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Abstract. Off late security problems related to smart cards have seen
a significant rise and the risks of the attack are of deep concern for
the industries. In this context, smart card industries try to overcome
the anomaly by implementing various countermeasures. In this paper
we discuss and present a powerful attack based on the vulnerability of
the linker which could change the correct byte code into malicious one.
During the attack, the linker interprets the instructions as tokens and are
able to resolve them. Later we propose a countermeasure which scrambles
the instructions of the method byte code with the Java Card Program
Counter (jpc). Without the knowledge of jpc used to decrypt the byte
code, an attacker cannot execute any malicious byte code. By this way
we propose security interoperability for different Java Card platforms.
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1 Introduction

A smart card is a secure, efficient and cost effective embedded system device
comprising of a microcontroller, memory modules (RAM, ROM, EEPROM) se-
rial input/output interfaces and data bus. On chip operating system is contained
in ROM and the applications are stored in the EEPROM. A smart card can also
be viewed as an intelligent data carrier which can store data in a secured man-
ner and ensure data security during transactions. Security issues are one major
area of hindrance in smart card development and the level of threat imposed
by malicious attacks on the integrated software is of high concern. To overcome
this, industries and academia are trying to develop countermeasures which will
protect the smart card from such attacks and render secure transactions [4].
Size constraints restrict the amount of on chip memory and a majority of smart
cards on the market have at most 5 KB of RAM, 256 KB of ROM, and 256
KB of EEPROM which has a deep impact on software design. The first tier
safety relates to the underlying hardware. To resist an internal bus probing, all
components (memory, CPU, crypto-processor, etc.) are on the same chip which
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is embedded with sensors covered by a resin. Such sensors (light sensors, heat
sensors, voltage sensors, etc.) are used to disable the card when it is physically
attacked. The software is the second security barrier. The embedded programs
are usually designed neither for returning nor for modifying sensitive informa-
tion without guaranty that the operation is authorized.

All applications stored in the smart card should be resistant to attacks. It
is important to analyze all the possible attack paths and find a way to mitigate
them through adequate software countermeasures. In this paper we are talking
about logical attacks where we are abusing the linker to change the correct byte
code instruction of a given method into a malicious one. It occurs when a smart
card is operating under normal physical conditions, but sensitive information is
gained by examining the bytes going to and from the smart card [13].

Developing Java Card application remains a challenge for security purpose.
Smart card manufacturers are differentiated from one another by the way they
implement security features. An application proved secure on a platform can be
prone to hardware attacks on another platform. This difference in security im-
plementation raises serious problems for the certification process like Common
Criteria [11]. One of the challenges is to define a common behavior in term of
security. For that purpose it has been proposed to define an API or annotation
process [4] that could standardize the security behavior of the platform. Within
this approach it becomes possible to have a common security behavior of Java
Card applications.

This paper is organized as follows: the first section is about Java Card secu-
rity. The second section provides a brief state of the art on Java Card attacks.
In the third section we introduce the new logical attack. The countermeasure
which we proposed is suitable for security interoperability and is described in
the fourth section. Finally we conclude our work with the future perspectives.

2 Literature Survey

2.1 Java Card security

Java Card is a kind of smart card that implements the standard Java Card
3.0 [12] in one of the two editions Classic Edition or Connected Edition. Such
a smart card embeds a virtual machine, which interprets codes already romized
with the operating system or downloaded after issuance. Due to security reasons,
the ability to download code into the card is controlled by a protocol defined by
Global Platform [7]. Java Cards have shown an improved robustness compared
to native applications with respect to many attacks. They are designed to resist
numerous attacks using both physical and logical techniques. To resist such at-
tacks several mechanisms have been added while others have been removed from
the Java Card specification.
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Java Card is quite similar to any other Java edition, it only differs (at least
for the Classic Edition) from standard Java in three aspects: i) restriction of
the language, ii) run time environment and iii) the applet life cycle. Due to
resource constraints the virtual machine in the Classic Edition must be split
into two parts: the byte code verifier (invoked by a converter) is executed off-
card; while the interpreter, the API and the Java Card Run time Environment
(JCRE) are executed on-card. The byte code verifier is the offensive security
process of the Java Card. It performs the static code verifications required by
the virtual machine specification. The verifier guarantees the validity of the code
being loaded into the card. The byte code converter converts the Java class files
and verified by a byte code verifier into a CAP file format which is more suitable
for smart cards. An on-card loader installs the classes into the card memory. The
conversion and the loading steps are not executed consecutively (a lot of time
can separate them). In order to avoid it, the Global Platform Security Domain
checks the integrity and authenticates the package before its registration in the
card. Through out this paper, discussion on Java Card refers to the Classic

Edition.

Element of the security The Java Card platform is a multi-application envi-
ronment in which an applet’s critical data must be protected against malicious
access from the other applets. To enforce protection between applets, traditional
Java technology uses type verification, class loaders and security managers to
create private name spaces for applets. In a smart card, it is not possible to
comply with the traditional enforcement process. Firstly, the type verification
is executed outside the card due to memory constraints. Secondly, class loaders
and security managers are replaced by the Java Card firewall.

CAP File The CAP (Converted APplet) file format is based on the notion
of interdependent components that contain specific information from the Java
Card package. For example, the Method component contains the methods byte
code, and the Class component has information on classes such as references
to their super-classes or declared methods. In order to manipulate the instruc-
tions of a given method we need to use the Method component, which provides
all the methods used in the applet and each one contains set of instructions.
One optional component (custom component) can be used to define proprietary
properties on the application like annotation.

Byte code verification Allowing code to be loaded into the card after post-
issuance raises the same issues as with web applets. An applet that has not
been compiled by a compiler (hand made byte code) or that has been modified
after compilation can break the Java sandbox model. Thus the client must check
that the Java typing rules are preserved at the byte code level. The absence
of pointers reduces the number of programming errors. But it does not stop
attempts to break security protections by disloyal use of pointers. Byte Code
Verifier (BCV) is a crucial security component in the Java sandbox model: any
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bug in the verifier causing an ill-typed applet to be accepted can potentially
enable a security attack. At the same time, byte code verification is a complex
process involving elaborate program analysis. Moreover such an algorithm is
very costly in terms of time consumption and memory usage. For these reasons,
many cards do not implement such a component and rely on the fact that it is
the responsibility of the organization that signs the code of the applet to ensure
that the code is well typed.

The Linking step The linking step is defined by the Java Card Specification [12]
and has been done during the loading of a CAP file. When the software is loaded
into the card, the JCVM provides the way to link the CAP file with the installed
Java Card API, thanks to the token link resolution referred in the Constant

Pool component. Indeed the Reference Location component keeps a list of
offsets in order to easily retrieve each token placed in the Method component.

The Firewall The separation between different applets is enforced by the firewall
which is based on the package structure of Java Card and the notion of contexts.
When an applet is created, the JCRE uses a unique applet identifier (AID). If
two applets are instances of classes coming from the same Java Card package,
they are considered to be in the same context. Every object is assigned to a
unique owner context which is the context of the applet that created the object.
It is this context that decides whether the access to another object is allowed
or not. The firewall isolates the contexts in such a way that a method executing
in one context cannot access any attributes or methods of objects belonging to
another context.

2.2 Attacks against Java Card platform

There are three main types of attacks on a smart card. First one is the the logical
attack, which provides a cheap solution to access sensitive information from the
targeted cards. Next is the side channel attack, by which the attacker can obtain
the cryptographic secrets [6] with some electromagnetic curves or can find the
executed byte code as explained in [1]. The third is the physical attack, which
can provide information about the target, optical or laser faults. This sort of
physical modification may create a logical fault which is used to attack a card
and is called combined attack [3,5]. In this paper, our focus is limited to logical
attacks.

First Logical Attacks. E. Hubbers et al. presented in [9] a quick overview of
the classical attacks available and suggested some countermeasures.

First, a manipulated program is sent to the card. Then it is modified to
bypass the BCV after the compilation step. The efficient way to block this at-
tack is an on-card BCV. Another solution to have a type confusion without the
modification of the applet files is the Shareable interfaces mechanism. The au-
thors created two applets which exchange information, thanks to the Shareable
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interface mechanism. To create a type confusion, each applet uses a different
type of array to exchange data. During compilation or on the loading step, the
BCV cannot detect an incoherence. This attack is no more applicable on the new
cards. Finally, the last attack is about the transaction mechanism. The aim of a
Java Card transaction is to make atomic operations with a rollback mechanism
which should deallocate any allocated objects during the aborted transaction
and clear the references. On some card, the authors found a way to keep the
reference to objects allocated during transaction even after a rollback.

The First Trojan in a Smart Card. In [10], J. Iguchi-Cartigny et al. described
the way to install a Trojan in a smart card. This Trojan will read and modify
the smart card memory. The firewall mechanism is abused to build this attack,
thanks to the unchecked instructions on static. These instructions without checks
during the installation step, define a way to call a malicious byte code which is
presented in a Java Card array. They achieved this through the following steps.
The first step obtains the array address and this reference address of the ap-
plet instance to be modified. In the second step, the getstatic and putstatic

instructions are used to read and write the smart card memory. Finally, a mod-
ification of the invokestatic parameter provides the redirection of the install
program’s Control Flow Graph (CFG). When the invokestatic instruction is
called, the Java Card Program Counter (jpc) jumps to the malicious byte code
contained in the Java Card array.

A Java Card Stack Overflow G. Bouffard et al. described in [5], two methods to
change the Java Card CFG. The first one, EMAN 2 provides the way to change
the return address of the current function. This information is stored in the Java
Card stack header. When the malicious function exits on correct execution, the
program counter returns to the instruction which addresses it. The address of the
jpc is stored on the Java Card Stack header. An overflow attack has succeeded
to change the return address by the address of our malicious byte code.

Our malicious method has one local variable which received the return of
getMyAddress function. The function return increased by the size of the Java
Card array header (here 6), corresponding to the address of the shell code.

After the characterization of the Java Card stack, the return address was
located. In order to modify this address the parameter of the sstore instruction
was changed. As there is no runtime checking on the parameter it allows a
standard buffer overflow attack.

How to find the Java Card API The main difficulty to use this attack in the
previous case is that, there is no access to the linked Java Card API. Hamadouche
et al. described in [8] a way to abuse the Java Card linker in order to obtain
the Java Card API. Some instructions are followed by tokens. These tokens are
referred in the constant pool component of the unlinked applet. Speed of the
linking process can be increased by using the reference location. The aim of
their attack was to resolve the tokens which were preceded by instruction that
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pushes a short1 on the stack. So it is easy to send this value into the APDU
buffer or update a shell code contained in a Java Card array.

3 Building a New Attack

Assume that there is no embedded on-card BCV. In order to characterize this
card, it is necessary to abuse the previously explained linking mechanism.

To perform this attack, there are set of instructions which are to be modi-
fied by using an abuse linking mechanism as shown in the listing 1.1. We used
a tool developed by our team: the Cap Map [14], for CAP File Manipulator. It
provides a friendly environment to modify the CAP file by respecting the inter-
dependencies between the affected components.

Each instruction is referred by an offset in the current method in the Method
component.

/∗0020∗/ [ 0 x00 ] nop
/∗0021∗/ [ 0 x02 ] sconst m1
/∗0022∗/ [ 0 x02 ] sconst m1
/∗0023∗/ [ 0 x3C ] pop2
/∗0024∗/ [ 0 x04 ] s c on s t 1
/∗0025∗/ [ 0 x3B ] pop

Listing 1.1. Set of instruction to attack with the link mechanism abuse technic

As we have previously seen in the section 2.1, it is the Reference Location

component that helps to link between a token used in the Method component
and the Constant Pool.

By using the linking mechanism abuse, described in the section 2.2, the linker
uses the instructions nop and sconst m1 (0x0002) as a token.

. ConstantPoolComponent {
[ . . . ]
/∗ 0008 , 2 ∗/CONSTANT StaticMethodRef :

e x t e rna l : 0x80 , 0x8 , 0xD
[ . . . ]

}

. ReferenceLocationComponent {
[ . . . ]

o f f s e t s t o b y t e 2 i n d i c e s = {
[ . . . ] @0020 [ . . . ]

}
}

Listing 1.2. Reference Location modification with CAPMAP

1 On the targeted card, each address are stored into 2-byte value
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To perform the previous manipulation as seen in the listing 1.2, we mod-
ify the Reference Location by adding a new link. The offset value 0x0020 is
referred to the token 0x0002 in the Method component. In the Constant Pool

component, we see that this token is associated to a static method reference. By
looking to our first linker attack presented in the section 2.2, the token method
0x0002 is linked by the value 0x8E03 into the targeted card.

Once the Java Card linker finished linking as shown in the listing 1.3, it
mutates the method byte code. The link resolution needed two bytes, and the
instructions from the offset 0x0021 to 0x0024 became the invokeinterface

operands.

/∗0020∗/ [ 0 x8E ] i n v ok e i n t e r f a c e
/∗0021∗/ [ 0 x03 ] // nargs
/∗0022∗/ [ 0 x02 ] // indexByte1
/∗0023∗/ [ 0 x3C ] // indexByte2
/∗0024∗/ [ 0 x04 ] // method
/∗0025∗/ [ 0 x3B ] pop

Listing 1.3. Set of instruction after link resolution

In this case abusing the token resolution mechanism leads to the call of a
method referred in the Constant Pool by the index composed of two bytes
0x02, 0x3C. This index corresponds to the method getKey which gives us the
ability to return the key data via the APDU buffer. Most of the attack in the
literature tried to retrieve the secret key thanks to physical means. Here it is
possible to force the virtual machine to send back clear text value of the key to
the attacker. Of course, this attack works well due to the absence of the byte code
verifier which could have detect the ill formed CAP file. But as demonstrated by
G. Barbu in [2] a laser fault can allow logical attack with or without the presence
of the byte code verifier. Therefore the shell code do not access any objects of
the security context and it will never detect the attack.

4 The Newly Proposed Countermeasure

G. Barbu in [2] proposed a countermeasure which prevents the malicious byte
code from being executed. His idea was to scramble each instruction during the
installation step. For that each Java Card instruction ins performs a xor with
the Kbytecode key. Thus the hidden instructions are computed as follows:

inshidden = ins⊕Kbytecode (1)

If an attack as EMAN 2 succeeds described in the section 2.2, the attacker
cannot execute his malicious byte code without the knowledge of the Kbytecode

key. Thus to find the xor key he should just change the CFG of the program to a
return instruction. As defined by the Java Card specification [12], the associated
opcode is 0x7A. With a 1-byte xor key, this instruction may have 256 possibles
values. A brute force attack offers the way to find the xor key.
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To improve his countermeasure we add a jpc value to perform the hidden
instruction and it can be written as:

inshidden = ins⊕Kbytecode ⊕ jpc (2)

By using the previous example described in the section 2.1, we scramble
the byte code in the installed method to prevent a modification of the original
byte code from an attacker. For that, we have a Kbytecode set to 0x42. So in
the installed applet, we have the following byte code as given in the listings 1.4
and 1.5 given below.

/∗0x8068∗/ 0x42 nop
/∗0x8069∗/ 0x40 sconst m1
/∗0x806A∗/ 0x40 sconst m1
/∗0x806B∗/ 0x7E pop2
/∗0x806C∗/ 0x46 s con s t 1
/∗0x806D∗/ 0x79 pop

Listing 1.4. Scrambling Byte
Code with the equation 1

/∗0x8068∗/ 0x2a nop
/∗0x8069∗/ 0x29 sconst m1
/∗0x806A∗/ 0x2a sconst m1
/∗0x806B∗/ 0x15 pop2
/∗0x806C∗/ 0x2d s con s t 1
/∗0x806D∗/ 0x12 pop

Listing 1.5. Scrambling Byte
Code with the equation 2

In the listing 1.4, the scrambling was done without the jpc value. If you have
many times the same instruction sconst m1 in the example will always have the
same value. Thus it becomes easy for an attacker to find this constant key value
(to find it, an attacker has a constant complexity in O(256)). To improve that,
we added the jpc value. As described in the listing 1.5, each similar instruction
has a different byte code value.

This countermeasure can be enabled by the developer during the compila-
tion step. For that he has to set each enabled countermeasure flag on CAP file
custom component. It is only parsed if the targeted JCVM can parse it. The way
to enable or not this countermeasure on specific applet provides an additional
complexity for the attacker. An special key for each security context may be
used to improve this protection. For the Java Card runtime this countermeasure
is not expensive. Indeed, just a double xor should be done at the beginning of
the main loop. A native implementation is provided in the listing 1.6.

while ( true ) {
i f ( scrambled ) i n s = i n s a r r a y [ jpc ] ˆ Key ˆ ( jpc & 0x00FF)
else i n s = i n s a r r a y [ jpc ]
switch ( i n s ) {

case . . .
/∗ a case f o r each Java Card i n s t r u c t i o n to execu te i t

in which i s incremented ∗/
}

}

Listing 1.6. A countermeasure implementation
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Depends on the jpc value, each instruction is stored in the smart card mem-
ory. Without the knowledge of where each instruction is stored in the EEPROM,
an attacker will not have the possibility to execute some malicious byte code by
the attacked JCVM.

If an attacker succeeded to change the return address, he can jump to the
shell code to read Java Card memory as described in the section 2.2. For that,
he use the unscrambled shell code as given in the listing 1.7. This shell code is
stored in the EEPROM at the address 0xAB80. The information in the array
should not be masked by the Java Card loader like the executed instructions.

/∗0xAB80∗/ 0x8D g e t s t a t i c 8000
/∗0xAB83∗/ 0x78 s r e tu rn

Listing 1.7. Unscrambling shell code

/∗0xAB80∗/ 0x4F s s h l
/∗0xAB81∗/ 0x43 ssub
/∗0xAB82∗/ 0xC0 //Undefined
/∗0xAB83∗/ 0xB9 //Undefined

Listing 1.8. Unscrambling shell code

During the execution of our shell code, the runtime unmasks each instruction
to obtain the code shown in the listing 1.8. Of course the code is detected invalid
by the interpreter because 0xC0 is undefined by virtual machine. Moreover the
sshl and ssub byte codes need two parameters on the top of the stack. Thus
the interpreter will detect an empty stack.

5 Conclusion and Future Work

This paper contributes a way to protect the Java Card from logical attacks.
We introduced a powerful logical attack based on the linker vulnerability. This
attack allows one to execute a buffer overflow attack on a smart card and it
succeeds well with several products which demonstrates the need of an efficient
countermeasure. We proposed a cost effective countermeasure to mitigate this
attack. This countermeasure scrambles the binary code. Within this process the
syntax of the stored code varies according to a variable. Reverse engineering
the executable code becomes impossible if the scrambled memory is dumped.
Attacker cannot execute the malicious byte code without knowing where the
application instructions are stored in EEPROM. Our future work involves re-
verse engineering process using the electromagnetic side channel attack [15] and
evaluate the ability to bypass the proposed countermeasure.
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