EM Fault Model Characterization on SoCs

From different architectures to the same fault model

<u>Thomas TROUCHKINE</u>¹, Guillaume BOUFFARD^{1,2}, Jessy CLÉDIÈRE³ September 17, 2021

¹National Cybersecurity Agency of France (ANSSI), Paris, France ²DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France ³CEA, LETI, MINATEC Campus, Grenoble, France

Sensitive operations

Historically

- handled by smartcards =
- security designed devices
- high level security evaluation

Historically

- handled by smartcards =
- security designed devices
- high level security evaluation

Nowadays

- handled by smartphones I or laptops I
- performance designed devices
- security added recently
- no security evaluation

Characterization - Targets

BCM2837 (Raspberry Pi 3 B)

Intel Core i3-6100T

(Custom motherboard)

Case study - Characterization Method

Test program

```
orr r5, r5;
/*
 * Arbitrary number
 * of repetitions
 */
orr r5, r5;
```

Case study - Characterization Method

Test program

orr r5, r5;
/*
 * Arbitrary number
 * of repetitions
 */
orr r5, r5;

Initial values

Register	Initial values
r0	0xfffe0001
r1	0xfffd0002
r2	0xfffb0004
r3	0xfff70008
r4	Oxffef0010

Case study - Characterization Method

Test program

MMU

Bus

Cache

Decode

Execute

Fetch

Initial values

Bus

Cache

ISA

MMU

Characterization - BCM2837 (Raspberry Pi 3)

Characterization - BCM2837 (Raspberry Pi 3)

Spots leading to reboots

Spots leading to faults

Faulted register distribution regarding the executed instruction

Faulted value distribution regarding the executed instruction

Fault model distribution regarding the executed instruction

Fault model distribution regarding the executed instruction

Instruction matching the OR fault model for the orr r5, r5 instruction

Faulted instruction	Occurrence (%)
orr r5,r1	92.54 %
orr r5,r0	6.14 %
orr r5,r7	1.32 %

Instruction matching the OR fault model for the orr r5, r5 instruction

Faulted instruction	Occurrence (%)
orr r5,r1	92.54 %
orr r5,r0	6.14 %
orr r5,r7	1.32 %

Instruction matching the AND fault model for the and r8,r8 instruction

Faulted instruction	Occurrence (%)
and r8,r0	100 %

Characterization - Intel Core i3-6100T

Characterization - Intel Core i3-6100T

or rbx, rbx

Spots leading to reboots

Faulted register:

rbx in 100% of the cases

Characterization - Intel Core i3-6100T

- Different injection mediums have shown the similar fault models on different architecture (ARM, x86) and targets:
 - we suppose that there is an underlying common mechanism sensitive to perturbation
 - the instruction cache was identified as faulted on the BCM2837
 - EM fault injection is less efficient on flip chips
- These faults are suitable for an AES DFA

Questions?

References

[DLM19] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. "Electromagnetic Fault Injection : How Faults Occur". In: 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2019, Atlanta, GA, USA, August 24, 2019. IEEE, 2019, pp. 9–16. DOI: 10.1109/FDTC.2019.00010. URL: https://doi.org/10.1109/FDTC.2019.00010. [OGM15] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. "EM Injection: Fault Model and Locality". In: 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2015, Saint Malo, France, September 13, 2015. Ed. by Naofumi Homma and Victor Lomné. IEEE Computer Society, 2015, pp. 3–13. DOI: 10.1109/FDTC.2015.9. URL: https://doi.org/10.1109/FDTC.2015.9.