PHI ATTACK

REWRITING THE JAVA CARD CLASS HIERARCHY

Jean DUBREUIL Guillaume Bouffard
j.dubreuil@serma.com guillaume.bouffard@ssi.gouv.fr

SERMA

SAFETY & SECURITY

AGENDA

Java Card Platform

» Java Card Security Model
» Loading process description

PhiAttack

» Fooling the loading mecanism
» Exploitation
» How to prevent from such an attack ?

JAVA CARD SMART CARD

Java VM embedded on secure component (constrained device)

B i Applet 1 I Applet 2 I Applet Manager
» Specified by Oracle | &
» Applications segregated by firewall | Java Card standard | G'°bafl_"fl'tf°rm Java Card
» Latest products embedd version 3.0.5 API & vendors’ APIs ST
i . : Enviromnent
» Loading specified by GlobalPlatform l (JCRE)
i Java Card Virtual Native API
! Machine (JCVM) ative
Card Operating System I

Hardware layout: CPU + Memories + 1/0 I

| APPLET LOADING

» Issuer (ISD / Authorized Management) -> Trusted

» Verification Authority (VASD / Mandated DAP) -> Trusted

i Verification performed based on product security guidance (BCV, etc.)

» Application developer
: When trusted -> everything is fine
: When not trusted -> only VA prevents malicious code loading

L oad CAP |

A

~

Check

N

a

Pckg App
CAP /| EXP

PHI ATTACK — BIBLIOGRAPHY (1/2)

Malicious Code on Java Card Smartcards — Mostowski and Poll — 2008

» Abuse Shareable interface using modified EXP file
i server.cap, server.exp
i client.cap -> compiled with modified_server.exp
i Allows type confusions

» Verification Authority keeps all exp files corresponding to loaded cap
i Verification detects that client.cap is not consistent with server.exp

PHI ATTACK — BIBLIOGRAPHY (2/2)

Accessing Secure Information using Export file Fraudulence — Bouffard, Khefif and Lanet — 2013

» Man in the middle
i Malicious app developer: provides a fake API
i Victim app developer: app.cap -> compiled with fake API export files
i Allows interception of any call to API methods

» Verification Authority has legitimate API export files

» Difficult to send fake export files to the victim developer

PHI ATTACK

Attack model

» CAP and EXP files come all from malicious App developer
» No file modification: they are consistent

» Verification Authority cannot detect malicious code
i Ifonly BCV is used
i AND if exp files provided are in version 2.2 (specified in Java Card 3.0.5)

JAVA CARD IMPORT MECHANISM

Asymmetry in import mechanism

_ Pckg A Pckg B

» CAP file

i Imported packages are listed in Import component CAP / EXP CAP / EXP

i Referenced by AID value

i Forinstance "A0 00 00 00 62 00 01" w
» Export file

i Referenced by the fully qualified name [BCV]

i For instance “java/lang”

1

Status

ATTACK SET-UP (1/3)

Pckg: library / AID: DEADBEEFO01

_)
class Phi {

Object confusion(Object obj) {
return obj;

b}
_ J

Pckg: library / AID: DEADBEEF02

class Phi {
Object confusion (short s) {
return null;

b}
_

ATTACK SET-UP (2/3)

Pckg: library / AID: DEADBEEFO01

class Phi {
Object confusion(Object obj) {
return obj;

b}

\

_ J

Pckg: proxy

[import library;//DEADBEEF01

class PhiProxy extends Phi {}

|

10

Pckg: library / AID: DEADBEEF02

_)
class Phi {
Object confusion (short s) {
return null;
}}
_ J

CAP file references DEADBEEFO01
EXP file references library

ATTACK SET-UP (3/3)

Pckg: library / AID: DEADBEEFO01

class Phi {
Object confusion(Object obj) {
return obj;

b}
_

\

J

Pckg: library / AID: DEADBEEF02

Pckg: proxy

import library;//DEADBEEF01

[class PhiProxy extends Phi ({}

|

_)
class Phi {
Object confusion (short s) {
return null;

}}
\§ J
Pckg: attack
(import library;//DEADBEEF(02)

import proxy;

Phi p = new PhiProxy() ;

11

\ Object o = p.confusion(0x1234);

BCV VIEW

Pckg: library / AID: DEADBEEFO01

class Phi {
Object confusion(Object obj) {
return obj;

b}
_

\

J

Pckg: library / AID: DEADBEEF02

class Phi {
Object confusion (short s) {
return null;

A

}}
_ J

Pckg: proxy

[import library;//DEADBEEF01

class PhiProxy extends Phi {} «

]

(e

Pckg: attack

(import library;//DEADBEEF02)
import proxy;

]
Phi p = new PhiPEny();

\ Object o = p.confusion(0x1234) /~;

AT RUNTIME

Pckg: library / AID: DEADBEEFO1 Pckg: library / AID: DEADBEEF02
_) 4 _)
class Phi { class Phi {
Object confusion (Object obj) { Object confusion (short s) {
return obj; return null;
) '\)
. \ J . J
Pckg: proxy \ Pckg: attack
import library;//DEADBERF01 ¢ (import library;//DEADBEEF02)
import proxy;
class PhiProxy extends Phi {} < i
Phi p = new PhiPEny();
\ Object o = p.confusion(0x1234) /~;

PHI — VARIATIONS

» Principle can be applied everywhere
On Java Card standard API
Even on java.lang, with Object (but often forbidden)

» Going deeper
Different number of methods
Overflow in CAP structures, may be powerful
But more implementation dependent

14

PHI - SUMMARY

» Not detected by BCV
» Due to the lack of information in exp file in version 2.2

» Not full attack, only a potential weakness
No assets disclosure,
But a first step for further investigations:
= Stack overflow/undeflow
= Type confusion
= Overflow in CAP structures
= Etc

15

| PHI — COUNTERMEASURES

» Check the AID consistency

» How ?
i Manually or with a dedicated tool
OR
Force usage of EXPort file version 2.3
= Defined in Java Card 3.1
= Each imported package is referenced by its name AND its AID
» But not always available (for instance GlobalPlatform)

16

THANK YOU FOR YOUR ATTENTION

Jean DUBREUIL Guillaume Bouffard
j.dubreuil@serma.com guillaume.bouffard@ssi.gouv.fr

SERMA

SAFETY & SECURITY

