
Radically secure computing

Guillaume Bouffard 3 Sébanjila Kevin Bukasa 1 Mathieu
Escouteloup 1 Alexandre Gonzalvez 1,2 Jean-Louis Lanet 1

Ronan Lashermes 1 Hélène Le Bouder 2 Gaël Thomas 4

Thomas Trouchkine 3

1INRIA 2IMT-Atlantique 3ANSSI 4DGA

18th of February, 2020

SILM Seminar, Rennes

Against indirect jumps 18th of February, 2020 1 / 19

Introduction

The problem

You want to design a critical system (in a nuclear plant, an hospital, an
aircraft carrier . . .): you need to chose your hardware and software.

What processor ?

What operating system ?

My take: you are screwed.

We need to design processors (and their ecosystem) that have much
stronger security guarantees.

Against indirect jumps 18th of February, 2020 2 / 19

Introduction

Content

1 Introduction

2 The threat

3 A new ISA for security

4 Wrap-up

Against indirect jumps 18th of February, 2020 3 / 19

The threat

Software

The problems of software vulnerabilities are well known

The solutions include:

better language semantics (e.g. the rust language).

Proof-oriented software (e.g. SeL4).

Improved instruction set architecture (e.g. the CHERI project).

Against indirect jumps 18th of February, 2020 4 / 19

The threat

Software

The problems of software vulnerabilities are well known

The solutions include:

better language semantics (e.g. the rust language).

Proof-oriented software (e.g. SeL4).

Improved instruction set architecture (e.g. the CHERI project).

But

Rice’s theorem puts a limit to what we can prove after the fact. We can
only prove software functionally correct if small or built with a restricted
semantics.

For any generic software sufficiently large: there exists a vulnerability.

Against indirect jumps 18th of February, 2020 4 / 19

The threat

Micro-architecture

Abstract machine

Software is built relative to an abstract machine (e.g. the C machine), but
this is not the true machine it will be executed on!

Against indirect jumps 18th of February, 2020 5 / 19

The threat

Micro-architecture

Abstract machine

Software is built relative to an abstract machine (e.g. the C machine), but
this is not the true machine it will be executed on!

Other limits to proof-oriented software

The compiler cannot know the details of future machine implementations.
Proofs exclude common features of modern processors (e.g. DMA).

The gap between the true and the abstract machine creates new
vulnerabilities: Spectre, Meltdown, and the dozens variants that followed.

Against indirect jumps 18th of February, 2020 5 / 19

The threat

Hardware

And then, there are the issues with the hardware itself

The attacker can alter the machine during execution: skip instructions,
alter cache memories, MMU mapping, . . .

Against indirect jumps 18th of February, 2020 6 / 19

The threat

Example: moving data in L2

0x000489b8: d65f03c0 a9be7bfd 910003fd b9001fbf

0x000489c8: b9001bbf b90017bf 900001a0 912d2000

0x000489d8: d2802002 52800001 94000b28 97fefe67

0x000489e8: d2800040 97feffe2 94008765 940087ad

0x000489f8: b9001fbf 14000010 b9001bbf 14000008

0x00048a08: 940087c1 b94017a0 11000400 b90017a0

0x00048a18: b9401ba0 11000400 b9001ba0 b9401ba0

0x00048a28: 7100c41f 54fffeed b9401fa0 11000400

Figure: Before fault.

0x000489d8: d2800040 97feffe2 00000002 00000008

0x000489e8: 00000002 00000008 910003fd b9001fbf

0x000489f8: b9001bbf b90017bf 11000400 b90017a0

0x00048a08: b9401ba0 11000400 b9001ba0 b9401ba0

0x00048a18: 7100c41f 54fffeed b9401fa0 11000400

0x00048a28: b9001fa0 b9401fa0 81040814 77777777

Figure: After fault.

Against indirect jumps 18th of February, 2020 7 / 19

A new ISA for security

The dilemma

High performances, low energy consumption, high security: pick one!

Most processor cores are optimized either for high performances or low
energy consumption. Secure elements are coprocessors: they are dedicated
to specific functionalities.

We need cores dedicated to security, with new and restricted semantics aka
“radically secure computing”.

Against indirect jumps 18th of February, 2020 8 / 19

A new ISA for security

Instructions

Atoms of our programs

Work on registers and offsets
(encoded in the instruction
value).

Arithmetic

Load/Store

(Conditional) Branches

(Unconditional) Jumps

. . .

Against indirect jumps 18th of February, 2020 9 / 19

A new ISA for security

Confidentiality

Removing side channels

Tag some registers as confidential.

If a register is confidential, it cannot be used as the source of a
conditional branch instruction.

If a confidential register is involved, all arithmetic operations have
a constant and ISA-documented duration (cf ARMv8.4 DIT).

For Load and Store instructions, the jury is still out. Forbid
confidential registers as address sources ?

Stricter micro-architectural state isolation guarantees, masking, . . .

We propose a restricted semantics on which the compiler can base its
security guarantees.

Against indirect jumps 18th of February, 2020 10 / 19

A new ISA for security

Provably hiding the control flow

The possibility to jump arbitrarily in memory is detrimental to security. If,
for any reason, the attacker can control the destination, she gains the
system’s control.

Trapdoor predicate

Let k be a secret key and h a cryptographic hash function.

p(x) =

{

1 if h(x) = h(k)
0 in the other cases

Hiding the control flow

x ← user input

y ← p(x) · (h(x + 1)⊕ constant)

jump 0x1000⊕ y

Against indirect jumps 18th of February, 2020 11 / 19

A new ISA for security

Hiding properties

Properties

Without the knowledge of k , even knowing the program it is impossible to:

find x such that we jump to an address different than 0x1000.

find the destination address, if we jump to somewhere different than
0x1000.

Conclusion

The attacker has an advantage thanks to the definition of our instructions.

Against indirect jumps 18th of February, 2020 12 / 19

A new ISA for security

Forbidding indirect jumps

Why not just forbid forward indirect jumps ?

Common answers

Some programs become impossible to write ! (Virtual method tables
for OO polymorphism. . .)

Programs become inefficient !

Against indirect jumps 18th of February, 2020 13 / 19

A new ISA for security

Forbidding indirect jumps

Why not just forbid forward indirect jumps ?

Common answers

Some programs become impossible to write → the insecure ones.

Programs become inefficient → introduce dispatch instruction to
recover performance.

We can now extract a precise Control Flow Graph (CFG) from the program
binary.

Against indirect jumps 18th of February, 2020 13 / 19

A new ISA for security

Issues without indirect jumps

Without indirect jumps, we cannot call a program whose address is
unknown at compile time.

Some patterns become impossible

Creating a process from the operation system.

Calling a plug-in from an application.

Dynamic code generation.

Against indirect jumps 18th of February, 2020 14 / 19

A new ISA for security

Issues without indirect jumps

Without indirect jumps, we cannot call a program whose address is
unknown at compile time.

Some patterns become impossible

Creating a process from the operation system.

Calling a plug-in from an application.

Dynamic code generation.

An indirect jump implies to switch to a new security domain.

Against indirect jumps 18th of February, 2020 14 / 19

A new ISA for security

HAPEI: Hardware-Assisted Program Execution Integrity

Program

The program is a list of instructions {i0, i1, · · · , in}.

Encrypt at setup

k is a device-specific secret key, C is a compression function.

Build the accumulator as the program state: acc0 = HMACk(IV).

accn = HMACk(accn−1||in−1).

Encrypt the program:

i ′n = C (accn)⊕ in.

Against indirect jumps 18th of February, 2020 15 / 19

A new ISA for security

The several predecessors case

n-predecessors (cycles allowed in CFG)

The state of the program before an n-predecessor instruction must be a
random invariant (rebase). We must be able to project all legitimate
program states to this rebased value, and reject illegitimate values.

Against indirect jumps 18th of February, 2020 16 / 19

A new ISA for security

The several predecessors case

n-predecessors (cycles allowed in CFG)

The state of the program before an n-predecessor instruction must be a
random invariant (rebase). We must be able to project all legitimate
program states to this rebased value, and reject illegitimate values.

Solution: use projection into subgroups of F2b . A subgroup of size r exists
∀r |2b − 1.
Example: 5|216 − 1, so there is a cyclic subgroup {µ, µ2

, µ
3
, µ

4
, µ

5 = 1}
for some µ ∈ F2b with µ

r = 1.

Against indirect jumps 18th of February, 2020 16 / 19

A new ISA for security

The several predecessors case

n-predecessors (cycles allowed in CFG)

The state of the program before an n-predecessor instruction must be a
random invariant (rebase). We must be able to project all legitimate
program states to this rebased value, and reject illegitimate values.

Solution: use projection into subgroups of F2b . A subgroup of size r exists
∀r |2b − 1.
Example: 5|216 − 1, so there is a cyclic subgroup {µ, µ2

, µ
3
, µ

4
, µ

5 = 1}
for some µ ∈ F2b with µ

r = 1.

Encrypt (5-predecessors): a1, a2, . . . , a5. Choose random c ∈ F2b .
Compute polynomial P of degree 4 such that:

P(ai) = c · µi
.

Store {P , i ′n = C (c r)⊕ in}.

Against indirect jumps 18th of February, 2020 16 / 19

A new ISA for security

Decryption

Decrypt

in = C (P(accn)
r)⊕ i ′n.

Works because ∀i ,

P(ai)
r =

(

c · µi
)r

= c r · (µr)i = c r .

Against indirect jumps 18th of February, 2020 17 / 19

Wrap-up

Wrap-up

1 We need a new class of CPUs, the secure one,

2 around a new ISA with restricted semantics.

3 Indirect jumps imply to switch to a new security domain.

4 It is possible to protect against fault injection attacks with Instruction
Set Randomization, but solutions are not practical today.

Against indirect jumps 18th of February, 2020 18 / 19

Wrap-up

Thank you!

Any questions?

Against indirect jumps 18th of February, 2020 19 / 19

	Introduction
	The threat
	A new ISA for security
	Wrap-up

