

Fault attacks on System On Chip Thomas TROUCHKINE Guillaume BOUFFARD Jessy CLÉDIÈRE ANSSI - Hardware Security Labs

May 22, 2018

Smartcard

Mobile device

Same services, different securities

Based on a Secure Element

- Simple SoC
- Designed for security
- Evaluated

Based on a Computer on Chip

- Complex SoC
- Designed for performance
- Adding TEE¹ for software security

¹Trusted Environment Execution

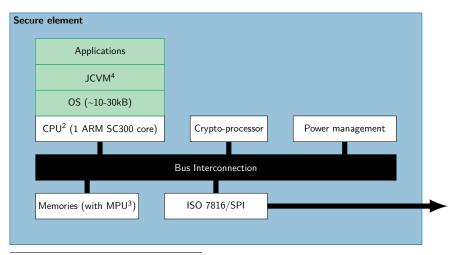
Fault attacks on System On Chip

Thomas TROUCHKINE (ANSSI)

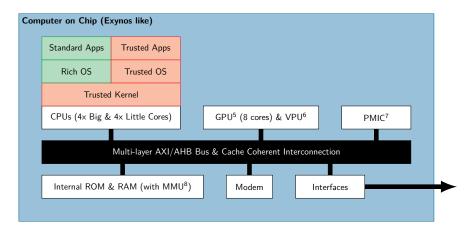
Hardware attacks ?

Fault attacks

- Laser/EM injection
- Clock glitch
- Voltage glitch
- Rowhammer
- Heating
- Body biasing


What is a System on Chip ?

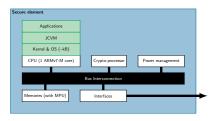
SoC								
	μ Controllers	μ Processors	DSPs	Memories	Interfaces			
	Bus Interconnection							
	ADCs/DACs	Voltage/Freq	uency regula	ators FPG	A Sensors			


- Integrate all components on the same chips
- Reduce power consumption
- Reduce chip size

What is a Secure Element ?

²Central Processing Unit ³Memory Protection Unit ⁴Java Card Virtual Machine

What is a Computer on Chip ?



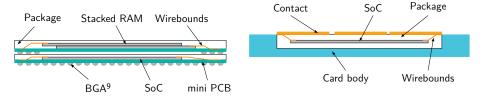
⁵Graphical Processing Unit ⁶Video Processing Unit ⁷Power Management Integrated Circuit ⁸Memory Management Unit

Fault attacks on System On Chip

Thomas TROUCHKINE (ANSSI)

Secure element vs Computer on Chip

- Run at 4 to 60MHz
- Not multithreaded
- Fine engraving > 40 nm
- Constant Voltage & Frequency
- Trusted hardware & Trusted apps only
- Hardware mitigations


Standard Apps	Trusted Apps			
Rich OS	Trusted OS			
Trustee	Kernel			
CPUs (4× Big &	4x Little Cores)		GPU (8 cores) & VPU	PMIC
	Multi-layer AXI/A	HB B	us & Cache Coherent Interconne	ection
Internal ROM	& RAM (with MM	U)	Modem In	terfaces

- Run at 300MHz to 3Ghz
- Multithreaded
- Fine engraving < 20 nm
- Dynamic Voltage & Frequency management
- Trusted Environment Execution
- No hardware mitigations

Computer on Chip package on package

Secure element package

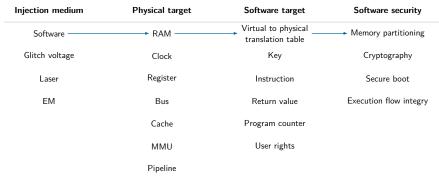
⁹Ball Grid Array

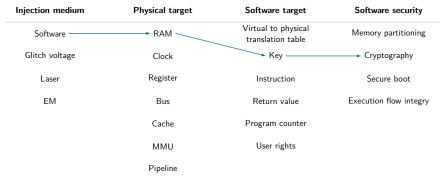
Fault attacks on System On Chip

Thomas TROUCHKINE (ANSSI)

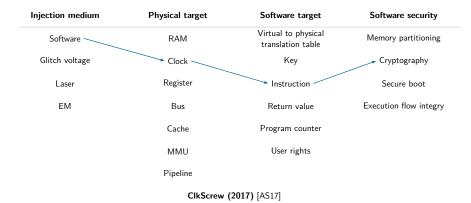
Assets to protect

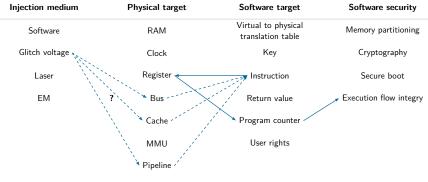
- Cryptographic secrets and operations
- Secure boot
- Memory partitioning
- Execution flow integrity
- Trusted part isolation


- Repeatability ?
- Design impact ?
- Technology impact ?
- New attack paths ?

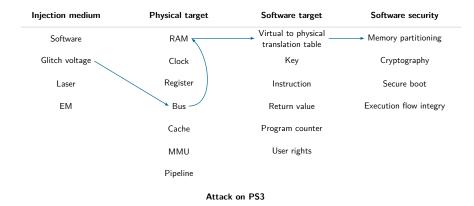

Soooo let's start !

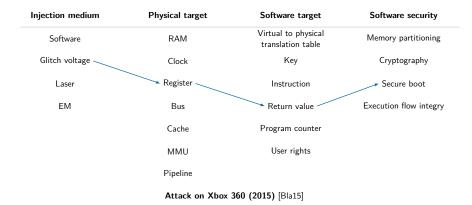
- \blacksquare Computer on Chip \rightarrow software security only
- Hardware quite similar with Secure Elements
- Some attacks already exist:
 - 1 Evaluate their difficulty
 - 2 Push some uncompleted attacks
 - 3 Find new paths


Injection medium	Physical target	Software target	Software security
Software	RAM	Virtual to physical translation table	Memory partitioning
Glitch voltage	Clock	Key	Cryptography
Laser	Register	Instruction	Secure boot
EM	Bus	Return value	Execution flow integry
	Cache	Program counter	
	MMU	User rights	
	Pipeline		



Project Zero attack/Drammer (2015 - 2016) [Vee+16]




Project Zero NaCl/Rowhammer on TrustZone (2015) [Car17]

Controlling PC on ARM (2016) [TSW16]

Injection medium	Physical target	Software target	Software security			
Software	RAM	Virtual to physical translation table	Memory partitioning			
Glitch voltage	Clock	Key	Cryptography			
Laser	Register	Instruction	Secure boot			
EM	Bus	Return value	Execution flow integry			
	Cache	Program counter				
	MMU	User rights				
	Pipeline					
Laser induced fault on smartphone (2017) [Vas+17]						

Fault attacks on System On Chip

Thomas TROUCHKINE (ANSSI)

May 22, 2018 12 / 14

- Migration of services from Secure Element to Computer on Chip
- Hardware security gap
 - SE is a full trusted environment
 - Computer on chip integrate a software trusted environment
- Invasive/Semi-invasive attacks feel harder on Computer on Chip
- New attack paths

References

- [AS17] Simha Sethumadhavan Adrian Tang and Salvatore Stolfo. *CLKSCREW: Exposing the perils of security-oblivious energy management.* Tech. rep. Columbia University, 2017.
- [Bla15] BlackHat. "XBOX 360 Glitching on fault attack". Nov. 2015.
- [Car17] Pierre Carru. "Attack TrustZone with Rowhammer". In: eshard. 2017.

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. "Controlling PC on ARM Using Fault Injection". In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA, August 16, 2016. IEEE Computer Society, 2016, pp. 25–35. DOI: 10.1109/FDTC.2016.18.

- [Vas+17] Aurélien Vasselle et al. "Laser-induced fault injection on smartphone bypassing the secure boot". In: (Sept. 2017).
- [Vee+16] Victor van der Veen et al. "Drammer: Deterministic Rowhammer Attacks on Mobile Platforms". In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar R. Weippl et al. ACM, 2016, pp. 1675–1689. DOI: 10.1145/2976749.2978406.