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Abstract. The Byte Code Verifier (BCV) is one of the most important
security element in the Java Card environment. Indeed, embedded
applets must be verified prior installation to prevent ill-formed applet
loading. At the CARDIS 2015 conference, we disclosed a flaw in the
Oracle BCV which affects the applet linking process and can be exploited
on real world Java Card smart cards. In this article, we present how
this vulnerability had been found and our exploitation of this flaw on a
Java Card implementation that enables injecting and executing arbitrary
native malicious code in the communication buffer from a verified applet.
This attack was evaluated on several Java Card implementations with
black box approach. In this case, as we cannot evaluate the effect of
the control flow redirection caused by the attack, we develop a generic
function which can be executed from any point.
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1 Introduction

Developing smart card applications is a long and complex process. Despite
existing standardization efforts, e.g., concerning power supply, input and
output signals, smart card development used to rely on proprietary Ap-
plication Programming Interfaces (APIs) provided by each manufacturer.
The main drawback of this development approach is that the code of the
application can only be executed on a specific platform, thus lowering
interoperability.

To improve the interoperability and the security of embedded softwares,
the Java Card technology was designed in 1997 to allow Java-based
applications for securely running on smart cards and similar footprint
devices. Due to the resources constraints of this device, only a subset
of the Java technology was retained in the Java Card technology. The



348 Fuzzing and Overflows in Java Card Smart Cards

trade-offs made on the Java architecture to permit embedding the Java
Card Virtual Machine (JCVM) on low resource devices concern both
functional and security aspects.

1.1 The Java Card Security Model

In the Java realm, some aspects of the software security relie on the
Bytecode Verifier (BCV). The BCV guarantees type correctness of the
code, which in turn guarantees the Java properties regarding memory
access. For example, it is impossible in Java to perform arithmetic
operations on references. Thus, it must be proved that the two elements
on top of the stack are bytes, shorts or integers before performing any
arithmetic operations. Because Java Card does not support dynamic class
loading, bytecode verification is performed at loading time, i.e. before
installing the Converted APplet (CAP) file onto the card. Moreover, most
of Java Card platforms do not embed an on-card BCV as it is expensive in
terms of memory consumption. Thus, bytecode verification is performed
off-card, either directly by the card issuer if he masters the loading chain,
or by a trusted third party that signs the application as a verification
proof.

In addition to static off-card verification enforced by the BCV, the
Java Card Firewall performs runtime checks to guarantee applets isolation.
The Firewall partitions Java Card’s platform into separated protected
object spaces called contexts. Each package is associated to a context,
thus preventing instances of a package from accessing (reading or writing)
data of other packages, unless it explicitly exposes functionality through
a Shareable Interface Object.

Despite all the security features enforced by the Java Card environment,
several attack paths [3, 4, 6–8, 16, 17, 20, 21, 23, 28, 32] have been found
exploitable by the Java Card security community.

1.2 State-of-the-art on Java Card Bytecode Verifier flaws

The BCV is a key component of the Java Card platform’s security. A
single unchecked element in the CAP file, while apparently insignificant,
can introduce critical security flaws in smart cards as shown in [17].

Although exhaustively testing a piece of software is a complex problem,
several attempts have been made to characterize the BCV of the Java
Standard Edition from a functional and security point of view. In [34], the
authors rely on automatic test cases generation through code mutation
and use a reference Virtual Machine (VM) implementation including a
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BCV as oracle. In [11], a formal model of the VM including the BCV is
designed, then model-based testing is used to generate test cases and to
assess their conformance to the model.

In the Java Card community, several works aim at providing a reference
implementation of an off-card [25] or an on-card [5,14] Java Card BCV.
These implementations are mainly designed from a formal model and can
be used to test the BCV implementation provided by Oracle. As for the
VM, model-based testing approaches [10,33] were used to assess on Java
Card BCV implementations. As of today, no full reference implementation
or model of the Java Card BCV has been proposed.

The Oracle’s BCV implementation in version 2.2.2 was analyzed by
Faugeron et al. [17]. In this implementation, the authors identified an
issue in the branching instructions interpretation during the type-level
abstract interpretation performed by the BCV. The authors exploited
this issue to perform a type confusion in a local variable, undetected by
Oracle’s BCV. This issue in the BCV was patched by Oracle from version
3.0.3.

Since the version 3.0.3, no security flaw identification or exploitation
in the Java Card BCV has been publicly signaled. In this paper, we come
back to a flaw discovered in the Java Card BCV from version 2.2.2 to 3.0.5
and we describe an exploitation of this flaw. This vulnerability was first
disclosed at the CARDIS 2015 [24] conference. This article will introduce
how this vulnerability had be found, based on a fuzzing approach. After
evaluating this attack on several Java Card smart cards, a method to
characterize the control flow transfer was developed.

Section 2 introduces our fuzzer and how a missing check in the Oracle’s
BCV implementation may allow an adversary to control a method offset
and thus to trigger unverified bytecode execution. Section 3 shows how
to succeed in exploiting this mechanism on a real Java Card product to
trigger the execution of native code injected in a communication buffer.
Finally, we evaluate our results on other Java Card products, define a
generic method to characterize the control flow transfer with the black
box approach and propose a countermeasure to prevent the attack.

2 A Flaw in the BCV

2.1 The BCV Duty

The BCV enforces various security and consistency checks that guar-
antee each embedded application remains confined in its own sandbox.
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These verifications are performed on the CAP file, which is the binary
representation of the classes that are loaded on the card.

The CAP file verification is performed in several passes. Passes 1 and
2 check that the format of the CAP file is consistent with the JCVM
specification [30], excluding the portions of the archive that contain the
methods bytecodes. Pass 3 performs a symbolic execution of the methods
bytecodes to ensure type correctness. Eventually, pass 4 checks that
symbolic references from instructions to classes, interfaces, fields, and
methods are correct.

2.2 Verification of the CAP File Structure

The CAP file is composed of twelve different components, with internal
and external dependencies, that are checked during the CAP file verifica-
tion. Internal dependencies verification aims at validating the component
properties as defined by the Java Card specification. External depen-
dencies checks validate that redundant information specified in different
components are compliant with each other. For example, each component
has a size field that must be compliant with the component-sizes array
contained in the Directory component where the sizes of every compo-
nents are specified. An overview of all external dependencies between
components in a CAP file are summarized in figure 1 borrowed from [19].

Fig. 1. External dependencies between components in a CAP file [19].

Among the twelve components stored in the CAP file, we will focus
on the following components:
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– the Method component stores the code of all methods in the package,
concatenated as a set of bytes;

– the Constant Pool component contains an entry for each of classes,
methods and fields referenced in the Method component;

– the Class component describes each classes and interfaces defined in
the package, in a way that allows executing operations on that class
or interface;

– the Descriptor component provides sufficient information to parse and
verify all elements of the CAP file. This component is the main entry
point for a bytecode verification.

The Descriptor component is the keystone of the BCV operations, but
it has little or no importance for the card’s processing and is therefore
optionally provided during the loading of the applet.

Because of its purpose, the Descriptor component references several
elements in the other components, and even provides redundant informa-
tion with regards to these components. On the opposite, no component
references the Descriptor component.

Considering the complex structure of the CAP file, parsing its structure
for verification purpose is error prone. In order to identify flaws in the
CAP file verifier, we applied a testing technique known for its good results
on complex files and protocols structures, the fuzzing technique.

2.3 Fuzzing the bytecode verifier

Introduction to fuzzing Fuzzing is a simple and efficient technique to
identify defects in software implementations as for example in [1, 2, 13, 18,
22,36,37]. It is generally used as a black box testing approach in which
test cases are automatically generated and submitted to the system under
testing in order to stress its robustness. This testing technique allows
exploring a large amount of tests in an automatic way, what would be
fastidious to do manually. Generally speaking, a fuzzer is composed of
three main functions:

– data generation: create the data that will be sent to the tested target,
– data transmission: send the data to the tested target,
– target monitoring and logging: detect and record target anomalies.

We use the fuzzing testing methodology to seek vulnerabilities in the
implementation of the bytecode verifier. As the BCV enforces all the
requirements imposed by the JCVM specification, our work aims at dis-
covering specification violations undetected by the BCV. Although other
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works have already explored the automated test generation approach
to discover flaws in the bytecode verifier through fuzzing and grammar
based generation [12,35], these works are mainly focused on the passes 3
(symbolic execution) and 4 (symbolic references checks) of the bytecode
verification that guarantee validity of instruction type and instructions
references. They are basically confined to the method’s bytecode compo-
nents of the CAP file. However, the structure of a CAP file is complex,
and its structural correctness is fundamental for a correct execution of
the code. In order to highlight the complexity of the CAP file structure,
and to motivate the need of fuzzing testing on all elements of the archive
beyond the bytecodes, we present a short example of dependencies that
exist between the different components of a CAP file.

Applying fuzzing technique to the Bytecode Verifier We designed
a CAP file fuzzer whose fuzzing method is inspired by genetic algorithms.
It mimics genetic mutations and natural selection to find relevant test
cases, a technique also known as evolutionary fuzzing [9,15,38]. In our
BCV fuzzer, each test case is metaphorically equivalent to an individual
in a population’s generation. The JCVM behaviors caused by a test case
are fully defined by the CAP file used for this test case, the same as the
phenotype of an individual is fully defined by its DNA. Continuing along
the genetic metaphor, we consider the bytes composing the CAP file as
the nucleotides of the DNA of an individual. Our fuzzing approach is the
same as the evolution of a race along the generations. Evolution relies on
mutations that occur on the DNA of the individuals of a generation, cre-
ating new combinations of nucleotides (i.e. genes). Along a process called
natural selection, mutations that fit the most the hostile environment (e.g.,
predators) are conserved in the population and can be transmitted to the
next generation, thus improving adaptation of the race to its environment.
Similarly, in our BCV fuzzer, fuzzing is performed through mutation of
the CAP file sequence. We implement the three main point mutations
that occur in DNA mutation: insertion, deletion and transversion. The
mutations perform the following modifications on the CAP file:

– insertion: insert a byte in the CAP file,
– deletion: delete a byte in the CAP file,
– transversion: modify the value of a byte in the CAP file.

During insertion and deletion mutations, only a subset of all mutations
(composed of some remarkable and random values) is used to prevent
combinatorial explosion. The fuzzer also preserves high level grammatical
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constraints on the CAP file (e.g., update of array size when performing
insertion mutation on an array). Consequently, mutations affect only a
targeted portion of the CAP while the overall structure remains correct.
The natural selection is performed by a single predator, the BCV. Only
mutations that create a valid CAP file according to the Java Card BCV
are allowed to carry onto the next generation, and to pursue the fuzzing
process by mutation. All the valid mutated CAP files are then executed
in a simulator, looking for mutated CAP files that triggers an unexpected
behavior of the JCVM (crash, unexpected data output). These CAP files
are hand-analyzed, along with the bug reports, to determine the origin of
the misbehavior.

An analysis of the bug reports generated by the BCV fuzzer brought
us to identify a missing external dependency check between the Class
component and the Descriptor component. We present the details of this
BCV flaw and the resulting exploitation in the next sections.

2.4 Missing Check in the BCV

The missing check we have identified in the BCV involves the token-based
linking scheme. This scheme allows downloaded software to be linked with
API already embedded on the card. Accordingly, each externally visible
item in a package is assigned a public token that can be referenced from
another package. There are three kinds of items that can be assigned
public tokens: classes, fields and methods. The bytecodes in the Method
component refer to the items in the Constant Pool component, where the
tokens required to perform the bytecode operation (e.g., class and method
token for a method invoke) are specified.

When the CAP file is loaded on the card, the tokens are linked with
the API and resolved to the internal representation used by the VM. The
linking process operates on the bytecode and is performed in several steps:

1. each token is an index in the Constant Pool component. The item
stored at the provided index specifies the public tokens of the required
items (e.g., class and method token for a method invoke);

2. the tokens are resolved into the JCVM internal representation. For a
method invoke, the class token identifies a class_info element in the
Class component;

3. in the class_info element, the public_virtual_method_table array
stores the methods internal representation. The method token is an
index into the public_virtual_method_table array;
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4. the element in the public_virtual_method_table at the method
token index is an absolute offset in the Method component to the
header and the bytecode of the method to execute.

The figure 2 summarizes the linking process for a method call.

Fig. 2. Overview of the linking process for a method call.

The absolute offset in the Method component to the header and the
bytecode of the method to execute is a redundant information in the CAP
file as it is stored both in the public_virtual_method_table elements
in the Class component and in the method_descriptor_info elements
in the Descriptor component. The offset information in the Descriptor
component is used exclusively by the BCV before loading, while the offset
information in the Class component is used exclusively by the JCVM linker
on card. Thus, any ill-formed offset information in the Class component
remains undetected by the BCV checks, but is still used by the JCVM
linker on card.

2.5 Exploiting the BCV flaw

As presented so far, the BCV flaw we expose allows manipulating the
method offset information in the Class component while remaining con-
sistent with the BCV checks. The exploitation of this flaw consists in
deleting an entry in the public_virtual_method_table of a class_info

element in the CAP file. The resolution of the corresponding method offset
during the JCVM linking leads to an overflow in the Class component,
as presented in figure 3. This overflow brings the JCVM to interpret the
content of the memory area following the Class component on card as a
method index.
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Fig. 3. Overflow in the linking process with for a method call.

The loading order of the CAP components is defined by the Java
Card specification. This order specifies that the Method component is
loaded right after the Class component. It is thus very likely that the
Method component is stored next to the Class component in the card’s
memory. As a result, the Class component overflow is likely to fall into
the Method component. In this eventuality, the offset of the method
resolved in overflow is the numerical value of a bytecode in the Method
component, that can be controlled by the applet developer. The figure 4
presents an exploitation of the Class component overflow through the
Method component.

Fig. 4. Figure on left shows a successful linking in the Class component. Figure on the
right shows the Class component overflow during linking when grayed out elements are
deleted. Class component overflow falls into the Method component.
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3 Code Injection from a Bytecode Verified Applet

In the previous section, we have presented, in the eventuality of a favorable
memory mapping, how an attacker can exploit a BCV flaw to specify an
arbitrary method offset in a BCV validated applet. In this section, we
present the exploitation of this flaw on a real product that allows us to
inject and execute native code in a communication buffer from a BCV
validated applet.

The attack steps necessary to reach arbitrary native code on the Java
platform are summed up hereafter and detailed in the next sections. First,
we exploit the BCV flaw presented in section 2 to forge an arbitrary
method header in the Method component. This arbitrary method header
is then used to abuse the native method execution mechanism of the
platform and thus create a buffer overflow in the native method table.
Finally, this buffer overflow allows dereferencing the communication buffer
address as a native function. As a consequence, the data sent to our
verified applet through the communication channel are executed as native
code on the JCVM.

This full attack is a proof of concept to demonstrate that the flaw
discovered in the Oracle BCV may jeopardize the security of Java Card
smart cards.

3.1 Native Execution in the Virtual Machine

We validate the exploitation of the BCV flaw on an open Java Card
platform embedded on an ARM micro-controller. This Java Card platform
was provided in the context of a security expertise, thus both the code
and the memory mapping of the VM were made available.

The runtime environment of this platform provides a mechanism that
allows switching execution to native implementations of Java Card API
methods for performance reasons. The implementation of this mechanism
is similar to the Java Native Interface (JNI) mechanism provided in
classical Java VMs [27].

In the JNI approach, the native methods are identified through a
dedicated flag (ACC_NATIVE) in the method header. According to the
JCVM specification, the native header flag is only valid for methods
located in the card mask. Therefore a native method loaded in a CAP
file is not compliant with the Java Card specification, and is thus rejected
by the off-card verifier.

The native method resolution in JNI relies on interface pointers. An
interface pointer is a pointer to a pointer. This pointer refers to an array
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of pointers, each one itself pointing on to an interface function. Each
interface function is stored at a predefined offset inside the array. Figure 5
illustrates the organization of an interface pointer. The offset inside the
array where the native function pointer is to be found is provided in the
body of the native method.

JNI interface pointer JNI functions

...

per-thread JNI
data structure

Array of pointers
to

Pointer
an interface

function

an interface
function

an interface
function

Pointer

Pointer

Pointer

Fig. 5. JNI functions and pointers [26].

3.2 Native execution from a validated applet

As presented in section 2, a missing check in the BCV can cause an
overflow that brings the VM to resolve the method offsets outside the
Class component. In the VM implementation, we use to exploit our attack,
the Class component overflow falls into the Method component so the
value of the method offset can be specified as the numerical value of a
bytecode in the Method component.

According to the JCVM specification [30], the offset of a method must
point to a method header structure in the Method component, followed by
the bytecode of the method. When exploiting the BCV flaw, the offset is
controlled by the developer so it can point to any portion of the Method
component. This can be used to make the method offset pointing on a
portion of the bytecode that can be interpreted as a method header. The
iipush bytecode can be used for this purpose, as its operand is a 4-bytes
constant that is not interpreted by the BCV. This 4-bytes constant is
thus used to code a method header containing the ACC_NATIVE flag and
the native method index. This iipush bytecode is accepted by the BCV
because it forms a valid bytecode sequence, but when the operand is
interpreted as a native method header (through an overflow on the Class
component), the control flow switches to native execution. Figure 6 shows
the attack path from the Class component overflow to the native execution
of a JNI method.
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Fig. 6. Exploitation of the Class component overflow to execute a native method.

We were thus able, by specifying the adequate value for the method
offset, to execute any of the native methods provided by the VM in the
array of JNI native function pointers.

3.3 Abusing the Native Execution Mechanism for Code

Injection

The attack so far allows calling JNI native methods provided by the
platform, that are stored in an array of JNI native function pointers (or
native array). When a native method call occurs, the switch from the
Java runtime environment to the native execution environment requires
an index in the native array to determine the native function pointer.
Experimentation on the target JCVM allowed us determining that an
overflow on the native array can be achieved by specifying the relevant
index in the native method body. Thus, any memory content stored next
to the native array can be exploited as a native function pointer.

An analysis of the memory mapping of the product shows that a
memory zone next to the native array contains a pointer to the communi-
cation buffer used for Host Controller Protocol (HCP) communications.
The HCP protocol handles the transport layer of the Single Wire Pro-
tocol (SWP) protocol, involved in Near Field Communication (NFC)
communications with smart cards. HCP messages encapsulates ISO7816
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Application Protocol Data Unit (APDU) that are conveyed to the smart
card over SWP.

Using the overflow on the native array, we are able to use the HCP
communication buffer pointer as native function pointer. The execution
of this native function pointer leads to executing the content of the HCP
communication buffer as a native assembly function.

The HCP protocol has several properties that limit the use of the HCP
communication buffer as a native payload injection placeholder:

1. HCP packets are prefixed with a HCP message header and an HCP
packet header. These headers are interpreted as native assembly
opcodes.

2. HCP enforces fragmentation of messages, which limits packets size
to 27 bytes. The entire native payload must thus be contained in 27
bytes.

In order to gain more space to inject our attack payload, we inject a
minimal payload in the HCP communication buffer whose only purpose
is to redirect the execution flow to the ISO7816 APDU buffer. This
minimal redirection payload is presented in Table 1. Because the HCP
communication buffer pointer is used as a function pointer, all the HCP
buffer is interpreted as native code, including packet header, message
header and encapsulated APDU header. These header bytes produce no
side effect as shown in Table 1, which lets the redirection payload execute
properly.

HCP message Interpretation Native code Comment

Packet header
82 50 Message header STR r2, [r0, r2] No side effect
00 10 CLA/INS ASRS r0, r0, #0 No side effect
00 00 P1/P2 MOVS r0, r0 No side effect
14 00 Lc/padding MOVS r4, r2 No side effect
E9 2D 5F FC Data PUSH {r2-r12, lr}

F6 4A 54 D0 MOVW r4, #0xADD0

F6 CA 54 D1 MOVT r4, #0xADD1 r4 = &apduBuffer

47 A0 BLX r4 branch to apduBuffer

E8 BD 9F FC POP {r2-r12, pc}

Table 1. Native payload in the HCP buffer that redirects the execution flow to the
APDU buffer. Relevant payload data is grayed out.

The ISO7816 protocol has broaden fragmentation constraints, which
offers sufficient space for a full native payload injection. We present in
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Table 2 a full payload injected in the APDU buffer that branches to a
low level read/write OS function. Because the start address execution
is chosen from the HCP message buffer payload, the header bytes are
skipped and the native execution starts at the push instruction (Table 2,
3rd row).

APDU Native code Comment

1 00 12 00 00 31 Header CLA/INS/P1/P2/Lc

2 B1 FA 15 00 Data source reading address

3 2D E9 FF 5F PUSH {r0-r12, lr}

4 F6 4A 56 D0 MOVW r6, #0xADD0

5 F6 CA 56 D1 MOVT r6, #0xADD1 r6 = apduBuffer

6 35 68 LDR r5, [r6,#0x00] r5 = *apduBuffer

7 28 46 MOV r0, r5

8 00 F1 09 00 ADD r0, r0, #0x6A *dest: apduBuffer + 0x6A

9 D5 F8 05 10 LDR r1, [r5, #0x08] *src: *(apduBuffer + 8)

10 4F F0 40 02 MOV r2, #0x40 length: 0x40

11 F6 4A 54 D2 MOVW r4, #0xADD2

12 F6 CA 54 D3 MOVT r4, #0xADD3 r4 = *read_function_ptr()

13 A0 47 BLX r4 call method

14 BD E8 FF 9F POP {r0-r12, pc}

Table 2. Native payload in the ISO7816 APDU buffer that calls an OS function to
read an arbitrary memory zone and copy the result to the APDU buffer. Relevant
payload data is grayed out.

The payload initializes the source parameter to the first 4 bytes of the
payload (Table 2, 2nd row), such that the reading address can be selected
directly in the APDU. Then, it initializes the destination address (where
the read bytes are copied) to the address of the APDU buffer following the
payload, such that the read bytes are immediately available for sending
back through the APDU buffer. Finally, it branches to the low level OS
function that performs the reading operation. As a result, any physical
address of the card can be accessed through this native payload.

Figure 7 shows the execution flow from the native array overflow to
the redirection payload in the HCP message buffer to the final attack
payload in the APDU buffer. We were able to integrally dump the card
memory and to reverse it using commercial reversing tools. The reversed
code was identified as the code of the embedded JCVM.
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Fig. 7. Exploitation of the native array overflow to execute native code in the APDU
buffer.

4 Other Experimental Results

To evaluate the consequence of the BCV flaw on a broader range of
virtual machine implementations, we tested, on different smart cards from
different manufacturers, how much each of them supports the installation
of an ill-formed applet. We evaluated seven cards from three distinct
manufacturers (a, b and c). Each card name is associated with the
manufacturer reference and its Java Card specification [30]. The list of
evaluated Java Card smart cards is presented in table 3.

Java Card GlobalPlatform

Reference Platform Version Details

a-22a 2.2.1 2.1.1 36 kB EEPROM, RSA
a-22b 2.2.2 2.1.2 80 kB EEPROM, RSA
a-30c 3.0.4 2.2.1 80 kB EEPROM, ePassport
b-30a 3.0.1 2.2.1 1 MB Flash memory, (U)SIM
c-21a 2.1.1 2.0.1 128 kB EEPROM, SIM
c-21b 2.1.1 2.0.1 64 kB EEPROM, RSA, AES
c-22c 2.2.2 2.2.2 256 kB Flash memory, (U)SIM

Table 3. Cards evaluated during this experimentation.

None of the evaluated card embeds an embedded BCV. On each card,
an ill-formed applet can be installed and, if the installation succeeds, the
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applet is executed. The ill-formed applet has a dereferenced method in
the public virtual methods table. Table 4 sums up the cards reactions.

Ref. Statut

a-22a PCSC error: card mute. ✗

a-22b PCSC error: card mute. ✗

a-30c PCSC error: card mute. ✗

b-30a No error: the card return the value 0x0701. ✗

c-21a Global platform error: error during the loading process (applet rejected). ✓

c-21b Global platform error: error during the loading process (applet rejected). ✓

c-22c Global platform error: error during the loading process (applet rejected). ✓

Table 4. Statuts of each evaluated cards.

As shown in table 4, cards react differently to the ill-formed CAP file
installation and execution. The cards with the symbol (✓) detect the
ill-formed CAP file during the installation and reject it. On the other
cards, marked with the symbol (✗), installation and execution succeed.

Successful executions cause either unexpected card response or card
mute. Unexpected card response indicates that unexpected code execution
occurred. Card mute may result from infinite loop or card’s reaction to
illegal code, which also indicates unexpected code execution.

These behaviors proof that the control flow of the JCVM is modified.
We can thus conclude that the BCV flaw presented in this article can be
exploited on a range of different Java Card smart cards.

The full attack path that results in arbitrary native code execution
requires information about the memory mapping and the JCVM imple-
mentation that were not available for these tests. Therefore, we did not
attempt to reproduce the full attack path.

4.1 Characterizing the Control Flow Transfer

The attack presented in section 2.5 exploits an overflow that occurs during
the linking process and forces the program counter to an incorrect value
during execution. As a result, the control flow is transferred to an incorrect
memory zone. The exploitation of the full attack path requires knowning
where the control flow is transferred thus we designed a characterization
process that allows an attacker determining the jump target location
resulting from the offset overflow.

During the linking process, the offset of the method to resolve is sought
in the public_virtual_method_table of a class_info element in the
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Class component of the CAP file. When an attacker deletes the required
offset in the CAP file, the offset is taken in overflow in the next memory
bytes. As the attacker can delete as many offsets as there are methods in
the CAP file, several bytes of overflow memory can be used as method
offset.

To characterize the control flow resulting from an unknown offset
we design a method that can be executed from any point, regardless of
where the erroneous control flow has jumped. To reach this goal, each
element of the method should be interpretable both as a method header
and a Java Card instruction. If the overflow offset does not jump in the
characterization method, another offset is deleted in the CAP file and thus
the next bytes in memory are used as offset. The process is repeated until
the jump target place is located in the characterization method. Because
offset are signed values, the Method component can be located in memory
either before or after the Class component.

Constraints of a Java Card Method From the Java Card specifica-
tion [30], we extracted the constraints which define a valid Java Card
method.

A Java Card method is composed of two elements, a header and
a set of instructions which form the method’s bytecode. According
to the Java Card specification, the header is a structure defined as a
method_header_info or an extended_method_header_info. The List-
ing 1 shows those structures, where the type u1 defines an unsigned byte
(8-bit length) and the type bit[4], a 4-bit item.

method_header_info { extended_method_header_info {

u1 bitfield { u1 bitfield {

bit [4] flags bit [4] flags

bit [4] max_stack bit [4] padding

} }

u1 bitfield { u1 max_stack

bit [4] nargs u1 nargs

bit [4] max_locals u1 max_locals

}

} }

Listing 1. Java Card method defines from the JCVM specification.

As presented in the Listing 1, a method header is defined by the
following elements:

– The flags item is a mask of modifiers which define this method –
standard, extended or abstract method. The native method is not
supported by the JCVM specification [30].
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– The max_stack item indicates the maximum number of words required
on the operand stack during execution of this method.

– The nargs item represents the number of words required to represent
the parameters passed to the method.

– The max_local item indicates the number of words required to repre-
sent the local variables declared by this method without the method
parameters.

The method instructions are composed of opcodes, encoded on 1 byte,
and a set of 1-byte arguments. The valid opcode values are comprised
between 0x00 (NOP) and 0xB8 (putfield_i_this). Values between 0xB9

and 0xFD are reserved for future use and cannot be used in compliant
JCVM implementations. The opcode values 0xFE and 0xFF are intended
to provide back doors or traps to implementation-specific functionality
implemented in software and hardware, respectively [30].

We extracted and factorized all method constraints defined by the
JCVM specification, and we obtained the model shown in the Listing 2.

method = header & bytecodes

header = method_header_info | extended_method_header_info

method_header_info = {

// method_header_info has a 4- bit element .

flags = {0x0 , 0x4}, // 0x0: a standard method

// 0x4: an abstract method

max_stack = [0x0 , 0xF],

narg = [0x1 , 0xF] // [0x0 , 0xF] for static method

max_local = [0x0 , 0xF]

}

extended_method_header_info = {

// extended_method_header_info has a 1- byte element

flags = {0x8 , 0xC},// 0x8: an extended method

// 0xC: an extended abstract method

padding = 0x0 ,

max_stack = [0x00 , 0xFF],

nags = [0x01 , 0xFF], // [0 x00 , 0 xFF] for static method

max_local = [0x00 , 0xFF],

}

if ( flags & EXTENDED_METHOD ) // Is it an extended method ?

bytecodes = {} // empty set

else

bytecodes = instruction + // + = one or more

instruction = opcode & ( argument )* // * = zero or more

opcode = [0x00 , 0xB8] // Reserved values from 0 xB9 to 0xFF

argument = [0x00 , 0xFF]

Listing 2. Constraints which define a Java Card method.
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Solving the Constraints As the attacker cannot control the resolution
of the invokevirtual instruction offset resulting from the overflow in
the Class component, our characterization method aims at implementing
a method which can be executed from any point. In this method, each
byte can be interpreted as method header, an opcode or an argument.
Indeed, as the Class component is generally located before the Method

component in the card, an overflow from the Class component may reach
the first method in the Method component.

Since the method constraints have been extracted from the Java Card
specification, we look for a set of bytes which is a solution to these
constraints.

Design of a polymorphic method From the method constraints de-
fined in the Listing 2, we designed a method which can be executed from
any point. To make each byte of the method interpretable as a valid
execution entry point, they should be compliant with the following rules:

– Constraints on method_header_info ∪ constraints on
extended_method_header_info

– with:

• Constraints on method_header_info = [0x01, 0x0F] ∪ [0x11,
0xFF];

• Constraints on extended_method_header_info = [0x80] ∪ [0x01,
0xFF].

After minimizing the constraints, the following rule can we obtained:

∀ bytecode ∈ {[0x01, 0x0F] ∪ [0x11, 0xFF]}

To optimize the byte range value, we decided to exploit the exception
mechanism. Indeed, the exception mechanism allows redirecting the
execution flow to a finite set of handlers (exception handlers) from any
point in the execution flow, which is the desirable behaviour for our
polymorphic method.

The Listing 3 shows a java program implementing a set of excep-
tions thrown in the try-statement and caught in the appropriate catch-
statement.

public void characterizedMethod ( void ) {

try {

// throw an exception ();

// throw an exception ();
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// etc., several times

} catch ( NullPointerException npe) {

// Payload 1

} catch ( SecurityException se) {

// Payload 2

} catch ( Exception e) {

// Payload 3

}

}

Listing 3. A Java Card method which throws and catches exceptions.

The function listed in the Listing 3 is compiled to the bytecode sequence
shown in the Listing 4.

public void characterizedMethod ( void ) {

01 // flag : 0 max_stack : 1

01 // narg : 0 max_local : 1

01 sconst_null

93 athrow

60 01 ifeq 01

01 sconst_null

93 athrow // throw the exception .

...

// Catches area

...

7A return // This bytecode is never reached .

}

Listing 4. A valid method bytecode which can be executed from any
point.

In this bytecode sequence, the pattern 01 01 93 60 is repeated. De-
pending on the starting point in this sequence, different bytecode patterns
can be ran. The Table 5 lists each pattern possibilities and the resulting
exception thrown.

Sequence Remark Exception

01 01 93 60 NullPointerException

01 93 60 Empty stack SecurityException

93 60 01 01 93 60 Invalid header SecurityException

60 01 01 93 60 Invalid header SecurityException

Table 5. Executed sequences and exceptions thrown.

The two last sequences, 93 60 01 01 93 60 and 60 01 01 93 60,
have an invalid header. Leading 9 and 6 nibbles cannot be valid header
flags value according the Java Card specifications. However, several JCVM
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implementations use a binary masks on the method headers to retrieve
the relevant method’s flags. Therefore, in this case the flag 9 may be
interpreted as an extended method, and the flag 6 as an extended abstract
method. According to the Java Card specification, for security reasons,
the Java Card runtime environment implementation may also mute the
card instead of throwing a SecurityException [29].

Finally, the attack payload is placed in the exception handlers. Thus,
when an exception is thrown the execution flow is directed to the attack
payload regardless of the execution starting point.

The approach introduced in this section aims at characterizing the
effect of the overflow on the public_virtual_method_table field. For
that purpose, we developed a polymorphic method which can be executed
from any point. This polymorphic method, based on the java exception
mechanism, transfers the execution flow to the exception handlers where
the attack payload is located.

5 Conclusion, Countermeasure and Future Works

We show in this article how a missing check in the Oracle’s BCV imple-
mentation can be exploited on a Java Card. This flaw was disclosed by an
evolutionary fuzzer. We demonstrated that this BCV issue has a critical
impact on smart cards security through a proof of concept exploitation
on a JCVM implementation. We have successfully managed to inject
and execute native code in a communication buffer, and finally gain full
read/write OS privileges on the whole card memory. Finally, we evaluated
on a range of different cards from different manufacturers that most of
the JCVM implementations do not protect themselves against the BCV
issue exploitation. As we evaluated cards in black box model, we faced
the problem of characterizing the control flow transfer. To resolve this
issue, we designed a polymorphic java method using method constraints.
This method is semantically correct, regardless of the execution starting
point, and redirects the execution flow to a single point where the attack
payload is located.

Following our responsible disclosure of the BCV issue to Oracle, we
were allowed to publish this article and a new version of the BCV was re-
leased3. This new BCV version detects the Class component inconsistency
and thus mitigate our attack. A loading process including mandatory

3 The BCV included in the Java Card SDK 3.0.5u1 prevents the introduced attack.
This version was released on 19 August 2015.
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bytecode verification step with the latest Oracle’s BCV provides a valid
countermeasure against the attack presented in this paper.

With the identification of a new flaw in the Oracle’s BCV implementa-
tion, one sees that the BCV must be entirely verified to lower the risks of
new vulnerabilities disclosure. To reach this objective, an effort should be
done to specify the security and functional requirements a BCV must com-
ply with in order to protect JCVM implementations against this software
attack.
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