 Intel Core i3

After having tested our method on an ARM architecture, we want to test it on
an x86 architecture. Therefore, we realized an attack campaign on an Intel Core
i3 CPU using the repetition of the mov rbx, rbx instruction as a test code.

As the x86 architecture is different from the ARM architecture, the available
registers for observation are not the same. Also, the tested architecture is a 64
bits architecture. It appears that these differences do not impact our methodol-
ogy and we were able to determine the fault model for almost 80% of the cases.
The faulted values distribution is presented in figure 4.
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Fig. 4: Faulted values distribution with their occurrence probability obtained
from an EMFI campaign on an Intel Core i3.

Using our method, we are able to determine that the faulted register is always
rbx. There is a register corruption which sets the register to 0x0 in 8.7% of the
cases corresponding to the fault model fand,0x000000000000000. In 56.53% of the
cases, the faulted value comes from another register, these faulted values are 0x1
(register rax), 0x3 (register rdi) and 0x00007fXXXXXXXXXX (register rci with
a different value for every execution of the tested program). The corresponding
fault model is to set the instruction second operand to either 0x0, 0x2 or 0x5.

The last identified fault model is for the faulted value 0x2 and corresponds
to the logical AND between rbx and r11. This happens in 13% of the cases and
corresponds to set the opcode to 0x21 and the second operand to 0xb.

The remaining faults (21.78%) could not be determined with our method.
However, the observed faulted values seems to correspond to values manipulated



by the Linux OS layer. However, this investigation is out of the scope of this work
and therefore not further explained.

Conclusion. With these results, we demonstrated that our method is reliable
independently of the target architecture. However, on targets implementing op-
timizations (like the Intel Core i3), this approach is not exhaustive.

The analysis presented in section 4.1 and section 4.2 enable to model the
fault at the Instruction Set Architecture (ISA) level. In other words, we can
use this model to explain how the program execution is affected by our faults.
With this knowledge it is possible to build some software countermeasures. But,
as explained in section 1.1, software countermeasures may become irrelevant
because the faulted MAB is not clearly identified.

4.3 Determining the faulted MAB

After having determined which CPU element (cf. table 1 and table 2) is faulted,
it is interesting to check which of its MAB is affected. Usually, this determination
is done using debug tools. However, as we mentioned, these tools are, most of
the time, not available on our targets. In this section, we then present how we
can determine which MAB is faulted using different test programs.

Pipeline characterization. As presented in figure 2 the pipeline has three
main functions. The fetch function is mainly linked to the memory system. Then,
for the pipeline characterization, it is more relevant to consider only the instruc-
tion decoding and its execution.

The first step consists in determining whether the fault affects the instruction
before it was decoded or not. If the fault appears before the decoding, then either
the instruction bus or the decoding are faulted. In the other case, the fault targets
the execute stage. To determine if the instruction is faulted before its decoding,
we check if the fault perturbs similarly instructions with different encoding. The
proposed method can be applied on every encoded part of the instruction.

As this is instruction targeted part dependent, we present an example with
the fault campaign realized on the BCM2837 where we were able to fault the
instruction second operand. To determine if the fault appears before the in-
struction decoding, we aim at faulting an instruction which encodes a different
information where the second operand is usually encoded.

The determined fault model is that the instruction second operand is set
to r2. According to the ARM instruction encoding, this corresponds to set the
eleven instruction Least Significant Bits (LSBs) to 0x002. If the fault corrupts
the instruction before its decoding, then the fault effect must be independent of
the information encoded on these bits. In the tested case (mov r3, r3), these
bits encode a register. Therefore, we can fault another instruction which uses the
same bits to encode another information, an immediate value for example. If the
fault corrupts the instruction and the obtained immediate value is 0x02, then



we conclude that the instruction has been perturbed before its decoding. Other-
wise, we conclude that the instruction is faulted during its execution. Listing 1.3
introduces a code example for realizing this test.

This test code is a bit different from the previous ones as it uses several types
of instructions. However, thanks to our own analysis reported in section 4.1 (or
section 4.2), the ISA fault model is here assumed to be known and it can hence
be applied to anticipate the fault effects at this level. As we intent to fault the
mov r3, #0x03 instruction, we will repeat the first three instructions to be sure
to fault only one of them. These instructions are needed as the program must
terminate as soon as a fault is detected. Otherwise, the next mov r3, #0x03 will
overwrite the fault.

Listing 1.3: Immediate value test code (ARM)

mov r3, #0x03 // −+

cmp r3, #0x02 // | Several times

be fault // −+

mov r9, #0x55

b end

fault: mov r9, 0xaa

end: nop

The ISA fault model determined in section 4.1 (or section 4.2) implies that
if the first instruction second operand is set to 0x02, then a fault is obtained.
If it occurs on the second instruction, then there is no error since the second
operand is already set to 0x02. Eventually, if it occurs on the third instruction,
then we observe a modification of the instruction offset. Moreover, this offset can
be manipulated using nop6 instructions to have its eleven LSBs set to 0x002. In
this case, the fault has no impact.

This example was done with a fault model that modifies the second operand.
However, some other instructions parts may be affected, such as the opcode. In
this case, the demonstrated test can still be done but with different instructions.
This requires the Instruction Set Format (ISF) knowledge implemented by the
target. For instance, the ARM ISF is available on their website7.

Memory characterization. The memory relies on three main elements: the
buses, the MMU and the cache. If an instruction corruption is detected and has
occurred before the decoding stage, two MABs can have been faulted: the buses
or the cache. Distinguishing between these two cases is difficult but it is possible
to determine if it happens on the mixed cache and buses or on the dedicated one.
Indeed, as the highest level of cache memory is both dedicated to the data and
the instructions, a fault targeting this part of the memory subsystem corrupts
the instruction and the data similarly. If not, then the dedicated part of the

6 Using mov r2, r2 to be fault resistant for instance.
7 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/

CACCCHGF.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACCCHGF.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACCCHGF.html


memory subsystem is corrupted. For this characterization step, we propose a
method we applied on the BCM2837.

The method consists in (1) initializing a page of memory (4 kB), then (2)
setting the observed registers values to addresses in this page and fault a code
such as introduced in listing 1.4.

This code realizes memory loads and stores at/from the address stored in r9

to/from the register r8. As the memory page is initialized with known values,
the expected value in r8 are known. The ISA fault model built in section 4.1 (or
section 4.2) implies that the perturbation should set the second operand to 0x2

and the faulted instructions should become str r8, [r2] or ldr r8, [r2].

Listing 1.4: Memory test code (ARM)

str r8, [r9] // Several

ldr r8, [r9] // times

An unanticipated fault is that with probability 25%, the faulted value is the
ldr r8, [r9] instruction encoded value. In this case, the faulted instruction is
ldr r8, [PC] which corresponds to set the first operand to 0xff.

For the other faults (74.4% exactly), the observed faulted value is always
bad+50 where bad the page memory base address. This is the value stored in r2.
In this case, the faulted instruction is mov r8, r2. This is consistent with the
previously determined fault model (see section 4.1 and section 4.2). Moreover,
the fault does not only modify the second operand but also the opcode, forcing
the instruction into a data processing instruction instead of memory loading
instruction. As we already tested data processing instructions, we did not see this
fault effect. This shows the importance of testing different types of instructions
for determining the complete fault effect.

During this experiment, we did not observe faults on the fetched data. There-
fore, we conclude that the fault targets the dedicated to the instruction part of
the memory subsystems. In figure 2, it corresponds to the instruction cache, its
connected buses and the fetch MAB.

Regarding the tested codes presented in listing 1.1, in the case the fault
does not fit neither a fault model on the registers nor a fault model on the
instructions we conclude that the fault provokes an instruction bad fetch. Usually,
the corresponding fault models are either instruction skipping [9,21], instruction
replay [18,19] or instruction replacement [3,14]. The literature proposes a large
panel of fault models on the cache with different characterization methods but
only on MCUs (except [18]). As MCUs do not embed MMU, the failed translation
of the address fault does not appears simplifying the analysis.

We could characterize the fault on the MMU but only using debug tools.
In order to remain in the scope of this work, we consider that if no cache fault
model is consistent, the fault affects the MMU.



5 Conclusion and future works

In this paper, we introduced for the first time a general method for characterizing
the fault model of perturbations on a CPU and demonstrated its applicability on
modern CPUs embedded in a BCM2837 and an Intel Core i3 SoC. This method
focuses on determining the faults effect at the ISA level and then at the micro-
architectural level using only simple tests programs. As the method works for
modern CPUs with many features, we strongly believe that it can been applied
on MCUs CPU as well by not considering unimplemented MABs.

This approach gives us a better understanding of faults effect and therefore
exploit them or mitigate them. This is a useful tool especially for evaluations
where we need to determine the fault model, use it to find attack paths and
build efficient countermeasures. As both a knowledge at the ISA level and micro-
architectural level are determined using our method, it is possible to build both
software and hardware countermeasures.

Based on this result, the future works consist in applying this method to
characterize the faults effects on popular systems. Such as mobile devices, deter-
mining how these systems can be faulted will help in understanding the impact
of physical attacks targeting them and build efficient countermeasures.

Another future work is to improve the CPU model and adapt the method to
match with some new optimization mechanisms that are implemented in modern
CPUs. Indeed, even if the presented work on the BCM2837 shows that we are
able, in more than 95% of the cases, to determine the fault model, on some other
targets, like an Intel Core i3, this model able to recover only 80% of the cases.
We think that some complex optimization mechanisms that are not considered
in our model are involved in the faulty behavior and it is interesting to work on
how to model them and to characterize a fault considering them.
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