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1DIENS, École Normale Supérieure, Université PSL, CNRS
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Introduction State of the industry

Main

environment

Secure

enclave

The industry has developed an important

need to operate sensitive and secure

processes on uncontrolled peripherals.

This necessity mainly concerns COTS1, in

other words, devices we all own today.

Many of them are not equipped with

security hardware mechanisms such as

secure enclaves for example.

1Commercial Off-The-Shelf
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Introduction Cryptography in an open environment

A key challenge in this context is to exploit cryptography using a private key.

In these conditions, an implementation :
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A key challenge in this context is to exploit cryptography using a private key.

In these conditions, an implementation :

• can be spied on

• can be statically read and modified

• can be dynamically instrumentalized
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Introduction Symmetrical vs. asymmetrical algorithms

In this use case,

industrial actors often

use symmetrical

algorithms.

But asymmetrical ones can also be

interesting :
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• the new constraints brought by quantum computing
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Additional requirements include consideration of :

• the new constraints brought by quantum computing

• mobile networks’ constraints

• COTS hardware and software limitations
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The McEliece cryptosystem Presentation

The McEliece cryptosystem is a good candidate to deal with these concerns.

It relies on coding operations, permutations and scrambling.

It is an asymmetrical

cryptographic

algorithm

It is considered

resistant in a

post-quantum

context

It is mainly based on

linear algebra,

making it efficient

and easy to optimize

After almost half a

century of existence,

it is considered

reliable and robust
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The McEliece cryptosystem Presentation

Encryption simply consists in a matrix multiplication and a matrix addition.

×Mk,n(F2) +M1,n(F2)

Decryption is done with two matrix multiplications and a fast decoding operation.

×Mn,n(F2) Decoding ×Mk,k(F2)

Everything is done in F2.
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The McEliece cryptosystem Why it works

In fact, if :

• S is a scrambling matrix (that is, a random invertible matrix)

• G is a generator matrix for a (n,k)-linear error-correcting code C

• P is a permutation matrix

Then, with G ′ = SGP , for a clear-text block m, we have a cipher-text block c such as :

c = mG ′ + e

where e is a random vector of Hamming weight below C’s error-correcting capability.
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In fact, if :

• S is a scrambling matrix (that is, a random invertible matrix)

• G is a generator matrix for a (n,k)-linear error-correcting code C

• P is a permutation matrix

Then, with G ′ = SGP , for a clear-text block m, we have a cipher-text block c such as :

c = mG ′ + e

where e is a random vector of Hamming weight below C’s error-correcting capability.

To get m back, one must :

• multiply c by P−1

• use a fast algorithm to decode the result

• multiply the outcome by S−1

The McEliece cryptosystem’s security

rely on the fact that an attacker

cannot use a fast algorithm to decode

c because of the permutation.

9/24



The McEliece cryptosystem Sensitivity to fault-injection based attacks
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The McEliece cryptosystem Sensitivity to fault-injection based attacks

The McEliece cryptosystem is quite robust against fault-injection based attacks.

Such attacks were driven to :

recover the public key

exploit weaknesses when

using other

error-correcting codes

than the Goppa ones,

which are specified in the

initial paper

break the NIST candidate

based on, but different

than the original one

Here, we now present an attack based on fault-injection, focusing on the original

McEliece specification, aiming at the secret key.
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Faulting McEliece implementations
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Faulting McEliece implementations Principles

As the permutation matrix is the foundation of this cryptosystem’s security, our goal is

to obtain information about it or the intermediate variable right after, which is hard in

a black-box context, or in case of obfuscation.

×Mn,n(F2) Decoding ×Mk,k(F2)

Trying to cancel the scrambling and the decoding is futile, as one brings a lot of

diffusion, and the other is a surjective function.
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nothing has happened
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Faulting McEliece implementations Principles

Making a fault-injection based attack work on McEliece is hard because attempts :

• either will be cancelled by the error-correcting code, in which case it will be as if

nothing has happened

• or will result in a corrupted output because the data was too much impacted

×Mn,n(F2) Decoding ×Mk,k(F2)

In face of this, we propose another approach : instead of targeting the data and

the specification, we target implementations.
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Faulting McEliece implementations Typical F2 vector-matrix multiplication

1 uint32_t accu[1024/32] = {0};

2 for(int i = 0; i < 1024; i++) {

3 if(((vector[i/32] >> (31-(i%32))) & 0x01) != 0) {

4 for(int j = 0; j < (1024/32); j++) {

5 accu[j] = accu[j] ^ matrix[i*(1024/32)+j];

6 }}}

10660 e51b300c ldr r3, [fp, #-12]
10664 e1a03103 lsl r3, r3, #2
10668 e24b2004 sub r2, fp, #4
1066c e0823003 add r3, r2, r3
10670 e5131024 ldr r1, [r3, #-36]
10674 e51b2008 ldr r2, [fp, #-8]
10678 e1a03002 mov r3, r2
1067c e1a03083 lsl r3, r3, #1
10680 e0832002 add r2, r3, r2
10684 e51b300c ldr r3, [fp, #-12]
10688 e0822003 add r2, r2, r3
1068c e59f30d8 ldr r3, [pc, #216]
10690 e08f3003 add r3, pc, r3
10694 e7933102 ldr r3, [r3, r2, lsl #2]
10698 e0212003 eor r2, r1, r3
1069c e51b300c ldr r3, [fp, #-12]
106a0 e1a03103 lsl r3, r3, #2
106a4 e24b1004 sub r1, fp, #4
106a8 e0813003 add r3, r1, r3
106ac e5032024 str r2, [r3, #-36]

0 0 0 0 1 0 0 1 0 0 0 0

[ ]

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0





































0 0 0 1 0 0 0 0 0 1 0 0

[ ]

×

A typical F2 vector-matrix multiplication

implementation loops over the vector and

accumulates matrix lines with XOR if the

element is set.
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Faulting McEliece implementations The instruction switch

If we consider a fault injection changing

only one bit in the program, making an

EOR instruction become a RSB gives

convincing results.

14/24



Faulting McEliece implementations Details of the attack

For illustrative purposes,

we use n = 12, t = 2,

and a fictional processor

with 4-bit registers.

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
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For illustrative purposes,

we use n = 12, t = 2,

and a fictional processor

with 4-bit registers.
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With linear error-correcting codes, a null

vector is necessarily a valid value.
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Faulting McEliece implementations Results after many iterations

By iterating this process many times with real-sized registers, one can potentially place

all the elements in subgroups.

It is important to note that however, we cannot know which subgroup corresponds to

which group of columns.

16/24



Faulting McEliece implementations Impact

Remaining entropy of the permutation matrix, depending on the variables’ size :

with n = 1024
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Protection on COTS Discussion
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Protection on COTS Precalculation

Precalculating results in the McEliece

cryptosystem requires caution since this

algorithm works on very large values.





































































[ ]M0,0 [ ]M0,1

[ ]M1,0

[ ]M0,b

[ ]Ma,0 [ ]Ma,b

M =

u ×M =

[

a
∑

i=0

ui ×Mi ,0 ‖
a

∑

i=0

ui ×Mi ,1 ‖ ... ‖
a

∑

i=0

ui ×Mi ,b

]
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Protection on COTS Precalculation

If managing the vector-matrix multiplications is possible, precalculating the decoding is

impossible as is.

×Mn,n(F2) Decoding ×Mk,k(F2)
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Protection on COTS Code subdivision

×S

×G3

×G2

×G1

×P3

×P2

×P1

+E3

+E2

+E1

×P
−1
3

×P
−1
2

×P
−1
1

Decoding 3

Decoding 2

Decoding 1

H H−1 ×S−1

A studied possibility is to divide

the code into multiple different

subcodes.

While it does modify the

specification, it allows to make a

version of the cryptosystem

protected against the attack.

Adding an external encoding at the output of the decryption, besides the internal one,

is completely possible.

22/24



Conclusion Summation

Conclusion
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Conclusion Summation

While the McEliece cryptosystem is an interesting, robust candidate for asymmetrical

post-quantum cryptography, its implementation may be vulnerable to fault-injection

based interferences.

These attacks can be deployed in hardware or software. In the latter case, protection

via simple obfuscation is not sufficient.

White-box techniques can be applied, under the condition to modify the original

specification.

We wish to thank David Naccache for his support during this work.
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