
1

Type classification against Fault Enabled Mutant in

Java based Smart Card
Jean Dubreuil Guillaume Bouffard Jean-Louis Lanet Julien Cartigny

Secure Smart Devices (SSD) Team - XLIM Labs, Université de Limoges,

123 Avenue Albert Thomas - 87060 Limoges, France

Email: jean.dubreuil@etu.unilim.fr, guillaume.bouffard@xlim.fr, jean-louis.lanet@xlim.fr, julien.cartigny@xlim.fr

Abstract—Smart card are often the target of software or
hardware attacks. For instance the most recent attacks are based
on fault injection which can modify the behavior of applications
loaded in the card, changing them as mutant application. In this
paper, we propose a new protection mechanism which makes
application to be less prone to mutant generation. This coun-
termeasure requires a transformation of the original program
byte codes which remains semantically equivalent. It requires
a modification of the Java Virtual Machine which remains
backward compatible and a dedicated framework to deploy the
applications. Hence, our proposition improves the ability of the
platform to resist to Fault Enabled Mutant.

Keywords-smart card; Java Card; viruses; fault; countermea-
sures

I. INTRODUCTION

A smart card usually contains a microprocessor and

various types of memories: RAM (for runtime data and

OS stacks), ROM (in which the operating system and the

romized applications are stored), and EEPROM (to store the

persistent data). Due to significant size constraints of the

chip, the amount of memory is small. Most of the smart

cards on the market today have at most 5 KB of RAM,

256 KB of ROM, and 256 KB of EEPROM. A smart card

can be viewed as a secure data container which can store

data in a secured manner and ensure security during data

transactions. Its safety relies first on the underlying hardware.

To resist probing of an internal bus, all components (memory,

CPU, cryptoprocessor, etc.) are on the same chip which is

embedded with sensors covered by a resin. Such sensors

(light sensors, heat sensors, voltage sensors, etc.) are used to

disable the card when it is physically attacked. The software

is the second security barrier. The embedded programs are

usually designed neither to transfer nor to modify sensitive

information without guaranty that the operation is authorized.

Smart cards are devices prone to attacks in order to

gain access to services or datas stored into the card. Several

methods have been used to retrieve these valuable information

and recently fault injection appears to be the most efficient.

Thus smart card manufacturers try to design countermeasures

to embed their operating system against such attacks.

Usually most of the solutions are based on dedicated code

at the applicative level. We propose in this paper a new

countermeasure that allows a form of dynamic type checking

without the high cost of type inference.

The contribution of this paper with respect to our prior work

is based on two mechanisms: a novel system countermeasure

based on a verification by the virtual machine (VM) of the

type of the Java element, and a framework to adapt the Java

byte code to this countermeasures.

This paper is organized as follows, the first section provides

a brief state of the art on fault injection attacks and the

existing countermeasures. In the second section outlines the

impact of a fault and the mutant generation. Third section

introduces the developed countermeasure. The evaluation

framework and the collected metrics are highlighted in section

four and finally, section five concludes the work with further

perspectives.

II. FAULT ENABLED MUTANT

Faults can be induced into the chip by using perturbations in

its execution environment [1]. The faults are induced by some

physical attacks which expose the device to some sort of phys-

ical stress. As a result the device has eratic functionioning, i.e.,

current in memory cells change , bus lines transmit different

signals or structural elements are damaged. Thus, these errors

can generate different versions of a program by changing some

instructions, interpreting operands as instructions, branching

to other (or invalid) labels and so on. These perturbations can

have various effects on the chip registers (like the program

counter, the stack pointer), or on the memories (variables and

code changes). Mainly, it can permit an attacker to execute a

treatment beyond his rights, or to access secret data in the

smart card. Fault attack is an old research field mainly in

avionics or space travel. Researchers brought to the fore that

cosmic rays can flip single bits in the memory of an electronic

device. Such faults are still an issue until now for such devices.

In the smart card field, researches focused on three kind of

fault attacks: power spikes, clock glitches and optical attacks.

A. Fault Attacks

A smart card is a portable device without embedded power

supply or clock and thus requires a smart card reader (which

provides external power and clock sources) in order to work.

The reader can also be replaced by an attacker with specific

2

equipments in the laboratory. With short variations of the

power supply, which are called spikes, one can induce errors

into the smart card internal operations. Spikes allow to induce

memory faults but also faults in the execution of a program.

Latter aims at confusing the program counter, can cause

conditional checks to work improperly, loop counters to be

decreased and arbitrary instructions to be executed.

The reader provides the card with a clock signal, which

may incorporate short deviations beyond the required tol-

erance from the standard signal bounds. Such signals are

called glitches. They can be defined by a range of different

parameters and can be used to induce memory faults as well

as faulty execution behavior. Hence, the possible effects are

the same as for spike attacks. If the chip is unpacked, such

that the silicon layer is visible, it is possible to use a laser

to induce perturbation in the memory cells. These memory

cells, i.e., EEPROM memory and semiconductor transistors,

have been found to be sensitive to light. This occurs due to

photoelectric effect.Modern green or red lasers can be focused

on relatively small regions of a chip, such that faults can be

targeted fairly well. Another method is to make changes in

the external electrical field of the smart card and has been

considered as a possible method for inducing faults.

B. Fault Model

To prevent a fault attack from happening, we need to know

its effects on the smart card. Fault models have already been

discussed in details [2], [3]. We describe, in the table I, the

fault models in descending order in terms of attacker power.

We consider that an attacker can change one byte at a time.

Sergei Skorobatov and Ross Anderson discuss in [4] an attack

using the precise bit error model. But it is not realistic on

current smart cards, because modern components implement

hardware security on memories like error correction and

detection code or memory encryption.

In real life, an attacker physically injects energy in a

memory cell to change its state. Thus up to the underlying

technology, the memory physically takes the value 0x00 or

0xFF. If memories are encrypted, the physical value becomes

a random value (more precisely a value which depends on the

data, the address, and an encryption key). To be as close as

possible to the reality, we choose the precise byte error that

is the most realistic fault model. Thus, we have assumed that

an attacker can:

• make a fault injection at a precise clock cycle (he can

target any operation he wants),

• only set or reset a byte to 0x00 or to 0xFF up to the

underlying technology (bsr1 fault type), or he can change

this byte to a random value beyond his control (random

fault type),

• target any memory cell he wishes (he can target a specific

variable or register).

1bit set or reset

C. Known Countermeasures

Smart card manufacturers have been aware of the danger of

faults attacks for long time now. Hence, they have developed a

large variety of hardware countermeasures [5]. Major hardware

countermeasures are sensors and filters, which aim to detect

attacks, e.g., using anomalous frequency detectors, anomalous

voltage detectors, or light detectors. Other countermeasures

use redundancy, i.e., dual-rail logic (keeping data in two

redundant memories), and doubled hardware (computing a

result twice in parallel). A data is considered to be error-free

if both values (computed or memorized) match. But these are

very expensive countermeasures, and hence, redundancy is not

often implemented in smart cards.

We can notice that using only hardware countermeasures

has two drawbacks. Highly reliable countermeasures are

very expensive and low cost countermeasures only detect

specific attacks. Since new fault attacks are being developed

frequently these days, detecting only currently known forms

of physical tampering is not sufficient, especially for long

term applications (an e-passport must be valid for 10 years).

An alternative or additional countermeasures are the use

of software countermeasures. They are introduced at differ-

ent stages of the development process; their purpose is to

strengthen the application code against fault injection at-

tacks. Current approaches for software countermeasures in-

clude checksums, randomization, masking, variable redun-

dancy, temporal redundancy and counters. Software counter-

measures can be classified by their end purpose:

• Cryptographic countermeasures: better implementation

of the cryptographic algorithm like RSA (which is the

most frequently used public key algorithm in smart cards),

DES, and hash functions (MD5, SHA-1, etc.).

• Applicative countermeasures: only modify the application

with the objective to provide resistance to fault injection.

Generally, this class produces application with a greater

size. Because, besides the functional code (the code that

process data), we have the security code and the data

structure for enforcing the security mechanism embed-

ded in the application. Java is an interpreted language

therefore it is slower to execute than a native language, so

this category of countermeasures suffers of bad execution

time and add complexity for the developer.

• System countermeasures: harden the system by checking

that applications are executing in a safe environment. The

main advantage is that the system and the protections are

stored in the ROM, which is a less critical resource than

the EEPROM and cannot be attacked thanks to checksum

mechanisms that allow to identify modification of data

that are stored in the ROM. Thus, it is easier to deal with

integration of the security data structures and code in the

system. But we need to evaluate the CPU overhead if we

add some treatments to the functional code.

• Hybrid countermeasures: are at the crossroads between

applicative and system countermeasures. They consist of

inserting data in the application that are used later by

the system to protect the application code against fault

3

Table I: Existing Fault Model

Fault Model Precision Location Timing Fault Type Difficulty

Precise bit error bit total control total control bsr, random ++

Precise bit error byte total control total control bsr, random +

Precise bit error byte loose control total control bsr, random -

Precise bit error variable no control no control random –

attacks. They have a good balance between the increasing

of the application size and the CPU overhead.

All previous categories with the exception of cryptography,

use a generalist approach to detect the fault because they do

not focus on a particular algorithm. We have presented in [6]

some countermeasures to avoid the effect of faults and we

evaluated their costs, in term of memory and CPU usage, but

also their latency and their coverage.

D. Impact of the fault: the mutant code

The following code is extracted from an attacked Java

Card memory. The method ends by throwing the Java Card

exception to PIN verification (code 0x6301) and the jump

at line 7404 throws this exception. If a fault is injected at

this line, the transformed code will probably never throw the

exception.

Listing 1: Disassembling dumped memory

73F6 : 18 a l o a d _ 0

73F7 : 7B 20 14 g e t s t a t i c _ a 0 x2014

73FA : 8B 02 08 i n v o k e v i r t u a l 0 x0208

73FD : 32 s s t o r e _ 3

73FE : 1A a l o a d _ 2

73FF : 03 s c o n s t _ 0

7400 : 1F s l o a d _ 3

7401 : 8D 09 75 i n v o k e s t a t i c 0 x0975

7404 : 60 2B i f e q 0x2B

7406 : 04 s c o n s t _ 1

. . .

742F : 11 63 01 s s p u s h 25345

7432 : 8D 54 0D i n v o k e s t a t i c 0x540D

7435 : 7A r e t u r n

One can remark that after the execution of the instruction

ifeq, the operand stack is empty. Now consider that a laser

hits the memory cells that contains the 0x60 code, i.e., ifeq

the resulting mutant is the following:

Listing 2: Mutant code

. . .

7401 : 8D 09 75 i n v o k e s t a t i c 0 x0975

7404 : 00

7405 : 2B a s t o r e _ 0

7406 : 04 s c o n s t _ 1

. . .

742F : 11 63 01 s s p u s h 25345

7432 : 8D 54 0D i n v o k e s t a t i c 0x540D

7435 : 7A r e t u r n

After executing the astore_0 instruction, the stack is

empty and the mutant program is synchronized with the

Table II: Type evolution

Address code Mnemo Stack after

73F6 : 18 aload_0 [ref]
73F7 : 7B 20 14 getstatic_a [ref, val]
73FA : 8B 02 08 invokevirtual [val]
73FD : 32 sstore_3 []
73FE : 1A aload_2 [ref]
73FF : 03 sconst_0 [ref, val]
7400 : 1F sload 3 [ref, val, val]
7401 : 8D 09 75 invokestatic [val]
7404 : 60 2B ifeq 0x2B []
7406 : 04 sconst_1 [val]

.
742F : 11 63 01 sspush

7432 : 8D 54 0D invokestatic

7435 : 7A return

Table III: Type evolution of the mutant code

Address code Mnemo Stack after

.
73FF : 03 sconst_0 [ref, val]
7400 : 1F sload_3 [ref, val, val]
7401 : 8D 09 75 invokestatic [val]
7404 : 00 nop [val]
7405 : 2B astore_0 []
7406 : 04 sconst_1 [val]

.
742F : 11 63 01 sspush

7432 : 8D 54 0D invokestatic

7435 : 7A return

original program. A countermeasure based on the stack under

or overflow will never detect the mutant. If a dynamic type

verification had occurred, this mutant code should have been

detected. In the original code the type system should evolve

as describe in table II. After executing the first instruction a

reference is pushed on top of the stack. The second instruction

pushes a value while the third consumes a reference and a

value and pushes a value after execution.

Now examine the state of the stack with the mutant code.

The instruction ifeq of the original code consumes a value

and the sconst_1 pushes a value. In the mutant code, the

ifeq is replaced by a nop which does not modify the state of

the stack. The astore_0 pop a reference from the stack, but

cannot be executed because a value is on top of the stack. It

becomes obvious to see how dynamic type verification should

increase the possibility to detect mutants.

III. THE TYPE CLASSIFICATION

As we have seen, the most obvious countermeasures are

related with under or overflow of the stack but their coverage

is low: a lot of mutants can bypass these controls. The

4

dynamic type verification is probably one of the most efficient

countermeasure against mutant. It has to verify that the content

on top of the stack is of the exact type expected by the next

instruction. To obtain a dynamic type verification, the virtual

machine needs to infer dynamically the type of locals and the

type of each element on the top of the stack. But this is known

to be costly in term of computation and memory space because

the virtual machine must keep the stack evolution in term of

type, which means to have a second stack where the type of the

content of the stack are stored. After executing an instruction,

the virtual machine must evaluate the type stack with regard to

the executed instruction. Such a mechanism is not embedded

into a resource constrained device like a smart card. Hereafter

we propose a simpler mechanism for type classification with

no run time cost and only the cost of one pointer in memory.

A. Principle

The cornerstone of our mechanism is to process references

and values in a different way. If the operand stack is separated

into two zones, one reserved for values and one for references,

then we immediately obtain a dynamic type checking. These

two areas fill the same memory space used by the regular

stack. The changes with our typed stack is just the place

where you will find items.

Here is an example showing how the typed stack works

compared to a regular stack. Just imagine a program which

pushes on the stack one value then two references. To begin

we push a value :

Table IV: Typed stack 1

Normal stack Typed stack

⇓

⇑ ⇑
value value

Then we push the first reference :

Table V: Typed stack 2

Normal stack Typed stack

⇓reference 1

⇑
reference 1

⇑
value value

And the last reference is pushed :

Table VI: Typed stack 3

Normal stack Typed stack

⇓reference 1
reference 2 reference 2

⇑
reference 1

⇑
value value

With the typed stack, there are two zones, one at the

bottom for the values and the other one at the top for the

references. The normal stack has one pointer called top of

stack, but for the typed stack we need two pointers, one

pointing the top of the values and one for the references.

To reuse the example of a mutant application previously

explained in the table III, at the NOP instruction, address

0x7404, the stack has only a value reference. The next

instruction, astore_0, stores the last pushed value in the

local 0. You are two parts. The first one, you have a single-

stack JCVM implementation and, the last pushed value is the

return of the invokestatic instruction (address 0x7401).

This return type is a value.

On a typed stack JCVM implementation, when the

astore_0 is executed, the high part of the Java Card stack

– which contains the pushed reference value – is empty.

On the contrary, the low part contains the return of the

invokestatic instruction. Thus, the JCVM detects an

unexpected behavior. Thus, this countermeasure prevents type

confusion to be exploited as described in [7]. Used with

dual-linked stack, our countermeasure prevents the Java Card

stack from the overflow and underflow, as explained in [8].

But our typed stack mechanism requires that implementa-

tions of instructions in the VM to know which stack operand

to use to get elements. Most of Java instructions are typed,

so you can easily implement these instructions, knowing the

types of elements one instruction will push or pop on the

stack. However, there are some untyped instructions = and

these instructions cause problems for the implementation of

the VM. They cannot differentiate the references or values.

These instructions are:

• pop, pop2,

• dup, dup2, dup_x,

• swap_x.

The question is why these instructions are not typed ?

For instance, for a dup instruction which duplicates the last

element stacked, the VM does not need to know if it duplicates

a value or reference with a simple stack, it must just go for the

element pointed by the top of stack. However, with a typed

stack, the VM must know the type of the last stacked item to

see if it will get the element to duplicate from the top of the

stack of the values or the top of the stack of the references. So,

with the typed stack, the VM can not process these untyped

instructions.

B. Modifying the Virtual Machine

This idea requires a new implementation of the Virtual

Machine to split the Java Card stack in two parts. Currently,

in this new implementation of the Virtual Machine we added

a pointer to manage the values pushed on the stack. With two

pointers, we can push and pop the references in the top of

the stack and the value of the bottom. In order to respect the

backward compatibility of the JCVM, a custom component is

added to indicate if the VM runs the applet in typed stack or

simple-stack mode.

5

Moreover, to correctly run an application, each untyped

instruction must be removed. Indeed, pop instruction, with

dual-stack JCVM implementation, might be non executable.

So, to correctly run your applet on a dual-stack JCVM or if

the applet may run in the JCVM without this countermeasure,

we provide a way to protect your application against external

modification (with a laser beam for example). For that, we

remove each untyped instructions put in the Java Card applet.

1) Program transformation: Untyped instructions are an

issue. Although these instructions are rare in a Java Card

program, we must be able to process these instructions

properly. It requires transformation of the original program

code so that the VM can run the program without errors.

One solution is to replace untyped instructions by one or

more other instructions which lead to the same result. These

replacement instructions would use temporary variables to

properly perform the treatment.

This transformation requires the analysis and the

modification of each methods, one after the other, because

the method stack is local. Before we can replace untyped

instructions we need the stack history. With this information,

we will be able to substitute untyped instructions. For instance

if you want to replace a pop, you have to know the type of

the last element pushed on the stack; so if it is a reference

you just replace the pop by a astore into a local variable

and if it is a value, you replace by a sstore instruction. To

have this information, we analyze the byte code, instruction

after instruction, and as we know exactly for each instruction

what changes are made on the stack, we just perform a stack

simulation.

This byte code analysis is completely linear, i.e it just reads

the instructions one by one. However "jumps" complicate the

analysis. Indeed, the first approach is to go to the location

pointed by a jump instruction and to continue the analysis.

But it is not necessary to analyze twice the same instruction,

and furthermore the analysis can even enter into an infinite

loop. This is why the analyzer stops when it found that an

instruction has already been parsed.

Conditional jumps are another issue. If the condition

is true, then the analysis must continue to the instruction

pointed to by the jump, and if it is false, the analysis must

ignore the jump and continue. So the analysis must explore

two branches and launch two sub-analyzes. Each of these

analyzes must be run with an identical stack, one obtained

just before the conditional jump.

2) CapMap Integration: The CapMap [9] is a Java-

framework which provides an easy way to parse and modify

a CAP file. The CAP file is the file sent to the Java Card as

a lightweight Java Class file.

This Java-library helps us to analyze the execution flow

of the current Java Card applet. For each instruction, you

can measure its impact on the stack (with the knowledge

of the previously pushed type and value) in order to

dynamically modify the CAP file. Then you can also

update each CAP file component to create a well-formed

file. Indeed, this tool is used to test card against logical attack.

In our case, the CapMap parses each CAP file to protect and,

for each applet method, verify if there is untyped operations

on the stack. If there are some instruction blocks with untyped

byte code, the CapMap modify these instructions as described

in the section III-B1. This step is explained in the figure 1.

...Unprotected

CAP Files { CapMap ... Protected

CAP Files}
Figure 1: CapMap integration

IV. EXPERIMENTATION AND RESULTS

A countermeasure is affordable if :

• its latency (the number of instructions executed between

the fault and the detection) is low,

• its mutant detection success ratio is high

• its memory footprint is low.

The above three points are the most important when

designing a countermeasure for a smart card. The last

point can be split into RAM and ROM usage knowing that

the limited resource is the RAM. These metrics requires

the implementation of our methods in our own prototype

while the others metrics can be obtained thought a fault

simulator [10].

Two Java Card applets have been used for the evaluation.

Those two cardlets are representative of the type of code

that a mobile network operator (MNO) may want to add to

their USIM Card. The first (AgentLocalisation) is oriented

geolocalization services, this cardlet is able to detect when

the handset (the device in which the USIM card is inserted)

is entering or leaving a dedicated or a list of geographical

dedicated cells and then sends a notification to a dedicated

service (registered and identified in the cardlet). The second

(SfrOtp) is more specialized to authentication services: the

cardlet is able to provide a One Time Password (OTP) to

the customer and/or an application in the handset. This OTP

value is already shared and synchronized by the cardlet with

a central server, which is able to check every collected OTP

value by dedicated web services. The SfrOtp application has

4568 instructions and the AgentLocalisation 3504 instructions.

The first category of metrics is the memory footprint and

the CPU overhead. They have been obtained by implementing

our proposition using the SimpleRTJ Java virtual machine

that targets highly restricted constraints device like smart

cards. The hardware platform for the evaluation is a board

6

which has similar hardware as the standard smart cards. These

metrics are very important for the industry because the size

of the used memories directly impacts the production cost

of the card. In fact, applications are stored in the EEPROM

that is the most expensive component of the card. The CPU

overhead is also important because most of the time, when

challenging the card for some computation a quick answer is

needed.

To replace an untyped instruction, the program transformer

creates local variables which allow to push or pop elements on

the stack, and it inserts new instructions to simulate the same

effect than the untyped instruction. The metrics give us the

occurrences of these instructions: pop (2%), dup (3%), dup2

(<1%), and the others are extremely rare. As occurrences of

these instructions are low in a Java Card application, there

are not many changes to do. In order to remove one of these

three instructions it does not cost much, to replace a pop, we

just need a new local variable; to replace a dup, we need to

insert an instruction and a new local variable; and for a dup2

instruction we insert three instructions and two variables.

Moreover we could optimize local variables, taking those that

are not used.

The metric related to detection coverage and latency on

the applications show that 95% of the mutants have been

detected on the SfrOtp application while on AgentLocalisation

the detection rate is 99%. On the first one the latency is

around 3.5 instruction while in the second the latency reaches

12 instructions. Previous studies have shown that basic block

countermeasure had a latency between 12 and 13 which is

very close.

V. CONCLUSIONS

In this paper, we presented a new approach to improve resis-

tance of Java Card virtual machine. It is affordable for the card

and is fully backward compatible with the available platforms.

This could provide a competitive advantage to a platform that

implements this countermeasure. An application executed on

a regular platform will be more prone to fault attack than if

the platform embeds this countermeasure. We have seen that

the cost in term of memory footprint was negligible while its

detection capacity was important. Furthermore, the approach

do not have any impact on the applicative development and

the application transformer does not significantly increase the

size of the application.

REFERENCES

[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, D. Ltd,
and I. Rehovot, “The sorcerer’s apprentice guide to fault attacks,”
Proceedings of the IEEE, vol. 94, no. 2, pp. 370–382, 2006.

[2] J. Blomer, M. Otto, and J. Seifert, “A new CRT-RSA algorithm secure
against Bellcore attacks,” in Proceedings of the 10th ACM conference on

Computer and communications security. ACM New York, NY, USA,
2003, pp. 311–320.

[3] D. Wagner, “Cryptanalysis of a provably secure crt-rsa algorithm,” in
Proceedings of the 11th ACM conference on Computer and communi-

cations security. ACM New York, NY, USA, 2004, pp. 92–97.
[4] S. Skorobogatov and R. Anderson, “Optical fault induction attacks,”

Lecture notes in computer science, pp. 2–12, 2003.

[5] K. Gadella, “Fault Attacks on Java Card (Masters Thesis),” Master
Thesis, Universidade de Eindhoven, 2005.

[6] A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, “Automatic detection of
fault attack and countermeasures,” in Proceedings of the 4th Workshop

on Embedded Systems Security. ACM, 2009, pp. 1–7.
[7] J. Iguchi-Cartigny and J. Lanet, “Developing a trojan applet in a smart

card,” Journal in Computer Virology, vol. 6 Issue 4, pp. 343–351, 2010.
[8] G. Bouffard, J. Cartigny, and J.-L. Lanet, “Combined Software and

Hardware Attacks on the Java Card Control Flow,” in Cardis 2011.
Springer, 2011, pp. 309–318.

[9] Smart Secure Devices (SSD) Team – XLIM, Université de Limoges,
“The CAP file manipulator,” http://secinfo.msi.unilim.fr/.

[10] J.-B. Machemie, C. Mazin, J.-L. Lanet, and J. Iguchi-Cartigny,
“SmartCM A Smart Card Fault Injection Simulator,” IEEE International

Workshop on Information Forensics and Security (WIFS 2011), Novem-
ber, 29th to December, 2nd 2011.

