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Introduction

→ Electromagnetic fault injection (EMFI) has many effects of a circuit.

→ Fault model: explanation of a fault at different abstraction levels.

level manifestation

microarchitectural impact on the microarchitecture
↪→ instruction skip

register-transfer logic signal alteration
↪→ bitflip propagating through a circuit

physical interaction between fault injection and
transistors/logic gates, analog signals
↪→ DFF sampling an incorrect value
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EMFI, physical effects

EMFI has an
impact on...

...power and ground signals ...clock signals

...something else?
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Underpowered circuit: Timing Fault Model

Normal execution:

LOGIC
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Faulted execution:
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Figure: Timing Fault Model [3] on a simple circuit

Timing Fault Model

Sampling Fault Model

↪→ glitch carried out by the clock

⇒ DFFs impacted
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Voltage bounces and drops: Sampling Fault Model

Normal execution:
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Faulted execution:
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Figure: Sampling Fault Model [4] on a simple circuit

Timing Fault Model

Sampling Fault Model

↪→ glitch carried out by the clock

⇒ DFFs impacted
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Modified clock cycle

Normal execution:
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Faulted execution:
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Figure: Synchronous Clock Glitch (SCG) impact on a simple circuit [1]

× Timing Fault Model

Sampling Fault Model

× Sampling Fault Model
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Our goals

Faulted execution:

LOGIC
D0 Q0

D1 Q1

clk

E

clk

D1

Q1
?

⇒ provide a physical fault model that explain how the SCG leads to
faults.

↪→ physical experimentations

↪→ simulations

⇒ glitch carried out by the clock

↪→ DFFs impacted
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TRAITOR: generation of the CSCG

clk1

clk2

phase shift

amplitude
CSCG

CSCG = (clk1 ⊕ clk2) · clk1

Figure: The Controlled Synchronous Clock Glitch (CSCG) is generated using two
out-of-phase clocks, clk1 and clk2 [2]. The TRAITOR user has the capability to
replace the regular clock signal with CSCG at their discretion.
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TRAITOR

TRAITOR TARGET

clk glitched

trigger

TARGET
trigger

TRAITOR 1

2

3

clk glitched

delay

amp. c

amp. b

amp. a

Figure: 3 examples of clock signals generated by TRAITOR, implemented on a
Artix-7 FPGA, illustrating its possibilities.
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Device Under Test (DUT)

target registers

control registers

TRAITOR

clk glitched

clk ok

010101

010101

010101

010101

010101

010101

010111

010101

010101

010101

fault!

Figure: DUT and TRAITOR on an Artix-7 FPGA.
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Logical and physical, in-order and randomized

mapping 1

in-order

mapping 2

randomized

logical DFFs physical DFFs

Figure: The two logical-to-hardware mappings: mapping 1 is in-order and
mapping 2 is randomized.
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Hypotheses

Hypothesis 1 (Energy Threshold) For a DFF to correctly sample a
clock’s rising edge, the clock signal must meet a certain energy thresh-
old, combination of voltage amplitude and width thresholds.

amplitude

clk

register

state

0

always

faulted

always

unfaulted
sometimes
unfaulted
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Behaviour of 3 selected DFF
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Figure: Transitions phases of three target physical DFFs chosen since they exhibit
different characteristics.
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Simulation set-up

clk glitched

→ SPICE simulation

→ 28nm DFF

↪→ not the exact same as the Artix-7 DFF
↪→ designed for similar technology so should behave the same way

→ focus on the state change of the first DFF

Goal: estimate the impact of the voltage and width of the CSCG
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Simulation results
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Figure: Simulated sampling results: for a given glitch with voltage amplitude and
width above this curve, sampling is correct.
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Hypotheses

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties)

The fault sensitivity of a DFF depends on its intrinsic properties, such
as clock routing up to the DFF among others.

−→ Only clock routing?
↪→ same DUT on two Artix-7 FPGAs
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Only clock routing?
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(a) Color coded fault sensitivities of
the first 64 registers on mapping 1 on
FPGA 1.
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(b) Color coded fault sensitivities of the
first 64 registers on mapping 1 on
FPGA 2.

Figure: Comparing fault sensitivities between physical DFFs on two Artix-7
FPGAs.
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Hypotheses

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties)

The fault sensitivity of a DFF depends on its intrinsic properties, such
as process variability and clock routing up to the DFF among others.

−→ Only intrinsic properties?
↪→ same FPGA, different mappings
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Only intrinsic properties?
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(a) Color coded fault sensitivities of
the first 64 registers on mapping 1
in-order on FPGA 1.
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(b) Color coded fault sensitivities of the
first 64 registers on mapping 2
randomized on FPGA 1.

Figure: Comparing fault sensitivities between physical DFFs for different
mappings.
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Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties)

The fault sensitivity of a DFF may also be affected by extrinsic factors,
such as the activity in neighboring wires (including routing between
DFFs and the routing of the clock tree).
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Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties)

The fault sensitivity of a DFF may also be affected by extrinsic factors,
such as the activity in neighboring wires (including routing between
DFFs and the routing of the clock tree).

−→ Impact of data wires
↪→ same route, different implementation
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Impact of data wires

target DFFs

original route

different route

clock signal source

clk ok

clk glitched

Artix-7

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with
route variations between two DFFs.
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Impact of data wires
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(a) Color coded fault sensitivities of
the first 64 registers on mapping 1
in-order on FPGA 1.
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(b) Color-coded fault sensitivities of the
first 64 registers on mapping 1 in-order

with different data routing on FPGA 1

Figure: Comparing fault sensitivities between physical DFFs for different data
routing.
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Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties)

The fault sensitivity of a DFF may also be affected by extrinsic factors,
such as the activity in neighboring wires (including routing between
DFFs and the routing of the clock tree).

−→ Impact of clock wires
↪→ forced adjacent clock paths
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Impact of clock wires

target DFFs control DFFs

clock signal source

clk ok

clk glitched

Artix-7

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with
clock routes forced to be apart
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Impact of clock wires

target DFFs control DFFs

clock signal source

clk ok

clk glitched

Artix-7

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with
clock routes forced to be parallel
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Impact of clock wires
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(a) Color coded fault sensitivities of
the first 64 registers on mapping 1
in-order on FPGA 1.
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(b) Color-coded fault sensitivities of the
first 64 registers on mapping 1 in-order

with a forced adjacent path for the clock
on FPGA 1

Figure: Comparing fault sensitivities between physical DFFs for different clock
routing.
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Conclusion

=⇒ the Energy-Threshold Fault Model

1 For a DFF to correctly sample a clock’s rising edge, the clock signal
must meet a certain energy threshold

2 The threshold of a DFF varies based on intrinsic properties (clock
routing, process variability)

3 The threshold of a DFF can be influenced by extrinsic properties
(acitivity of neighbouring wires) due to cross-talk

=⇒ Future work: recreate the synchronous clock glitch with EMFI and
verify if the Energy-threshold Fault Model requires adjusments
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