Characterizing and Modeling Clock-Glitch Fault Injection

Amélie Marotta

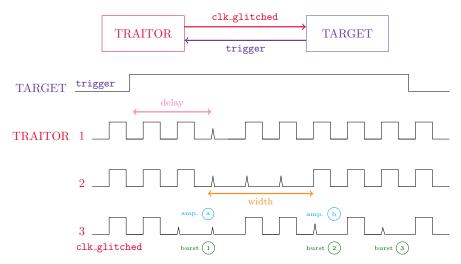
Ronan Lashermes, Olivier Sentieys, Rachid Dafali, Guillaume Bouffard

amelie.marotta@inria.fr

- \rightarrow Electromagnetic fault injection has an impact on clock signals 1
- \rightarrow TRAITOR, a many-fault injection tool, that uses clock glitches, recreates this impact
- \Rightarrow Which fault model apply to TRAITOR ?

¹ (Electromagnetic fault injection: the curse of flip-flops, Sébastien Ordas, Ludovic Guillaume-Sage, Philippe Maurine)

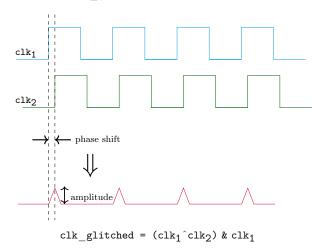
- microarchitecture level
 - $\rightarrow\,$ program execution



- microarchitecture level
 - $\rightarrow\,$ program execution
- register-transfer level
 - $\rightarrow\,$ bit-flip, stuck-at-0 or -1

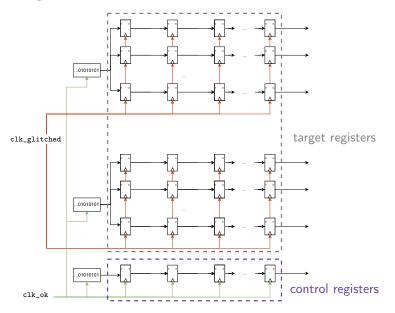
- microarchitecture level
 - ightarrow program execution
- register-transfer level
 - $\rightarrow\,$ bit-flip, stuck-at-0 or -1
- physical level
 - $\rightarrow\,$ logic gates, registers

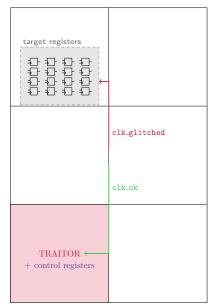
- microarchitecture level
 - ightarrow program execution
- register-transfer level
 - $\rightarrow\,$ bit-flip, stuck-at-0 or -1
- physical level
 - $\rightarrow\,$ logic gates, registers


TRAITOR

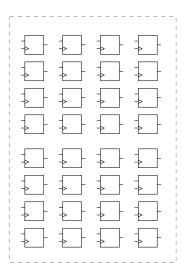
TRAITOR: A Low-Cost Evaluation Platform for Multifault Injection. Ludovic Claudepierre, Pierre-Yves Péneau, Damien Hardy, Erven Rohou.

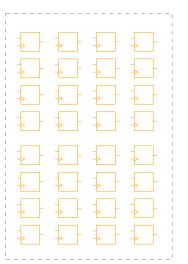
TRAITOR

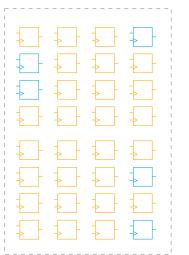

Generation of clk_glitched:



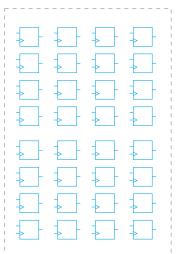
TRAITOR






Experiment set-up:

- \rightarrow Artix-7
- $\rightarrow\,$ faults injected from amp. 0


Phase 1 (amp. 0 à X): all registers are faulted

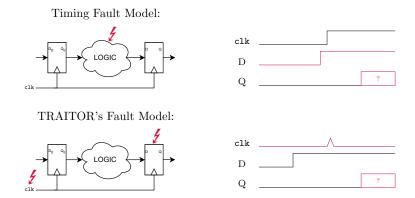
Phase 1 (amp. 0 à X): all registers are faulted

Phase 2 (amp. X+1 à X+k): some registers remain faulted, some registers become unfaulted

⇒ fault sensitivity

Phase 1 (amp. 0 à X): all registers are faulted

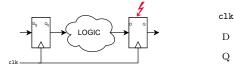
Phase 2 (amp. X+1 à X+k): some registers remain faulted, some registers become unfaulted

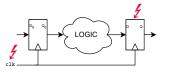

⇒ fault sensitivity

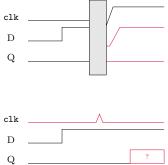
Phase 3 (> amp X+k): all registers are unfaulted

Hypotheses

TRAITOR's fault model is the *Timing Fault Model*. TRAITOR's fault model is the *Sampling Fault Model*.

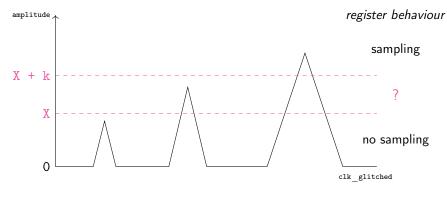

Timing Fault Model ?


Electromagnetic Transient Faults Injection on a hardware and a software implementation of AES. Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, Assia Tria


Sampling Fault Model ?

Sampling Fault Model:

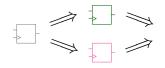
TRAITOR's Fault Model:



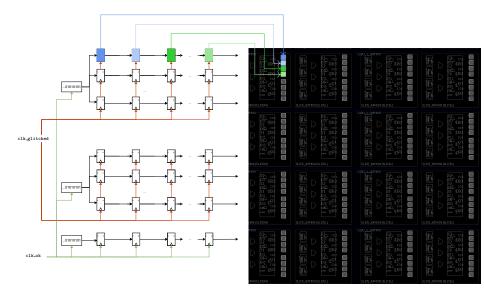
Modeling and Simulating Electromagnetic Fault Injection. Mathieu Dumont, Mathieu Lisart, Philippe Maurine

Hypotheses

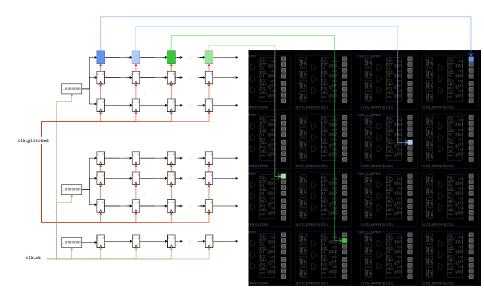
- 1
 2
 -) TRAITOR's fault model is the *Timing Fault Model*. imes
 -) TRAITOR's fault model is the Sampling Fault Model. imes
 - 3) *Energy-threshold Fault Model.* For a DFF to correctly register a clock rising edge, the clock signal is required to be above some energy threshold, combination of a voltage threshold and a width threshold.


Energy-threshold Fault Model

Impact of the glitched clock on one register

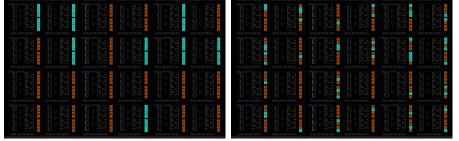

Hypotheses

- 1) TRAITOR's fault model is the *Timing Fault Model*. imes
- 2) TRAITOR's fault model is the Sampling Fault Model. imes
- 3 Energy-threshold Fault Model. For a DFF to correctly register a clock rising edge, the clock signal is required to be above some energy threshold, combination of a voltage threshold and a width threshold. √
 -) *Fault sensitivity variation.* The fault sensitivity only depends on the register.



same fault sensitivity

Fault sensitivity variation: configuration 1


Fault sensitivity variation: configuration 2

Fault sensitivity variation

configuration 1

configuration 2

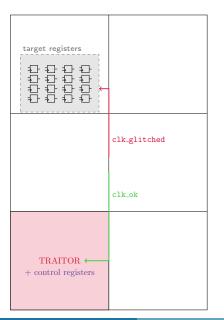
unfaulted register

Registers' status for amp. 22

faulted register

Fault sensitivity variation

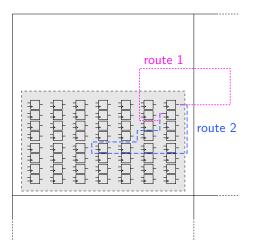
4 *Fault sensitivity variation.* The fault sensitivity only depends on the register.

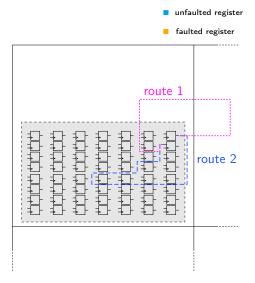


New hypothesis: the only thing that changes is the routing between registers... does it influence the glitched clock ?

Hypotheses

- 1) TRAITOR's fault model is the *Timing Fault Model*. imes
- 2) TRAITOR's fault model is the Sampling Fault Model. imes
- Energy-threshold Fault Model. For a DFF to correctly register a clock rising edge, the clock signal is required to be above some energy threshold, combination of a voltage threshold and a width threshold. √
- Fault sensitivity variation. The fault sensitivity only depends on the register. \times
- 5) *Registers and clock routing cross-talk.* Data routes influence TRAITOR's glitched clock.
- 6 *Inter-clock routing cross-talk.* Other clock routing on the same FPGA influences TRAITOR's glitched clock.

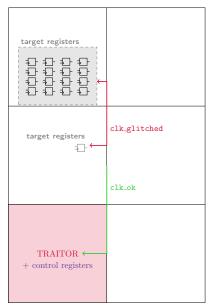

Registers and clock routing cross-talk


Experiment set-up:

- \rightarrow Artix-7
- $\rightarrow\,$ faults injected from amp. 0

Registers and clock routing cross-talk

Registers and clock routing cross-talk


route	e 1 (a	mp.	22)	

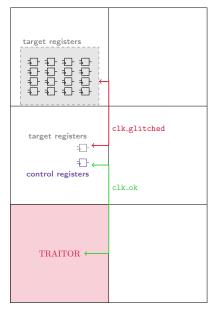
route	<mark>e 2</mark> (a	22)		

Hypotheses

- 1) TRAITOR's fault model is the *Timing Fault Model*. imes
- 2) TRAITOR's fault model is the Sampling Fault Model. imes
- Energy-threshold Fault Model. For a DFF to correctly register a clock rising edge, the clock signal is required to be above some energy threshold, combination of a voltage threshold and a width threshold.
- Fault sensitivity variation. The fault sensitivity only depends on the register. \times
- 5) Registers and clock routing cross-talk. Data routes influence TRAITOR's glitched clock. √
- 6 *Inter-clock routing cross-talk.* Other clock routing on the same FPGA influences TRAITOR's glitched clock.

Inter-clock routing cross-talk

Experiment set-up:


 \rightarrow Artix-7

 \rightarrow faults injected from amp. 0

Registers' behaviour:

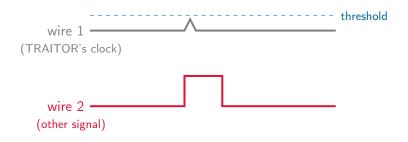
- \rightarrow fault sensitivity of singled-out target registers : 21
- \rightarrow fault sensitivity of other target registers : 22

Inter-clock routing cross-talk

Experiment set-up:

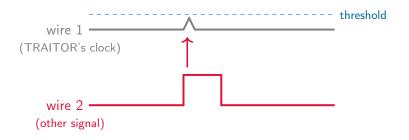
 \rightarrow Artix-7

 $\rightarrow\,$ faults injected from amp. 0

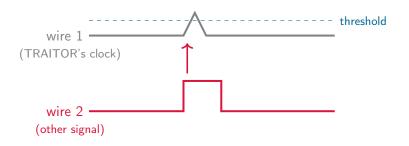

Registers' behaviour:

- \rightarrow fault sensitivity of singled-out target registers : 20
- \rightarrow fault sensitivity of other target registers : 22

Hypotheses

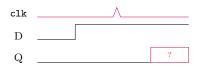

- 1) TRAITOR's fault model is the *Timing Fault Model*. imes
- 2) TRAITOR's fault model is the Sampling Fault Model. imes
- Energy-threshold fault model. For a DFF to correctly register a clock rising edge, the clock signal is required to be above some energy threshold, combination of a voltage threshold and a width threshold.
- Fault sensitivity variation. The fault sensitivity only depends on the register. \times
- 5) Registers and clock routing cross-talk. Data routes influence TRAITOR's glitched clock. √
- 6 Inter-clock routing cross-talk. Other clock routing on the same FPGA influences TRAITOR's glitched clock. √

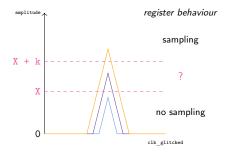
Cross-talk



Cross-talk

Cross-talk





Conclusion

Energy-threshold Fault Model:

 \rightarrow Energy threshold (voltage and width)

 \rightarrow Cross-talk (register/clock routing and clock/clock routing)

 \rightarrow Explanation for some electromagnetic faults ?