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Abstract—Recently, several Fault Attacks (FAs) which target
modern Central Processing Units (CPUs) have emerged. These
attacks are studied from a practical point of view and, due
to the modern CPUs complexity, the underlying fault effect is
usually unknown. Only few works try to characterize them at
the Instruction Set Architecture (ISA) level.

In this article, we apply a state-of-the-art faults model charac-
terization approach on modern CPU to evaluate the fault model
on two different CPUs from different architectures with the same
injection mediums. We target the CPU of the Raspberry Pi 3
(ARM) and an Intel Core i3 (x86) and perturbing them with
ElectroMagnetic Fault Injection (EMFI). From the ISA point of
view, we disclose a similar fault model on each component. Addi-
tionally, we evaluate a widely used complex software, OpenSSL,
against this fault model.

Index Terms—Complex CPU; Fault injection attacks; Code
analysis

I. INTRODUCTION

Nowadays, modern System on Chips (SoCs) [10] are used
for sensitive operations such as payment, identification, com-
munication, etc as they power mobile devices, for instance,
smartphones.

This situation raises some questions about their security,
in particular their physical security. Indeed, as they provide
an important computational power, they usually embed strong
software security mechanisms like the Trusted Execution En-
vironments (TEEs).

The drawback of this computational power is a complex
hardware layout which is, for now, lacking security analysis, in
particular, regarding hardware attacks. However, some recent
works have demonstrated that these attacks are efficient to
lower the security of modern SoCs [5], [11], [12], [13].
Therefore, we believe it is important to understand the un-
derlying effect induced by the proposed perturbations to be
able to measure their impact and design adapted counter-
measures. The used injection mediums were the laser [13],
the Rowhammer attack [12] and the ElectroMagnetic Fault
Injection (EMFI) [11].

As the Rowhammer fault model is well known (bit flips in
the memory) and the laser induces important constraints on the
chip access (involving chemistry for removing the package for
instance), we decided to focus on the EMFI as it provides an
interesting source of perturbation with a minimum effort on
chip preparation which is interesting regarding modern SoCs.

Therefore, we realized the characterization of the effects of
EMFIs on two modern processors, a BCM2837 and an Intel
Core i3-6100T. These targets are representative of the chips
commonly powering smartphones and computers which are the
most used devices. By using the same characterization method
on both targets, we are able to determine the fault model on
each one and compare the results. For instance, despite the fact
that the considered targets have different architectures (ARM
and x86), we observe a similar fault model on both of them.

A. Related works

Fault characterization on modern SoCs is very nascent and
all the works about this topic focus on the SoC Central
Processing Unit (CPU) as it is the heart of the component.
The first characterization work [8] proposed some test codes
for determining the effect of an EMFI on a Cortex-A based
CPU. The method presented in this work was formalized
and extended in [10] and applied on a BCM2837. This
paper introduces the characterization method we use in our
work. Additionally, to these works, which mainly focus on
a characterization at the Instruction Set Architecture (ISA)
level, a characterization of the micro-architectural behaviour
of a BCM2837 against EMFI has been done in [11] with an
exploitation on the AES algorithm using a Persistent Fault
Analysis (PFA). In this work, the authors target only one ar-
chitecture. In this article, we target two different architectures.

B. Contribution

In this article, we use the characterization method intro-
duced by Trouchkine et al.’s [10] to determine how different
architecture components are perturbed with the same fault
injection medium. Their methodology is based on simple and
small fragments of code to characterize the fault effects at
the ISA level. These codes aim at moving out the software
complexity. They also aim at studying the fault model closer
to the ISA.

Using their methodology, we propose a study on two
modern CPUs against EMFI. Our targets are the BCM2837
(ARM) powering the Raspberry Pi 3 boards and an Intel Core
i3-6100T CPU (x86) powering a modified motherboard.

Based on the same approach, we compare the fault model
obtained on different component architectures through EMFI



medium. We disclose the same fault model. To confirm
our hypothesis, we scale the observed fault model on
some complex security software to analyse it. We focus on
an application usually embedded on evaluated CPUs: the
OpenSSL crypto-library.

This article is organized as follows. Section II introduces
our EMFI setup and the evaluated components. In section III,
we characterize the fault model on CPUs embedded in the
Raspberry Pi 3’s SoC and the Intel Core i3 CPU. Based
on the obtained fault model, we target the OpenSSL AES
implementation in section IV. Section V discusses how to
secure complex CPU. Section VI concludes and opens on
future works.

II. EXPERIMENTAL PROCESS METHODOLOGY

We use EMFIs to perturb our targets. We characterize the
perturbation effects at the ISA level with the characterization
approach introduced in [10]. This method imposes some
conditions on both the initial values and the tested code.

On the one hand, the initial values are chosen to match
the following condition: if we observe a faulted value, and
this value is the simple operation between two initial register
values, we want to be able to determine the involved initial
values and the logical or arithmetical operation without any
ambiguity. On the other hand, the tested code must be a
data processing instruction which does not change the register
values. These conditions are met for all our test code and initial
value sets.

A. Devices Under Test

We target different CPUs embedded in modern SoCs. The
Devices Under Test (DUT) are:

• the ARM BCM2837 embedded in the Raspberry Pi 3
board within 64-bit 4 cores running at 1.2GHz and
512 kB cache memory. The CPU lithography is 28 nm;

• and the x86 Intel Core i3-6100T CPU: a 64-bit 2 cores
CPU running at 3.2GHz and embedding 3MB cache
memory. Instead of the previous ARM processor, its
lithography is 14 nm. This CPU is put on a modified
motherboard to have a trigger and a path to the CPU.

On each target, a Linux Debian 10 distribution runs test
codes. Those codes are faulted during their execution using
an EMFI.

B. BCM2837 setup

The BCM2837 was characterized by the following param-
eters:

a) Test codes: Two codes are used for the characteri-
zation. One composed of the repetition of the and r8,r8

instruction and the other one composed of orr r5,r5

instructions.

b) Registers initial values: The initial values were ini-
tialized differently regarding the tested program. For the and
r8, r8 test program, we generated initial register values
to match the constraints defined by the fault model charac-
terization approach [10]. For the orr r5,r5 test program,
we randomly generated initial register values as this is a
suitable method to fulfil the constraints on the initial values.
The drawback is that randomly generated values are less
identifiable for a human. The values we used are presented
in table I.

Register and r8,r8 orr r5,r5

r0 0xfffe0001 0xc3d0c220

r1 0xfffd0002 0x72b8ccd6

r2 0xfffb0004 0xf25f29b9

r3 0xfff70008 0x22c7271d

r4 0xffef0010 0xd3f8f3b1

r5 0xffdf0020 0x3ba81d04

r6 0xffbf0040 0x7c22b133

r7 0xff7f0080 0xcc302f01

r8 0xfeff0100 0xafa42878

r9 0xfdff0200 0xdd4c70ca

Table I: BCM2837 registers initial values.

C. Intel Core i3-6100T setup

The Intel Core i3-6100T was characterized by the following
parameters.

a) Test codes: The two used test codes are the repetition
of the mov rbx,rbx instruction and the repetition of the or
rbx,rbx instruction.

b) Registers initial values: In both experiments, we used
initial register values presented in table II.

Register Initial value
rax 0x8000000000000001

rbx 0x4000000000000002

rcx 0x2000000000000004

rdx 0x1000000000000008

rsi 0x0800000000000010

rdi 0x0400000000000020

r8 0x0200000000000040

r9 0x0100000000000080

r10 0x0080000000000100

r11 0x0040000000000200

r12 0x0020000000000400

r13 0x0010000000000800

r14 0x0008000000001000

r15 0x0004000000002000

Table II: Intel Core i3-6100T registers initial values.

D. EMFI setup

EMFI is a very common approach where the target prepara-
tion is not required. Our bench is composed of a high-voltage
pulse generator (800V/16A) with a rising time of 6 ns and
20 ns pulse width, a homemade probe which is an 8-round
copper wire around a 2mm diameter ferrite, an Arduino based
reset system (also called defibrillator) and a motorized two-
axis table.

The injection parameters determination is a mandatory step
which consists in finding the spatial location and the input
voltage which maximizes the probability of obtaining a fault.



Determining the best spatial location for obtaining faults,
i.e. the probe position over the chip, we divided the chip in a
40 × 40 grid and tested every position. In the end, we have
six tests per position which leads to 9600 tests; corresponding
to almost three days of experiments. We consider a fault when
the executed program is terminating without errors; the board
is still running but one or more of the observed registers have
an unexpected value.

Another parameter we can tune is the input voltage in the
probe, i.e. the amplitude of the pulse. We tested every voltage
from 400V to 800V with a step of 10V but no specific impact
of the input voltage on the fault probability or the fault/crash
ratio was observed.

On the one hand, for ARM BCM2837 experiments, we
decide to keep sweeping the voltage input between 400V and
600V.

On the other hand, as the x86 Intel Core i3-6100T is
less sensitive than the BCM2837, we had to power up the
input voltage. By sweeping between 600V to 800V, the best
fault/reboot ratios are obtained around 600V. Therefore, we
kept that input voltage value during the experiments.

E. Fault model characterization

To characterize the fault model, we perform a complete
analysis of the observed faulted values. Based on the values
stored in registers before and after the fault, we are able to
determine a fault model describing the fault. We have the
following determined fault models.

• Bit reset corresponds to a faulted value set to 0;
• Other observed registers value means the faulted value is

a copy of another register value;
• And with other observed registers means the faulted value

comes from the logical and between the initial values of
the faulted register and another one;

• Or with other observed registers means the faulted value
comes from the logical or between the initial values the
faulted register and another one;

• Other observed registers value after execution is the same
as in Other observed registers value but where a register
has been overwritten1 during the execution of the program
then copied in the faulted register

• Or with two other observed registers means the faulted
value comes from the logical or between the initial
values of two registers that are not the faulted register

III. FAULT MODEL CHARACTERIZATION APPLIED ON DUT

In this section, we apply the fault model characterization
approach on ARM BCM2837 and x86 Intel i3-6100T. The
experiment results2 and the tool3 used to analyse them are
available on GitHub.

1Overwritten means that the program, or the kernel, writes a value into that
register independently of the presence of a perturbation. This is observed on
the Intel Core i3. The consequence is that some registers initial values are
never kept unchanged during the program execution for unknown reason.

2https://github.com/ANSSI-FR/Faults_experiments
3https://github.com/ANSSI-FR/Faults_analyzer

A. ARM BCM2837

1) Faults localization: Figure 1 shows the different lo-
cations where a fault was obtained. The X-axis and Y-axis
represent the position of the probe in mm. Each dot represents
a probe position where at least one fault was obtained.
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Figure 1: Probe positions over the BCM2837 leading to faults.

From this map, we have to choose a position we consider
interesting regarding the obtained faults. We decide to focus at
a position where the number of faults is significant. Therefore,
to characterize the fault model, we put the probe at X =
12.5mm and Y = 7.1mm which is a position which lot of
faults.

2) Fault characterization: One observation from these ex-
periments is that the fault is dependent on the executed
instructions. The experiments with an orr are faulted with
a probability around 3% while the experiments with an and

are faulted with a probability around 1%.
Another observation is about the register manipulated by

the instruction: it is the most faulted one. In the experiments
with the orr r5,r5 instruction, the r5 is faulted in around
87.5% of the cases. In the case of the and r8,r8 instruc-
tion, the r8 register is faulted in around 65.5% of the cases.

Moreover, in any experiments, the r0 register is always
significantly faulted with a probability between 10% and 25%
of the cases.

Other registers might be faulted but with a probability
always lower than 2%.

3) Fault model: Figure 2 describes the identified fault
model.

Some faulted values correspond to a undetermined fault
model. This happens for around 20% of the observed faulted
values. They generally correspond to system values, data-
dependent values or come from complicated fault models.

By analysing the fault effects, two kinds of corruption are
disclosed, either on the registers or on the instructions.

a) Register corruption: One observed fault is a register
corruption. This corruption is a complete reset of the faulted
register. This happens only during the and r8,r8 experi-
ment with a relatively low (3.27%) probability.

b) Instruction corruption: The other observed fault is
an instruction corruption. Regarding figure 2, the main fault
model for the orr r5,r5 instruction is the Or with other

observed registers. This fault model corresponds to modifying

https://github.com/ANSSI-FR/Faults_experiments
https://github.com/ANSSI-FR/Faults_analyzer
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Figure 2: Fault models distribution and their probability of
occurrence on the BCM2837 perturbed with EMFI.

the operands of the instruction. The faulted instruction is orr
r5,r1 in 92.54% of the cases, orr r5,r0 in 6.14% of the
cases and orr r5,r7 in 1.32% of the cases. The Or with

two other observed registers fault model is similar to this one
as, in this case, the two operands are modified. The observed
faulted instructions are orr r5, r0, r1 and orr r5,

r4, r1.
Considering the and r8, r8 instruction, the most proba-

ble fault model is the And with other observed registers which
also corresponds to modify the operands of the instruction.
In this case, the faulted instruction always moves to and

r8,r0.
For both experiments, the Other observed registers value

corresponds to a modification of both the operands and the
instruction opcode, mutating it into a mov instruction.

Another corruption was observed and is more complicated.
In some cases, the faulted value is computed from the executed
instruction such as in equation 1.

vf = (i rotl 8) ∧ 0xfff (1)

where vf is the faulted value, i the executed instruction
machine code, and rotl is a bit rotation to the left operation.

This fault model is complicated and may be explained by
the “rolling” feature of the ARM instruction set architecture.
Indeed, some bits of the instruction can be used to specify
a shift to apply to the manipulated value. However, as this
is a complicated fault model, we did not investigate further.
It appears in between 20% and 35% of the cases for each
experiment. In our analysis, this fault model is classified as
Other observed registers value after execution.

Regarding these experiments, we conclude that our fault,
often, corrupts the operands of the executed instruction.

c) Number of faulted instructions: When working with
modern CPUs with high frequencies (> 1GHz), one im-
portant fault parameter is the spreading. We determined the

fault affects instructions but we cannot determine how many
instructions are actually faulted.

Regarding the BCM2837 CPU frequency (1.2GHz) and
the injector rising edge frequency (500MHz), we can assume
that a fault perturbs around 3 instructions. To confirm this
hypothesis, we fault a test program composed of the repetition
of the mov rX,rX with X ∈ [[0, 9]] and the first initial values
in the registers. We observed that in 84.34% of the cases,
the fault corrupts the instruction which becomes mov rX,rY

with (X,Y ) ∈ [[0, 9]]2.
By faulting such a program, on average the fault affects

1.45 instructions. Since this result is different from the
expected one, one explanation is that the CPU does not
always run at maximum speed. Regarding this result, can
focus our software analysis on the corruption of one or two
instructions.

In conclusion, regarding the characterization of the
BCM2837 CPU, one may consider different fault models
for software analysis. The register corruption, which depends
on the executed instructions but can be considered as a
random corruption and the instruction corruption affecting the
operands or the opcode. The fault can also be considered as
affecting only one or two instructions.

B. x86 Intel Core i3-6100T (EMFI)

This section presents the EMFI perturbation effects charac-
terization on an x86 CPU. The target is an Intel Core i3-6100T
SoC.

1) Faults localization: The same method as for the ARM
CPUs is also used but with a 40× 20 grid resolution.

The Intel Core i3-6100T appeared to be slightly more
difficult to perturb than the BCM2837, although it packaging
has been opened. The reason behind this observation remains
unknown. However, we were able to identify sensitive loca-
tions on the die. They correspond to positions where the fault
forced the system in a state where we had to reboot it. By
focusing on these areas, we were able to obtain exploitable
faults. Figure 3 presents the obtained results.
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Figure 3: Probe positions over the Intel Core i3 where the
system is sensitive to fault.

Figure 3 shows that two, almost symmetrically similar, areas
are sensitive to faults. Our first hypothesis is that these areas



match with the cores as the Intel Core i3-6100T is a dual-core
CPU device. For any other experiment on this target, we put
the probe at the position X = 8.5mm and Y = 13.8mm.

2) Fault model characterization:

a) Fault probability: On Intel Core i3, the fault probabil-
ity slightly varies between 0.046% and 1.2%. This variation
is mainly due to the probe position over the die.

b) Targeted registers: An interesting result is that the
faulted register is always the manipulated one. In other words,
as our test program are either composed of or rbx, rbx

or mov rbx, rbx instructions, the observed faulted register
is always rbx.

This is similar to the observation made on the Raspberry
Pi 3 CPUs where the most faulted register was also the one
manipulated by the instruction. This suggests that the fault on
each target is similar.

c) Fault models: Regarding the fault models, they are
less diversified on the Intel Core i3 CPU than on the Rasp-
berry’s. Figure 4 is presenting the observed fault models on
the Intel Core i3.
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Figure 4: Fault models distribution and their probability of
occurrence on the Intel Core i3-6100T perturbed with EMFI.

d) Register corruption: During this characterization, reg-
ister corruption is observed. However, the corruption is really
simple and consists in forcing the faulted register to specific
values. Only two different values were observed. The bit reset

value which appears in around 13% of the cases and the
register value set to 2 appears in around 9% of the cases.

e) Instruction corruption: Regarding instruction corrup-
tion, we observe that the fault is strongly linked with the
executed instruction. In some cases, with the or rbx, rbx

test code, the opcode is corrupted and forced to and. However
in most of the cases, only the operand is corrupted which is
very similar to our observations on the Raspberry Pi 3 CPU
and therefore suggests that all targets suffer similar faults.

Another interesting observation is that the faulted second
operand is only among two registers. In 78% of the second
operand corruption, the instruction comes from or rbx,

rbx to or rbx, rax. In 22% of the cases, it becomes or
rbx, rcx. Regarding the mov rbx, rbx test code, the

corrupted instruction is always mov rbx, rax.

This fault model is very similar to the observed fault model
on the Raspberry Pi 3 CPU. This strongly suggests that despite
the fact the architectures and the technologies of these devices
are different, the faults perturb them in a similar way. We can
therefore extrapolate by considering that the faults perturb a
component these devices have in common.

C. Conclusion on EMFI characterization

In this section, we characterized faults on commonly used
modern SoCs, the BCM2837 and the Intel Core i3-6100T. We
used the same injection mediums on both targets: the EMFI.

By applying the same characterization approach for each de-
vice, we observed similar perturbations on every target despite
different embedded technologies and different architectures.

This conclusion is very interesting because we consider that
the fault model we observed is an inter-platform fault model.
Therefore, software analysis done with this fault model is
relevant for different devices. Moreover, any countermeasure
protecting a device against this fault model will be efficient
regardless the device it is implemented on.

IV. EXPLOITABILITY OF THE OBTAINED FAULT MODEL

Since the fault model on components is characterized, this
section aims at evaluating the security of a widely used
Linux program. The evaluation approach of such programs
is very different from the one used on secure components
software. Indeed, as they execute on a modern CPU, their
execution is not sequential but parallel due to the presence
of CPU optimizations; as out-of-order execution and branch
prediction. These make the synchronization of the perturbation
at a particular moment of the program execution tricky.

Moreover, complex programs rely on mechanisms provided
by the kernel like the shared libraries. These libraries are
either included in the executable (static linking), loaded at
the program startup (dynamic linking) or loaded during the
program execution (module loading). Therefore, as a complex
program is composed of an executable and several libraries
it relies on, its attack surface is important but it is also
more complex to analyse. In particular, due to a lot of
runtime mechanisms, a static analysis of such program may be
superficial compared with what actually happens at runtime,
in particular considering faults.

Because the security of such programs against fault attacks
is a novel topic, there are no fault security analysis method,
no fault analysis tools and only few works that target such
systems.

This section presents the first steps of such security evalua-
tion. We target OpenSSL application. Therefore, we focus on
the OpenSSL library which links at the program startup the
required dependencies. We use a Differential Fault Analysis
(DFA) where we successfully target the ninth round of an
AES-128.



A. Differential Fault Analysis on AES

This section aims at demonstrating that the performed
characterizations are relevant by recovering an AES key using
a DFA [6], [7]. In particular, being able to target a byte in
a specific round of the AES will confirm that the spreading
of our fault is reasonable. Also, this will give us information
about our synchronization capacity. This experiment targets
the AES implementation provided by OpenSSL library pack-
aged in Debian 10 distribution. This experimentation was both
done on the BCM2837 and Intel i3-6100T CPUs. On each of
them, we obtain similar result.

1) Background: The DFA is a cryptanalysis method which
relies on the appearance of errors during a cryptographic
calculus to extract information about the manipulated secret.
The proposed method was introduced in [7] and extended in
[6].

The principle of the attack is to perform a fault on a byte
of the AES state before the last MixColumns operation, in
the 9th round as presented in figure 5.

SR MC ⊕ SB SR ⊕ c (c’)

k9 k10

fault ∆

Figure 5: DFA Principle

Once the faulty ciphertext c’ is obtained, we compute the
value ∆ such as presented in equation 2.

∆ = SB−1(SR−1(c⊕ k10))⊕ SB−1(SR−1(c′ ⊕ k10)) (2)

Faulting one byte of the AES state before the last
MixColumns implies that the faulted output of the
MixColumns (∆) has only 256 possible values. In equa-
tion 2, as the possible values for ∆ are known, the only
unknown value is k10 and at this point ∆ has only four bytes
(among sixteen) that are not zeros. The next step consists in
testing all the values for these four bytes in k10 (232 values
in total) such as the corresponding ∆ is among the possible
values.

Given a faulty ciphertext c′ this computation will produce a
set of possible values for the k10 bytes. The correct k10 value
is the one that verifies equation 2 for every faulted ciphertexts.
In [6], the authors demonstrate that the probability to recover
the correct key with two faulty ciphertexts is around 98%,
which match with our observations.

Repeating these steps 4 times allows to recover the 16 bytes
of the key with only 8 faulty ciphertexts.

2) OpenSSL AES implementation: OpenSSL is an open
source general-purpose cryptography library. It is used in vari-
ous programs needing cryptographic mechanisms such as web
navigators, mail boxes, videoconferences, user authentication,
etc.

For the setup, our test program calls the AES_encrypt()
function from the OpenSSL library to encrypt data. To execute
the AES encryption, our program has dependencies to the
libssl.so and libcrypto.so shared libraries. They are
statically loaded at the startup by the linker. There is no shared
library loaded at runtime. Therefore, perturbing the program
during its execution will not affect the dynamic linker.

a) Source code location: The OpenSSL source
code is available on the official OpenSSL website4.
We focus on the AES_encrypt() function available
in the crypto/aes/aes_core.c file. Some
implementations specific to the architecture are provided, for
instance, on the Raspberry Pi 3, the executed function
is the _armv4_AES_encrypt() function in the
crypto/aes/asm/aes-armv4.pl file. However, our
analysis on the assembly code will not come from this file
but directly from the disassembly of the program. The reason
is that the ARMv4 specific implementation is embedded in a
Perl script which performs several optimizations. Therefore,
disassembling the binary gives the closest-to-reality assembly
code.

3) Static code analysis: Before evaluating the AES imple-
mentation, a static analysis of the source code and binary is
performed to determine whether the determined fault model
reveals exploitable vulnerabilities.

a) AES round optimization: The AES_encrypt()

function is optimized in time. This optimization is obtained
by using pre-computed tables for every SubBytes and
MixColumns operation. Listing 1 presents a part of these
tables.

Listing 1: OpenSSL AES pre-computed tables (partial)
s t a t i c c o n s t u32 Te0[256] = {

0xc66363a5U, 0xf87c7c84U, 0xee777799U,

0xf67b7b8dU, 0xfff2f20dU, 0xd66b6bbdU,

0xde6f6fb1U, 0x91c5c554U, 0x60303050U,

0x02010103U, 0xce6767a9U, 0x562b2b7dU,

// ...

}

The Te0 table corresponds to the operation presented in
equation 3 with S the SubBytes operation.

Te0[x] = S(x) · [2, 1, 1, 3] (3)

This operation performs the computation of the first column
of the next AES state. Corresponding tables Te1, Te2, Te3
are also pre-computed for the other columns. In the end,
the outputs of these tables are recombined to obtain the
current round AES state. Listing 2 presents how the states
are recombined.

Listing 2: OpenSSL AES round computation
t0 = Te0[(s0 >> 24)] ^ Te1[(s1 >> 16) & 0xff]

^ Te2[(s2 >> 8)& 0xff] ^ Te3[s3 & 0xff] ^ rk[4];

t1 = Te0[(s1 >> 24)] ^ Te1[(s2 >> 16) & 0xff]

^ Te2[(s3 >> 8)& 0xff] ^ Te3[s0 & 0xff] ^ rk[5];

t2 = Te0[(s2 >> 24)] ^ Te1[(s3 >> 16) & 0xff]

4https://www.openssl.org/source/gitrepo.html

https://www.openssl.org/source/gitrepo.html


^ Te2[(s0 >> 8)& 0xff] ^ Te3[s1 & 0xff] ^ rk[6];

t3 = Te0[(s3 >> 24)] ^ Te1[(s0 >> 16) & 0xff]

^ Te2[(s1 >> 8)& 0xff] ^ Te3[s2 & 0xff] ^ rk[7];

The states recombination only consists in XORing the output
of the tables between them. The table access is done by
switching and masking the current state (s0, s1, s2, s3).
The full computation consists in a loop repeating this operation
alternating between the tX and the sX states as input/output
of the tables.

b) OpenSSL AES vulnerability analysis: Regarding the
source code of an AES round presented in listing 2, one can
see that the only operations involved are the logical right shift,
the logical AND, the logical XOR and a memory access to
the tables. As a consequence, the computed code for a round
will only use ldr, and, eor and lsr instructions. This is
confirmed by the disassembled code of the AES_encrypt()
function.

These instructions are very similar to the instructions used
for characterizing the fault model on our targets. Therefore, we
have a high probability of modifying the second operand of
these instructions, as this is our main fault model on targeted
DUT.

Also, for the DFA, we want to fault only one byte in the
AES state before the last MixColumns. As many instructions
manipulate 32 bits wide register, faulting the second operand
will mainly fault 4 bytes. If the 4 bytes are in different
columns, the obtained cipher is still usable for a DFA and
even leak information on 4 bytes of the key. However, as
presented earlier, the operations are done column by column
and therefore, faulting a register will mainly modify the
entire column making the faulted cipher not exploitable. This
excludes any fault on the ldr, eor and lsr instructions.

However, there are the and instructions that remain and
apply a byte wide mask on the register. Faulting the second
operand of these instructions (i.e. the used mask) will result
in applying a byte wide fault on the result. This corresponds
to the fault required for the DFA.

The and instructions represent 23% of the instructions
composing an AES round. As presented on the BCM2837 in
section III, we have a 1% fault probability on and instruc-
tions. Therefore, by extrapolating, the probability to obtain a
usable ciphertext for a DFA is around 0.23% per injection.
In other words, around 400 fault injections are needed before
obtaining a usable ciphertext. As 8 ciphertexts are needed for
a complete DFA, around 3 200 injections are needed to obtain
all the ciphertexts needed for the DFA.

In practice, the instruction does not have the same execution
time, in particular the memory access instructions (ldr) are,
in general, slower than the data processing instructions (and,
eor and lsr). However, estimating the execution time is
a tricky job as, due to CPU optimizations [3], [4] (cache,
fill buffers, etc), this time is quite variable. However, these
optimizations aim at making a memory access as fast as a
data processing instruction, making our hypothesis relevant.

4) The AES test program setup: For this experiment, the
DUT executes the AES from the OpenSSL library as a test

program. The program inputs are the key and the message to
cipher and set to the following values:
k = 0x000102030405060708090a0b0c0d0e0f

m = 0x00112233445566778899aabbccddeeff

As the DFA does not require different plaintexts, these
values are hardcoded in the test program. Our goal is to recover
the value of k.

5) Exploitability: The fault campaign made on BCM2837
(ARM) consisted in 3 000 injections (around 3 200 are sup-
posed to be needed for a complete DFA) and around an hour
was needed to achieve them. Among these injections we ob-
tained a fault percentage of 15.54% (466 faults). Among these
466 faults, only 16 have one diagonal faulted (4.348%) and
considering these faulted ciphertexts, only 8 (50%) correspond
to a one byte fault before the MixColumns operation. Also,
faults appear with the same probability on every diagonal.

In the end, the probability to obtain a suitable faulted
ciphertext for the DFA is 0.34% which corresponds to 1
ciphertext every 294 injections. This is a bit better than the
rate extrapolated from the analysis in Section IV-A3b (0.23%).
This difference might come from the hypothesis we made that
any fault on instructions other than and instruction will not
give any interesting faulted ciphertext. Indeed, it is possible,
even by faulting a 4 bytes register that the fault corresponds
to a 1 byte fault. The reason is that 1 byte faults are a sub-part
of 4 bytes faults.

Considering the global injection sequence needs 2 seconds,
we obtain a usable ciphertext every 10 minutes. As 8 cipher-
texts are needed for realizing the complete DFA and because
every diagonal has the same probability to be faulted, 3 hours
of injection are enough to obtain the needed ciphertexts.

6) DFA implementation: We implemented the DFA algo-
rithm in C-language. From 2 faulted ciphertexts with the
same faulted diagonal, our program is able to recover the 4
corresponding bytes of the key in an hour on average. The
computer used for this computation is powered by an Intel®
Core™ i7-8550U CPU clocked at 1.80GHz with 16GB of
memory.

As our implementation works per diagonals, it is possible
to run four instances of the program and therefore perform the
cryptanalysis on the four diagonals in parallel.

Finally, once the faulted ciphertexts are obtained, only 1
hour is needed to recover the key. Adding the time needed
to obtain these faulted ciphertexts, the complete cryptanalysis
can be achieved in less than 4 hours where the whole secret
key is obtained.

This timing considers that the hot spots determination
and the fault characterization are already made. These steps
require a week of work but the results are reusable on every
target powered by the characterized device.

In this section, we demonstrated that EMFI are a viable way
to perturb a cryptographic algorithm executed on a modern
CPU. The optimized implementation helped a lot during the
analysis as only four instructions are used in the program.
Also, the multi-core architecture of the CPU did not impact the



fault probability. It was even greater than the fault probability
we theoretically calculated from our characterization and code
analysis confirming that we are able to accurately target the 9th

AES round. This attack was made both on ARM BCM2837
and Intel Core i3-6100T CPUs.

V. COUNTERMEASURES

This article demonstrates that modern CPUs are very sensi-
tive to Fault Attacks (FAs) and more especially their caches.
However, cache memories are a critical element for CPUs
performance. As a consequence, disabling this feature for
security reasons is usually not worth the effort. Moreover,
many other CPU modules may be faulted.

Also, modern SoCs surface is bigger than the Micro-
Controller Units (MCUs) because more complex modules
are embedded in them. Therefore, evaluating the security of
complete SoC is a very time consuming process.

Regarding these constraints, the most natural countermea-
sure is to delegate the sensitive operations to a dedicated
component, a Secure Element (SE). A SE is designed to
be tamper-resistant against hardware and software attacks.
This solution currently provides the best performance/security
trade-off. Instead of modern SoC, SE is a small chip closer
than a MCU with few hardware modules.

However, a major issue remains about the implementation
and security evaluation of such component. Nowadays, two
main solutions are explored by manufacturers.

A. Standalone secure modules

The first strategy consists in embedding the SE as a sepa-
rated component on the device board, this solution is chosen in
Google’s Pixel 3 smartphones [1] for instance. This is currently
the safest solution: several SEs have been evaluated under
Common Criteria scheme. However, as the SE runs slower
than the CPUs embedded in complex SoC. This approach
slows down the system when a sensitive operation is executed.

B. Secure module integrated in a SoC

The second strategy is about embedding a SE in the
complex SoC. This approach, named Smart Secure Platform
(SSP), provides better speed performance than a standalone
component. However, due to its youth, securing such im-
plementation remains an open problem. Public and private
certification bodies [2], helped by companies, are currently
designing an evaluation scheme to check the security of a
SSP. The component integration makes some invasive attacks
(bus spying, component spoofing) more complicated but some
warnings have to be taken to avoid a new kind of attack
specific to highly integrated devices like ClkScrew [9] or
integrated modules spying [14].

VI. CONCLUSION AND FUTURE WORKS

In this article, we compare the effects of EMFI medium on
two components from different architectures (ARM and x86)
and obtain the same fault model. Based on this fault model,
we succeed in attacking AES implementation provided by

OpenSSL library embedded in every target.

This works is a first step to compare fault medium injection
on different architectures. Several next steps open to us.

On the one hand, it should be interesting to compare
different medium injection on the same component. Will we
get the same fault model?

On the other hand, we find the same fault model on different
component architectures. Therefore, we need to investigate
more deeply on which Micro-Architectural Block (MAB)
is disturbed on the different targets. Working on an open
component will help us to characterize the component logical
behaviour and design efficient countermeasures.
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