
Accessing Secure Information using Export file

Fraudulence

Guillaume Bouffard, Tom Khefif and Jean-Louis Lanet
Smart Secure Devices Team – University of Limoges
123 Avenue Albert Thomas, 87060 Limoges, France

Email: guillaume.bouffard@xlim.fr
Email: tom.khefif@etu.unilim.fr

Email: jean-louis.lanet@unilim.fr

Ismael Kane, Sergio Casanova Salvia
Applus – LGAI Technological Center,

Campus UAB
Apto Correos 18, 08193 Bellaterra, Barcelona, Spain

Email: ismael.kane@applus.com
Email: sergio.casanova@applus.com

Abstract—Java Card specification allows to load
applications after the post-issuance. Each application
to be installed into the card is verified by a Byte
Code Verifier which ensures that the application is in
compliance with the Java security rules.

The Java Card linking process is divided in to two
steps. The first one is done off-card by the Java Card
toolchain. The second one is realized during the appli-
cation installation to resolve each token by an internal
reference.

In this paper, we focus on the off-card linker, espe-
cially the conversion part between a Java-Class item
and a Java Card-Cap token. For that, we provide mali-
cious export files which will be used by the converter.
This malicious API provides the same behavior as the
original one for the user. With this attack, we are able
to confuse the Java Card linker.

Keywords—Java Card, Linker, Export file, Confusion

I. Introduction

Java Card is a kind of smart card that implements
one of the two editions, “Classic Edition” or “Connected
Edition”, of the Java Card 3.0 specification [1]. These
sorts of smart cards embed a Virtual Machine (VM) which
interprets codes already romized with the operating system
or downloaded after issuance1. Java Card is an open
platform for smart cards where a user is able to load
and execute new applications after issuance. Thus different
applications from different providers can run on the same
card. The byte codes delivered by the Java Card toolchain
are compliance with the Java Card security rules. Indeed,
the loaded application is not hostile to another application
into card. Furthermore, the Java Card firewall checks

1Due to security reasons, the ability to download code into the card
is controlled by a protocol defined by Global Platform [2]. This protocol
ensures that the owner of the code has the necessary authorization to
perform the action.

application permissions and access in the card, enforcing
isolation between them.

A. Java Card Security Model

The Java Card platform is a multi-application envi-
ronment where applet’s sensitive data must be protected
against malicious behavior from another applet. To protect
applets properly, classical Java technology uses the type
verification, Java-Class loader and security managers to
create private namespaces for each applet. In a smart card,
complying with the traditional enforcement process is not
possible. To obtain the same security level in this type of
limited-resource device, the security verification is split into
two steps: off-card and on-card as shown in the Fig. 1.

Java-Class Files

Byte Code Verifier (BCV) Java Card Files

Java Card Converter Byte Code Signer

(a) off-card security model.

Java
Card
Files

BCV Linker
Installed
applet

Firewall

(b) on-card security model.

Fig. 1. Java Card Security Model.

1) Off-card Java Card model: Outside the card, Fig. 1(a),
the Java-application’s source code is built to the Java-
Class files by the Java toolchain. To ensure that the Java-
Class files to be converted are semantically compliant with
the Java rules, they are analyzed by the Byte Code Verifier

(BCV). The BCV is the main security component in the
Java sandbox model: byte code alteration containing an
ill-typed applet may induce a security flaw.

The Java Card based smart card is a constraint-resource
device. Due to the lack of memory, the Java-Class file
cannot be executed into the card. Java is supported on
a Just In Time (JIT) compilation and this model is not
possible into a smart card.

The chosen solution is a two-step linking process. The
first one is done off-card where a Java-Class is translated
to a tokenized Java Card-Cap – Converted APplet – file.
This operation is done by the Java Card converter that
provides a lightweight file optimized for constraint devices.
The next linking is done inside the card. These steps are
described in the section III-A.

This file format is based on the notion of interdependent
components. It is specified by Oracle [1] which consists of
eleven standard components: Header, Directory, Import,
Applet, Class, Method, Static Field, Export, Constant
Pool, Reference Location and Descriptor. The Debug
component is only used for the debug process. Moreover,
the targeted Java Card VM (JCVM) may support user’s
custom components. The file format is modeled in the
Fig. 2.

Fig. 2. The interdependent Java Card-Cap file components.

2) On-card Java Card model: Inside the card, Fig. 1(b),
the Java-Cap file is checked by the embedded BCV before
the installation step. After the BCV verification, the
embedded Java Card linker resolves statically each token,
described in the Java Card-Cap file, to a smart card internal
reference. This job is a proprietary operation where each
internal reference must be hided.

The separation of different applets is enforced by the
firewall which is based on the package structure of Java
Card and the notion of context. When an applet is created,
the Java Card Runtime Environment (JCRE) uses a
unique Applet IDentifier (AID) from which it is possible
to retrieve the name of the package in which the applet
is defined. If two applets are an instance of classes of the
same Java Card package, they are considered to be in the
same context. There is also a super user context, called
the JCRE context. Applets associated with this context
can access to objects from any other context on the card.

In this paper, we are focusing on the off-card linking
process. Section II presents the context of our work. The
Java Card linking mechanism is described in section III-A.

A proof of concept to abuse the Java Card linking process
is discussed in section III-B. Finally the future works and
the conclusion are presented in the section IV and V.

II. Context

Java Cards have the ability to download programs after
post-issuance. These applications are verified during the
loading process into the card.

The idea of injecting physical fault to bypass a BCV
verification has been emerged recently. A correct and
legitimate application can be installed and dynamically
this application can get mutate with a laser beam. This
fault attack modifies a part of a memory content or a signal
on an internal bus, which can lead to an exploitable deviant
behavior. Some fault attacks are described in cryptanalytic
papers [3], [4], [5].

G. Barbu [6] proposed a way to bypass the embedded
smart card BCV. In order to do that a correct applet
was installed and this applet contains an unauthorized
cast between two different objects. Statically, the applet
is compliant with the Java Card security rules. If a laser
beam hits the bus in such a way that the cast type check
instruction is not executed, this applet becomes a malware.
This type of attack exploits a new method to execute
illegal instructions where the physical and logical levels
are perturbed. This method can work only on some cards
and others are not sensitive to this attack.

Bouffard et al. described in [7] a way to execute a
Java Card shellcode using a laser beam injection. The
authors described the attacks on a loop for as shown in the
Listing 1, but that can be extended to other instructions.
The byte code version of this loop is presented in the
Listing 2. The Java Card specification [1] defines two
instructions to rebranch a loop, a goto and the goto w
instructions. The first one branches with a 1-byte offset and
the second one takes 2-byte offset. Since the smart card’s
memory manager stores the array data after the memory
byte code, a laser fault on the high part of the goto w
parameter can shift the backward jump to a forward one
and they succeeded to execute the contents of an array.

for (short i =0 ;
i<n ; ++i) {

f o o = (byte) 0xBA;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
// Few i n s t r u c t i o n s
// have been hidden
// f o r a b e t t e r
// meaning .
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ;
bar = foo ; fo o = bar ; }

Listing 1. A for loop sample.

sconst 0
sstore 1
sload 1
sconst 1
if scmpge w 00 7C
aload 0
bspush BA
putf ie ld b 0
aload 0
g e t f i e l d b t h i s 0
put f ie ld b 1
// Few i n s t r u c t i o n s
// have been hidden
// f o r a b e t t e r
// meaning .
aload 0
g e t f i e l d b t h i s 1
put f ie ld b 0
s i n c 1 1
goto w FF17

Listing 2. Associated byte
codes of the loop listed in the
Listing 1.

However, the knowledge on Java Card’s internal
reference is needed to execute a rich shellcode. Hamadouche
et al., in [8], described a way to abuse the on-card part
of the Java Card linker. As described previously, a
token to resolve is preceded by a specific instruction like
invokestatic or getstatic. The most of embedded
Java Card does not check the correctness of the tokens
referred in the Reference Location component. To
obtain the internal references of an API, the authors
created an ill-formed Java Card-Cap file where sspush2

instruction takes a token as parameter. The byte code
is well-formed but the Java-Cap file is ill-formed. Each
token is resolved by the on-card Java Card linker after
the on-card BCV checks. The most Java Card embedded
BCV does not verify the instruction which precedes
the tokens. This attack had been succeeded on various
development cards. With this attack it is possible to know
the Java Card internal references to execute a rich shellcode.

Razafindralambo et al. [9] abused the Java Card on-card
linker to resolve instructions as tokens. Classically, tokens
are updated after any BCV verification. For instance, if
the Java Card-Cap file refers to some instructions as token,
the attacker can mutate the code to a malicious byte code
using the Java Card linker. To know the internal references,
the attacker can use the attack described previously [8].

III. Abusing the linking process

A. Java Card Linking Process

1) Off-card linking step: Due to limited resources em-
bedded into the card, the Java Card linking process is split
into two parts. The first one is done outside the card. As
described in the section I, each Java-Class file, complying
with the Java security rules, is converted to a Cap file.
To do that, the Oracle’s converter translates items in the
Java-Class file to Java-Cap file tokens . In the Java-Class

file, an item describes the signature and the element in a
string. Due to the absence of string in a Java Card, the
tokenization optimizes the file size for a limited-resource
device like a Java Card based smart card. To convert Java-
Class file, each Java item is translated to a token with
the help of the export files. The Oracle specification [1]
specifies an export file as:

“An export file contains entries for externally
visible items in the package. Each entry holds
the item’s name and its token. Some entries may
include additional information as well.”

Export file lists the translated names to tokens in-
formation for each method’s signature, constants, classes’
fields. . . shared by the API’s owner. The export file does
not contain private information, that is why it is mainly
distributed publicly. For example, in the Oracle’s Java Card
Development Kit (JCDK), the Java Card API export files
provided are compliant with each card implementing the
Java Card specification [1].

2The sspush instruction push a short given in parameter.

To improve the on-card linking step, the Oracle’s
converter inserts the the Java-Cap file tokens’ informa-
tion into the Constant Pool, Reference Location and
Import components. The Constant Pool component con-
tains the linking information between each token’s value
and the reference to the method, class and/or package
needs to correctly execute the byte code from the Method
component. The Reference Location component lists
from the Method component each offset where a token
should be linked to a card’s internal reference. The Import
component enumerates the packages needed by the applet
and listed into the Constant Pool component. The off-card
part is described in the Fig. 1(a).

2) On-card linking step: The second linking process is
done during the applet installation, after all the BCV
verification. On-card, each token contained in the Method
component referred by the Reference Location com-
ponent is updated to an internal reference. The inter-
nal reference is obtained with the help of Constant
Pool component which refers to shared methods/class-
es/fields needed by the application. Into the Constant
Pool component, a token to an external method – a
method provided by another class – is structured as the
set (package token, class token, method token). The
package token item3 represents a package defined in the
Import component. So in Fig. 3, the token 2 refers to the
set (0x80, 0x12, 0x00) whose method 0x00 of the class
0x12 contained in the package 0x0 indexed the Import
component. In fact, the token 2 will be linked with the
method javacard.framework.Util.arrayCopy() accord-
ing to the export files provided in the Oracle’s JCDK.
With this information, the Java Card linker is able to link
an applet with the needed APIs installed into the card.

Method Component

...

/*0030*/ aload_2

/*0031*/ invokevirtual 0002

...

Reference Location Component
...

offset_to_byte2_indices: {

 ... @32 ...

}

Constant Pool Component
...

Token: 2 => CONSTANT_VirtualMethodRef:

 external method: 0x80, 0x12, 0x00

...

Import Component
packages[0]{ // javacard.framework

 version: 1.2

 AID: 0xA0000000620101

} ...

Fig. 3. On-Card linking.

In this paper, we focus on the off-card linking process
in order to corrupt the compilation chain.

B. The Proof of Concept

Our objective is to perform a Man-In-The-Middle
attack by forcing the off-card Java Card toolchain to link
an application with our malicious library instead of the
legitimate library required by the developer. This will allow
us to withdraw confidential information like cryptographic
keys. For this, a fake export file which contains the
malicious linking information is inserted into the export

files path. This export file is a copy of the export to
confuse its AID. During the conversion step, the Java Card

3The Java Card specification [1] specifies that the most significant
bit of the package token must be set to one.

off-card linker links each applet with the first export file
which contains the carried package’s name.

For instance, an API provides a function, named
buildKey, which generates a cryptographic key. A bank
applet needs a session key for cryptographic operations.
For that, it must call the buildKey function. As this bank
applet was linked with our fake API, each call to buildKey
function is caught by our fake API. The fake API stores the
generated key and return it to the caller. If our malicious
library is installed into the Java Card, we can achieve fake
API as described in the Fig. 4.

Applet Fake API API Attacker’s applet

buildKey

buildKey

Key

Store key

Key

getKeys

Keys stored

Fig. 4. The Architecture of our Man-In-The-Middle Java Card
Attack.

For this attack, we speculate that the smart card loading
keys are known so that it is possible to load an applet into
the card.

To get a proof of concept of this attack, the following
modus operandi is listed and the attack is presented in the
Fig. 5:

1) To begin with, a copy of the API’s source code to
be modified is confused. The aim is to have the same
classes prototype, the same methods prototype and a
different package name. In fact, the Oracle’s toolchain
uses an alphabetic order to build a Java Card-Cap file.
Keeping the same names as the original API offers us
a way to friendly obtain the same export file. One or
more body functions are modified to have a different
behavior. For instance, an array copy can store a copy
of the source array’s content. This copy will be accessed
later.

2) Secondly, the developer must download our fake ex-

port file and use it into his/her Java Card toolchain.
This fake export file links the application from
specific-API-name to our malicious API. For that, the
malicious export file must contain the same names
(package/classes/methods prototypes) as the original
API but for its AID’s which refers to the AID used
in 1.

3) Thirdly, the Java-class files to be converted are
linked with the Java Card’s converter. Since the
translation from name to token is based on the export

files information, the converter seeks the associated
location between the name and the token. The Oracle’s
converter uses a first find, first used algorithm to find
the correct export file to be used. For that, our
malicious export file must be found first.

4) Finally, the applet linked with our malicious API can
be installed on the card. The installed applet will use
our fake API as the legitimate one and the values
returned by our API should be in compliance with the
original API.

CARD

Fake Util
Fake Export

Same AID

Applet CAPConversion

Loading API Util

Util

Export

Framework

Export

Security

Export
...

Use
Applet

Faulty Util CAP

Conversion

Loading

1

2

3

4

Faulty API Util

Conversion

Fig. 5. Man-In-The-Middle procedure.

IV. Future Works

In Section III-B, a proof of concept for a man in the
middle attack was described. It is possible to apply it on
a real Java Card API provided by Oracle. The next step
will be the creation of a fake javacard.security package
which keeps a copy of each created Key. A malicious applet
will call an undocumented API function to retrieve each
created Key.

At this point, the Java Card firewall must check the
owner of each created object. The firewall ensures a
segregation between applets from different owners. When
an object is used, the firewall checks only the object’s
ownership. In our case, the object Key is created by an
API and shared to each API’s user. The Java Card firewall
cannot prevent this behavior.

Providing a malicious API can create some problems and
the Java Card linker associates each type’s name to a token.
During the execution, the Java Card firewall dynamically
checks the correctness of the object’s type.

Abusing the Java Card linking process created an
incompatibility between two objects’ type. The incompati-
bility is occurred due to javacard.security.Key and our
javacard.security.Key’.

In our case, the object type
javacard.security.Key is obtained by the
javacard.security.KeyBuilder.keyBuilder() function
and cannot be casted to the type javacard.security.Key’
declared into our malicious API. Moreover, the Java Card
linker does not allow the usage of different export files

for the same package (one export file for each Java Card
package).

V. Conclusion

In this paper, we presented an attack on the Java Card
off-card linker. Actually the Java Card off-card linker does
not check the correctness of export files used to convert a
Java-Class file to a Java Card-Cap file. The Oracle’s Java
Card export files are supposed to be corrected without
hashsum to check the files’ integrity. So the developer must
have trust in the provided export files.

This concept proves that Java Card off-card toolchain
can be abused. In the next step we will apply this attack on
a real API like, javacard.security framework. For the
moment, we performed this attack only on our API without
external dependencies. The applications have to respect
external dependencies in order to run the applets correctly
on real Java Card. Thereby using this proof of concept
on javacard.security.KeyBuilder, the type constraints
should be guaranteed to have a working result.

References

[1] Oracle, Java Card 3 Platform, Virtual Machine Specification,
Classic Edition 3.0.0. Oracle, Sep. 2011.

[2] Global Platform, Card Specification v2.2. March, 2006.

[3] C. Aumüller, P. Bier, P. Hofreiter, W. Fischer, and J.-P. Seifert,
“Fault attacks on RSA with CRT: Concrete Results and Practical
Countermeasures,” IACR Cryptology ePrint Archive, vol. 2002,
p. 73, 2002.

[4] L. Hemme, “A Differential Fault Attack Against Early Rounds of
(Triple-)DES,” in CHES, ser. Lecture Notes in Computer Science,
M. Joye and J.-J. Quisquater, Eds., vol. 3156. Springer, 2004,
pp. 254–267.

[5] G. Piret and J.-J. Quisquater, “A Differential Fault Attack
Technique against SPN Structures, with Application to the
AES and KHAZAD,” in CHES, ser. Lecture Notes in Computer
Science, C. D. Walter, Çetin Kaya Koç, and C. Paar, Eds., vol.
2779. Springer, 2003, pp. 77–88.

[6] G. Barbu, “On the security of Java Card platforms against hard-
ware attacks.” Ph.D. dissertation, Grant-funded with Oberthur
Technologies and Télécom ParisTech, 2012.

[7] G. Bouffard, J.-L. Lanet, and J. Iguchi-Cartigny, “Combined
Software and Hardware Attacks on the Java Card Control
Flow,” in Smart Card Research and Advanced Applications, ser.
Lecture Notes in Computer Science, E. Prouff, Ed., vol. 7079.
Berlin/Heidelberg: Springer, Sep. 2011, pp. 283–296.

[8] S. Hamadouche, G. Bouffard, J.-L. Lanet, B. Dorsemaine,
B. Nouhant, A. Magloire, and A. Reygnaud, “Subverting
Byte Code Linker service to characterize Java Card API,”
in Seventh Conference on Network and Information Systems
Security (SAR-SSI), May 22rd to 25th 2012, pp. 75–81. [Online].
Available: https://sarssi2012.greyc.fr/

[9] T. Razafindralambo, G. Bouffard, B. N. Thampi, and J.-L. Lanet,
“A dynamic syntax interpretation for java based smart card
to mitigate logical attacks,” in SNDS, ser. Communications
in Computer and Information Science, S. M. Thampi, A. Y.
Zomaya, T. Strufe, J. M. A. Calero, and T. Thomas, Eds., vol.
335. Trivandrum, India: Springer, 2012, pp. 185–194.

